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14 Higher order forms; divergence theorem

14a Forms of order three . ... ... ......... 2217]
14b Divergence theorem in three dimensions . .. . [225]
14c Order four, and higher . . ... ... ... .... 231]

Boundary and derivative are generalized to 3-chains and 2-forms, and
higher. Stokes’ theorem and divergence theorem are generalized accordingly.

14a Forms of order three

Similarly to the boundary of a singular 2-box, defined in Sect. 11d as

D c
Dlag+ e +Tlep +Tlpa=Tlag+ e —Tlpe —Tab,
A B
we define the boundary of a singular 3-box as follows:!
Ulapes + Ulerea + Ulapre+ F%E =
+ Tlprce + Dluswp + Dlpcer =
(14a1) |pHGC |AEHD |BoGF
= —Tapep + Ulgrer — Ulaprs+
A D
+ Ulpree — Ulapure + Ulpeer - =1

Similarly to (11d1),
(14a2) J(0I') =0 for a singular 3-box I'.

14a3 Exercise. Similarly to Sect. 11d, find

. 1
lim = w
e—0+ € or.

where T : [0,1]> = R", T.(uy, us, u3) = T + eurhy + cughy + cuzhs, and w is
an arbitrary 2-form (of class C') on R™.
Answer: (Dp,w(:, ha,h3))e + (Dnow(-, ha, b)) e + (Dnaw(-, ha, ho)) o

We proceed similarly to Def. 11d2.

'Here we rely on our geometric intuition; for a formal approach see Sect. m
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14a4 Definition. The ezterior derivative of a 2-form w of class C! is a
3-form dw defined by

(dW)(, h‘17 h27 h3) = Dh1w<'7 h27 h3) + Dh2W(', h37 h‘l) + Dh3w<'7 hl; hQ) .

Wedge product was defined in Sect. 11e for two 1-forms. Now we extend
it.
14a5 Definition. (a) Let Ly, Ly be linear forms on R™. Their wedge product
Ly A Ly is an antisymmetric bilinear form L on R” defined by

L®(a,b) = Ly(a)Ly(b) — Ly(b)Ly(a) for all a,b e R™.

(b) Let L™ be a linear form on R", and L® an antisymmetric bilinear
form on R™. Their wedge product LOWAL®) = LA ALM is an antisymmetric
trilinear form L® on R™ defined by

L®(a,b,¢) = LY(a) L (b, ¢) + LY (1) LP (¢, a) + LY (¢)L? (a, b)
for all a,b,c € R".

(Check the antisymmetry.) This definition is suggested by determinants,
as follows.

A trilinear form L on R" is generally L(a,b,c) =}, ., ¢ijraibjcy. If L is
antisymmetric then

a; b'L C;
L= E Cz’,chLi,j,k where Limk(a, b, C) = CLj bj Cj
i<j<k ag bk Ck

(think, why). Introducing also L; and L; ; by

a; b

LZ(CL) = a; , Li,j(CL, b) = aj bj

we observe that L; A L; = L;; and L; A Lj, = L, (think, why). Thus,
(Li NLj) N Ly, = Ly AN (Lj A\ Ly,) (since Ly;; = L;;x). Associativity follows
by taking linear combinations:

(Ly AN Ly) N Ly =Ly A (Ly A Lg) for all linear forms Ly, Ly, L3 on R™.
Wedge product of differential forms is defined pointwise:

(w1 Awa)(x) = wyi(z) A wa(x).
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It follows that (fw;) A (gw2) = (fg)(w1 A ws) for f,g € C°(R™). Note that
wy A wy = Fwi A wo; the sign is minus for two 1-forms, but plus for a 1-form
and 2-form. By associativity, wi A wo A wsy is well-defined for three 1-forms.
In particular,

(dl’Z A\ dl’j A dl’k)(l’, hl, hg, hg) = Li,j,k:(hla hg, hg)

is the 3 x 3 determinant.

A 2-form (of class C) is called closed, if its derivative is zero. The 2-form
dx; A\ dz; is closed, since (dz; A dz;)(z, h, k) does not depend on z.

The following two exercises are similar to (11e4) and (11e5).

14a6 Exercise. Prove that
d(dw) =0

for all 1-forms w of class C? on R™.

