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Terms “boundary” and “derivative” get new meaning, and become dual
to each other.

11la What is the problem

A box B C R™ may be treated as a special case of a singular n-box in R™:
[': B— R" I'(u) = u. Thus every n-form w on R" leads to an additive box

function
BH/w:/w(u,el,...,en)du
B B

where (eq, ..., e,) is the usual orthonormal basis in R”. It is natural to define

(11al) /w:/w(u,el,...,en)du
E E

for all Jordan measurable sets £ C R™. (In this sense, every n-form in R is
locally proportional to the volume.)

The singular 2-box I' of 10e2 is not a homeomorphism between the box
B = [0,1] x [0,27] C R? and the disk D = {z : |z] < 1} € R% And
nevertheless,

(11a2) /w = / w for every 2-form w
r D



Tel Aviv University, 2013/14 Analysis-IILIV 174

since

/ W= /B w(D(w), (DiD)y, (DT),) du = /0 L /0 ) ageo( (7528, (526), (amd)).

and
L((), Crnd)) = v ((3).(9)
for every antisymmetric bilinear form L on R? (think, why). The missing
segment {0} x [0, 1] does not matter for the 2-dimensional integral.
We may say that this singular box is equivalent to the disk (w.r.t. 2-forms).
However, what happens to the boundary? The boundary 0B of B is not a

box but the union of four 1-dimensional boxes, and I'|sp may be treated as
a path OT consisting of four singular 1-boxes (one degenerated to a point).

0
A 0B
27 or
r
T
1~> r
Interestingly,
(11a3) / W= /w for every 1-form w;
or S

here [w = [Tw((9), (5n0)) df. The segment {0} x [0, 1] does not harm
since it occurs twice, with opposite signs. We may say that the boundary of
this singular box is equivalent to the boundary of the disk.

Just a good luck? No! Rather, a manifestation of a deep and important

relation between singular boxes and their boundaries. Another example:

B ~ Bl B2

OB 0B, 0B,
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11b Chains

11b1 Definition. A (singular) k-chain (in R") is a formal linear combination
of singular k-boxes.

That is,
C:clfl+~"+cpfp,

where ay,...,a, € Rand I'y, ..., I', are singular k-boxes. More formally, this
is a real-valued function with finite support on the (huge!) set of all singular
k-boxes:;

g =C4),...,c, =C(I,); C(I') =0 for all other I'.

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all
singular k-boxes. Less formally we say that the singular k-boxes are the
basis, and each singular box is (a special case of) a chain: I' =1 -T.

11b2 Definition.
/w:cl/ w—l—---+cp/ w
C Iy I'p

for every k-chain C' = ¢;I'y + - - - 4 ¢,I'y and every k-form w.

Note that the integral is bilinear; fcw is linear in C' for every w (by
construction), and linear in w for every C' (since [,w evidently is linear in
w).

11b3 Definition. Two k-chains C, Cy are equivalent if

/ w= / w for all k-forms w (of class C?).
ol Co

Let B C R* be a box, P its partition, and I" : B — R" a singular box.

Then
L~ T,

beP

since I' — [,w is an additive function of a singular box.




Tel Aviv University, 2013/14 Analysis-IILIV 176

Recall that singular 1-boxes are C''-paths.

By 10c12, equivalent paths are equivalent 1-chains.

By 10c10, the 1-chain v + 7_; is equivalent to 0; here 7y_; is the inverse
path.

C D ACD+ BC ~ AC + BCD ~ AC + BC + CD

B

11c Order 0 and order 1

The case k = 0 is included as follows. The space R° consists, by definition,
of a single point 0. The only 0-dimensional box is {0}. A singular 0-box in
R" is thus {z} for some z € R".! A 0-form on R" is a function w : R" — R

(of class C™). And
[ ametn
{=}

of course. Accordingly, [,w = ciw(z1) + -+ + cw(z,) for a 0-chain C' =
ci{zi} 4 -+ cp{ap )

11cl Exercise. If two O-chains are equivalent then they are equal.
Prove it.

The boundary of a singular 1-box v : [tg, t1] — R™ is, by definition, the

0-chain
Oy ={v(t)} — {~(to)},

a linear combination of two singular 0-boxes (not to be confused with ~(¢;) —
1(t0). Thus,

/a w=w(y(t1)) —w(y(ty)) fora O-form w.

'Well, more formally, it is {(0,z)}.
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The boundary of a 1-chain C' = ¢;71 + - - - + ¢y, is, by definition, the 0-chain
0C = 1071 + - - - + ¢,07,. For example,

the boundary of A>%_Q is —{A} —{B}+{C}+{D};

B
the boundary of @ ~ @ ~ Q is 0.

Note that the map C' — OC'is linear (by construction).

Given a 0-form w of class C! on R”, that is, a continuously differentiable
function w : R® — R, its derivative Dw may be thought of as a 1-form of
class C° on R", denoted dw;

(11c2) (de)(z, h) = (De)a(h) = (Dyeo)s

11c3 Proposition. (Stokes’ theorem for k = 1)
Let C be a 1-chain in R", and w a 0-form of class C* on R”. Then

/dw—/ w.
c ac

Proof. By linearity in C' it is sufficient to prove it for C' =« (a single 1-box,
that is, a path 7 : [tg, t;] — R™). We have

o= [ aston ) = [ w00 -

to

- / ) (Sw(r1)) dt = w(r(t2)) — wy(ta)) = / o,

dt o

11c4 Corollary.
01 ~ 02 implies 601 = (902

for arbitrary 1-chains C,Cy in R™.

Indeed, fac w = fC1 dw = sz dw = f802 w for every 0-