Thus, all exact 2-forms of class C! are closed. By the way, the 2-form
dx; A\ dz; is exact by 13b18, or just because d(z; dx;) = dx; A dz; by (11e6).
Moreover,

(14a7) df A dg is exact, therefore closed, for all f,g € C*(R").
14a8 Exercise. Prove that
d(fw) = df Aw + fdw
for all f € C'(R™) and all 2-forms w of class C' on R".
Therefore

(14a9) d(fw) =df Nw whenever w is closed .

In particular, d(f dz; A dz;) = df A dx; Adx; for all f € CHR™). Similarly
to 11e7 we get the following definition equivalent to

14a10 Definition. The exterior derivative of a 2-form w of class C! is a
3-form dw defined by

dw = dei,j A\ dl’z A dxj for w = Z fi,j d.ﬁlﬁ'l A dl'j .
i<j 1<j
We turn to change of variables, treated in Sect. 11f for 2-forms (and
I-forms, and 0-forms). Let ¢ € C'(R® — R"). Recall the pullback ¢*w

defined by 11f1 for all k-forms w on R™. We generalize 11f5 and 116 as
follows.



Tel Aviv University, 2013/14 Analysis-IILIV 224

14a11 Exercise. Prove that

P (w1 Aws Aws) = (p*w1) A (p"w2) A (¢*ws)
for all 1-forms w;, ws, ws on R™.!

14a12 Lemma. For every 2-form w of class C* on R” and ¢ € C*(R* — R"),

p*(dw) = d(p'w).
Proof. We have w = ZK]. fijdx; AN dx; and dw = Zi<j dfi; N\dx; \Ndz;. It
is sufficient to prove that ¢*(dfi; A dz; A dx;) = d(*(fi;dx; A dzj)). We
denote
Gig=¢" fij, Yi=¢ @, y=¢.

By 11f4, p*(dz;) = dy;, ¢*(dz;) = dy; and ¢*(df; ;) = dg; j. By 11£5, ¢*(dz; A
dz;) = dy; A\ dy;. By m ©*(df;; Ndx; ANdxj) = dg; j A\ dy; A dy;. On the
other hand, d(¢*(f;;dx; A dz;)) = d(g;;dy; A dy;) = dg;; A dy; A dy; by

@), () 0

14a13 Theorem. (Stokes’ theorem for k = 3)
Let C be a 3-chain in R", and w a 2-form of class C' on R™. Then

/dw:/w
c ac

Proof. 1t is sufficient to prove the equality [ dw = [, w for every singular
3-box I'. Similarly to 11g, using (11f2) we transform the needed equality into
fB ( dw f [w. Similarly to 11g we may assume that I' is of class C?.
Thus, [1 apphes and the needed equality becomes

/B d(T*w) = /6 T

Similarly to 11g it remains to prove the equality [,dw = [, w for every
2-form w of class C! on the cube B = [0,1]* C R?; we consider only w =
f(uy, ug, uz) duy A dus, since the other two cases are similar.

We have dw = df Aduy Aduy = (5—1{1 duy + gf dug + af du3) Aduy Aduy =
g—fg) duq N dus A dus, thus

1
/d / —duldu2du3 // duldug/ dU3 af
B 0,1]3 dus [0,1]2 us

= // dU1dU2(f(U1,U2, 1) - f(ul,u2,0)> )
which is equal to [;,w (see (14al)). O

"Hint: similar to 11f5; use the 3 x 3 determinant L; j j.
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14a14 Corollary.

Ci ~ Cy implies 0C; ~ 0C5
for arbitrary 3-chains C1,Cy in R™. (Similar to 11h1.)
14a15 Exercise. ! Check that

(ydw +xdy) A (vdx ANdz+ydy ANdz) = (y* — 2 de Ady N dz.
14a16 Exercise. 2 Check that
dlxdyNdz+ydz Ndx + zde Ndy) = 3dx Ndy N dz.
14a17 Exercise. 3 Prove that
d(wy A ws) = (dwy) A we — wy A dws

for arbitrary 1-forms wy,ws on R™.

Thus, if w; and ws are closed 1-forms then w; A wy is a closed 2-form.
(Compare it with 13b18.)

14a18 Exercise. * Prove a generalization of the formula for integration by

for arbitrary 2-form w ( of class C') on R™, functlon f € CY(R"), and 3-chain
C in R™

14b Divergence theorem in three dimensions

A 2-form w on R3 corresponds to a vector field H (recall Sect. 12a), namely,

W(l', hl, hg) = det(H(:c), hl, hg) s

H(ﬂf) = (fz,:s(l”), f371(37)> f1,2($))

for w = f172 d.f(]l N dl’g + f273 dl‘g A d[L‘g + f371 d[Eg VAN d[El .
~~ ~~ ~~

H3 Hy Ho

!Sjamaar, p. 19.

2Shurman, p. 423.

3Shurman, Th. 9.8.2 shows that in general the sign depends on the order of w;.
4Shurman, Ex. 9.14.3.



Tel Aviv University, 2013/14 Analysis-IILIV 226

14b1 Exercise. Let a vector field F correspond to a 1-form wq, and a vector
field H correspond to a 2-form w,. Prove that

wi Awy = (E, H) dzy A\ dxg A dzs .

For every singular 2-box I' : B — R3,

/F W= /B det (H(T(w)), (D)., (DT),) du = /F H

(recall (12a7)) is the flux of H through I'. This relation extends by linearity to
2-chains; in particular, [, w = [, H is the flux of H through the boundary

of a singular 3-box T'.
The derivative dw (assuming that w is of class C''), being a 3-form on R?,

is
dw = fdxy N\drs Ndxs
for some f € C°(R?). Taking into account that d(Hs dxy Adwy) = D3Hz dxy A
dxo N drs we get
dw = (div H) dzy A dxg A dxg,
divH = DlHl + D2H2 -+ D3H3 .

Now we finalize the diagram (12a3) (see also (12c9)),

0-form id function
d \Y
1-form =——— Euclidean duality —— vector field (F)
(14b2) d curl
2-form ~——— determinant duality —= vector field (H)
d div
3-form w = fdui A dry A day function

14b3 Exercise. ! Prove that
div(fH) = (Vf, H) + fdiv H

for all vector fields H (of class C') on R? and all functions f € C*(R?).?

1Zorich, (14.18).

2Hint: and
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14b4 Exercise. ! Prove that
diV(El X EQ) = <CU_I'1 E17 E2> — <E1, curl E2>
for all vector fields E;, Ey (of class C') on R3.2

Theorem [14al3| gives the three-dimensional divergence theorem (recall
(12¢8)):

(14b5) / H= / div [
or I

for every vector field H (of class C') on R? and every singular 3-box I' in R3.
Here (as in 12¢) by [ f we mean [, f dzy A dzo A ds.

If T': B — R3 is such that T'|p- is a diffeomorphism between B° and an
open set G = T'(B°) C R? then

/f(x)dxl/\dxg/\dxgzj:/f
r a

(a similar fact in two dimensions was noted in Sect. 12c, before (12c6)).
Assuming that det dI’ > 0 we get [.(div H) dzy A dzy A dxg = [, div H, and
S0,

(14b6) / H = / div H
or G

similarly to (12c6), (12c8).
In particular, spherical coordinates suggest a singular 3-box I'g that rep-
resents a ball of radius R,

Ir:[0,R] x[0,7] x [0,27] — R?,

14b7
( ) Lr(r,0,0) = (rsinf cos p, rsinfsin @, rcosb).

14b8 Exercise. Prove that

f(z)dxy AN dxg A dxs = f
I'r Br

for every f € C°(Bg).?

1Zorich, (14.19).
2Hint: and [14b1

3Hint: the determinant is equal to r2sin 6.
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Rotation invariance follows (recall 6m4):
FrR~Tolg
for every linear isometry 7 : R® — R3.! By it follows that
(14b9) Olgr ~Todl'y
since generally 7o OI' = (T o I') (think, why).
14b10 Exercise. (a) Consider a radial vector field F' on R3,
F(z) = f(lz)z, [fe€C®0,00)

(like 13¢3). Check that?
/ F=41tR*f(R) = 47R*- f(R)R
oT'gr

the area of the sphere times the length of the vector).
h f the sph i he 1 h of th
(b) More generally, consider F(x) = f(z)z, f € C°(R3); check that

T 2m
/ F:R/ dQ/ dy - R*sinf - f(Rsin 6 cos, Rsinfsin g, Rcosf).
ol 0 0

Postponing integration on surfaces in general, for now we define the inte-
gral of a function over the sphere dBg (the boundary of the ball Bg = {z :
2] < R} C RY) by
(14b11)

T 2w
/ f:/ dé’/ dy - R*sinf - f(Rsin @ cos ¢, Rsinfsin ¢, R cos6)
0BR 0 0

for arbitrary continuous function f on the sphere. Note that

/ 1 = 4nR?; (x)r =R f.
0BRr TR O0Br

Now we may define the mean value of f on the sphere as ;== | o5, /- This
could not be done via Riemann integral (proper or improper), since the sphere
is a set of volume zero.

In spherical coordinates this is easy to see for rotations about the z axis, but prob-
lematic for other axes.

“Hint: only one (out of six) face of the boundary contributes; calculate the 3 x 3
determinant and integrate it.



Tel Aviv University, 2013/14 Analysis-IILIV 229

14b12 Exercise. Prove that

Lo=lok,

~

for all f € C°(Bg).!

Therefore d
=== I

dBR dR Jg,

rotation invariance follows:

J? = 77

for every linear isometry T : R® — R3.2 (Compare it with (14b9).)
Similarly to Sect. 12d (before (12d4),

divVf=Af,
o 9* 02
Oz? * 3 * 3

A == DlDl + D2D2 -+ D3D3 =

is the Laplacian. Functions f € C?(R?) such that Af = 0 are called har-
monic.

Similarly to (12d4) we’ll prove the mean value property of a harmonic
function u on R3:

1 1
14b1 = : = D
( 3) u(0) D /{93R u;  u(z) YT /BBR u(z + )

To this end we need Green formulas (again).
Applying (14b5)) to H = Vu we get the first Green formula (recall (12d5))

(14b14) / Vu - / Au for all u € C2(R?).
or I

Exercise 12d6 holds in all dimensions (with the same proof):

(a) div(fH) = fdivH + (Vf,H) for all f € C'(R?) and H € C'(R?® —
R3);

(b) div(fVg) = fAg+ (Vf,Vg) for all f € C*'(R?) and g € C*(R?);

(c) fAg — gAf =div(fVg— gVf) for all f g € C*R3).

'Hint: first, replace Br with T'g.

2 Again, in spherical coordinates this is easy to see for rotations about the z axis, but
problematic for other axes.
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Similarly to (12d7), (12d8) we get the second Green formula
(14b15)

/ uVo = /(uAv + (Vu, Vo)) for all u € C'(R?) and v € C*(R?),
or r
and the third Green formula

(14b16) / (uVv —oVu) = /(uAv —vAu) for all u,v € C*(R?).
or r

14b17 Exercise. Similarly to I'g of ([14b7) introduce a singular 3-box I'g, r,
that represents the spherical shell {z : B; < || < Ry} C R? (given 0 < Ry <
Ry < 00) and check that

Ol'Rr,.ry, ~ Ol'g, — O, .
Here is a three-dimensional counterpart of 12d9.

14b18 Exercise. (a) Let u and v be harmonic functions on a spherical shell
{z € R? : a < [z[ < b}; prove that [, (uVv —vVu) does not depend on
R € (a,b).

(b) In particular, taking v(z) = 1/|z|, prove that!

1
uVov = —— Uu;
/BFR R2 OBRr

1
/ vVu:—/ Vu.
ol'r R ol'gr

(c) Assuming in addition that u is harmonic on the ball {z € R® : |z| < b}
prove that 7 faBR u does not depend on R € (0,b) and is equal to 47u(0),
which proves the first equality of (14b13)); the second follows by shift.

14b19 Exercise. (Mazimum principle for harmonic functions)

Let u be a harmonic function on a connected open set G C R3. If
SuUp,cq u(x) = u(xy) for some xy € G then u is constant.

Prove it.>

The mean value may be taken on the ball rather than the sphere:

3 3
14b2 I _ 3 N
(14b20) u(0) = /BRU, u(e) = 7o /BR (e + )
Proof: by |14b12{ and (14b13)),

R R 4 3
/ u= / d?"/ u= / 4 R*u(0) dr = mh u(0) .
Br 0 9B, 0 3

'Hint: v is harmonic by 13c4.
“Hint: the set {z¢ : u(z¢) = sup,c u(x)} is both open and closed in G.
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14b21 Proposition. (Liouwville’s theorem for harmonic functions, dimen-
sion three)
Every harmonic function R* — [0, 00) is constant.

Proof. (Nelson’s short proof)
For arbitrary z,y € R and R > 0 we have

o) = g [, e S [, )= (Tl vy o),

since the R-neighborhood of x is contained in the (R + |z — y|)-neighborhood
of y. In the limit R — oo we get u(x) < u(y); similarly, u(y) < u(z). O

14c Order four, and higher

In dimension four (and higher) we cannot rely on our geometric intuition as
much as we did in (14alf); we need a formal approach to orientation.
We introduce three types of cubes:!

* a standard k-cube is the set [—1,1]* in R¥;
* a singular k-cube in R™ is a C'* mapping [—1, 1]F — R";
* a geometric k-cube in R" is a set X C R™ isometric to [—1, 1]*.

The group? G}, of all isometries® of the standard k-cube (to itself) consists
0-100
of 2Fk! signed permutation matrices, like (‘f 99 5) The determinant of
00 —10
such matrix is £1.

Accordingly, for a given geometric k-cube in R” there exist 2¥k! isometric
mappings [—1,1]¥ — X. If T'; is such mapping then others are I’y o T' for
T € Gy; that is, they are I'; such that I';' o'y € Gy. All such mappings are
singular k-cubes in R", not all mutually equivalent; rather,

[y ~ Ty whenever det(I'j'oly) =1,
I ~ Ty whenever det(T;'oly)=—1.

Thus, a geometric k-cube X C R leads to two equivalence classes of singular
k-cubes; these two equivalence classes will be called the two orientations of
X. A k-form cannot be integrated over X unless an orientation is chosen;
for the other orientation the integral is the opposite number.

!This time, [—1,1] is technically more convenient than [0, 1].
2The so-called hyperoctahedral group.
3Called also automorphisms or congruences.
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The simplest case is, k = 1. A geometric 1-cube in R” is a straight interval
X ={z:|A—z|+|z—B| = 2} for given A, B € R", |[A— B| = 2. An isometry
v:[=1,1] = X defined by y(t) = 55t A+ B is a path; denote it just AB.
Accordingly, BA is the other isometry [—1,1] — X, t — %B + %A. Note
that (BA)(t) = (AB)(—t). Clearly, BA ~ —AB, that is, [,,w = — [,pzw
for all 1-forms w on R™.

The next case is, £k = 2. Let X C R" be a geometric 2-cube. An
isometry T' : [—1,1]> — X is a singular 2-cube; denote it by ABC'D where
A=T(-1,-1), B=TI(1,-1), C =T(1,1), D = I'(—1,1); these are the
vertices of X. There are 8 isometries: ABCD, ADCB, BCDA, BADC,
CDAB, CBAD, DABC, DCBA; they result from ABCD via elements of
the group G5. For ABCD, BCDA,CDAB and DABC' the elements of the
group are rotations by 0,7/2, 7 and 37 /2, of Jacobian +1; for others, the
elements of the group are reflections, of Jacobian —1. Thus,

ABCD ~ BOCDA ~ CDAB ~ DABC is one orientation of X ,
ADCB ~ BADC ~ CBAD ~ DCBA is the other orientation of X .

The standard k-cube has 2k hyperfaces
{(ur,...,ux) € [-1,1]F :u; =a} forie{l,....k} and a € {—1,1};

each hyperface is a geometric (k — 1)-cube. We want to define the boundary
0X of the standard k-cube X as the sum 3.,V of its hyperfaces Y treated
as singular (k — 1)-cubes Y; to this end we have to choose orientations of
these hyperfaces. We did it already for k£ = 2, 3.

/%/

ey

In these two cases the chosen orientations are consistent in the following
sense. For every hyperface Y and every T' € G such that det T = +1 (that

is, T(X) = X),
T(Y)=T().
This consistency is necessary for Stokes’ theorem to hold, since T' (X)=X
must imply 7'(0X) = 0X (recall |[14a14]).
Here is a special case of the consistency condition:

(14cl) fT(X)=Xand T(Y)=Y then T(Y) =Y.

It is worth noting that such a condition fails for edges (rather than faces) of
a 3-cube; here is a counterexample.
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14c2 Example. Let X = [—1,1]?, Y = {1} x{-1}x[—1,1] and T'(uy, ug, uz) =
(ug,u1, —ug). Then T preserves Y and the orientation of X but does not pre-
serve the orientation of Y.

Consider the hyperface Yy = {1} x [—1,1]¥7! of [-1,1]*. If T € Gy,

T(Yy) = Yo, then
T_ 110
07"

for some T" € Gy_1. Thus, detT' = det T”, which ensures for Y.

Now we are in position to ensure the consistency condition in general.
(This is somewhat similar to the proof of 13al.) For each hyperface Y of
[—~1,1]* we choose Ty € G such that detTy = +1 and Ty (Yy) = Y. We
choose an orientation of Yy and define

Y =Ty (Y)

for all Y. Given hyperfaces Y7, Y5 and T € G}, such that detT = +1 and
T (Y1) = Y, we have (Ty,' o T o Ty, ) (Yy) = Yy and det(Ty," o T o Ty, ) = +1.

Y, —F—=Y,

N\
Yo

Applying to Ty,' o T o Ty, and Yy we get (Ty,' 0T 0Ty, )(Yp) = Yy; thus,
T(Ty,(Yo)) = Ty, (Yo), that is, T(Y;) = Ys. (Similarly to 13al, the choice of
Ty does not really matter; think, why.)

Consistent orientations Y are thus constructed in principle; but we need
an explicit formula.

In terms of singular (k — 1)-cubes

Nig: [-1L, 10 = [=1,10%F forie{l,... k}, ac{-1,+1},
Aja(ur, oo up—1) = (Ury oo Uiy, @ Uy o U 1)
we have {/i’a ~ +A;, where Y, = {(u1,...,u;) € [-1,1]F : u; = a} are the
hyperfaces. But what are the signs?
The sign for Y, = Y, is rather a matter of convention; let it
be +1. That is, Yo ~ A;..! The mapping T;, : (ur,...,ux) +—
(Ugy . .., Us, QUYL Uiy, - - ., Uy) Satisfies?

E,a(YO) = }/;,a ; iTi,a o A1,—&— = Ai,a ; det(T‘i,a) = (_1)i_1a .

"More formally, Yy 3 A; 4.
T,

ASH i
zlndeed, (ul,...,uk_l) *i>+ (l,ul,...,uk_l) — (ul,...,ui_l,a,ui,...,uk_l).
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By the consistency condition, Tm(}}o) ~ det(ﬂ,a)ffm, that is, Yi, ~
det(ﬂﬂ)ﬂ’a 0] A1’+ ~ (—1>i_1(lA7;,a.

14c¢3 Definition. The boundary of a singular k-cube I' : [=1,1]* — R" is a

k-chain
oI = Z Z a(l'o A;,).

i=1 a==*1

14c4 Exercise. Check that the definitions used before for £ = 1, 2, 3 conform
to [4c3l

14¢5 Exercise. Prove that 9(9') = 0 for all singular k-cubes I' in R™.!
14c6 Exercise. Similarly to find

i 1
0t (26)F Jor,

where I'. : [—1,1]¥ = R", T(uy, ..., ux) = & + curhy + - - + cuphy, and w is
an arbitrary (k — 1)-form (of class C'') on R™.
Answer: 3% (—1)" YDpw(- hayooshic, iy, oo hy)) o

14c7 Definition. The ezterior derivative of a (k — 1)-form w of class C! is
a k-form dw defined by

k
(dw)(s s ki) =Y (1) Dyw (e, by iz, B, ).

=1

14c8 Theorem. (Stokes’ theorem)
Let C be a k-chain in R", and w a (k — 1)-form of class C' on R". Then

/dw—/ac

I skip the proof. The general case is somewhat more technical than the
case k = 3, but no new ideas appear in the proof. The equivalent definition
[M4aI0l of exterior derivative becomes

do= > dfyy Ao, ANy, forw =Y fi i dry A Aday,

i1 << 1< <dp,
the form dx;, A--- Adx;, is a determinant similar to L; j, of Sect. [I4a] Still,
d(dw) =

'Hint: you may use the idea of if you like.
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And still,
" (dw) = d(p*w) .

Similarly to Sect. [14b] an (n — 1)-form w on R™ corresponds to a vector
field H, namely,

H hi - hnoa

w(x, hyy ... hpy) =det(H(x), hy, ... hpo1), 1
W= Z(_l)nlei dry A Ndxiy Ndrigg Ndx, .

=1 n

For every singular (n — 1)-box I' : B — R",

/Fw:/Bdet(H(F(u)),(DlF)u,...,(Dn_ll“)u) du:/FH

is the flux of H through I'; and for an n-box T, farw = far H is the flux of
H through the boundary of T.
We have

n

dw = -1 "*1dHl/\d:c1/\/\dxl,1/\da:z 1/\dIn =
+

i=1

= del AR /\dl'ifl /\dH,L /\deiJrl /\dl‘n =
i=1

"\ 0H,
=> oo A Nday = (div H) day Ao Aday,
i=1

divH =D H1+---+D,H,.
Thus, Th. gives the n-dimensional divergence theorem (recall (14b1)):

(14c9) / H= / div [
or I

for every vector field H (of class C') on R™ and every singular n-box I' in
R™.
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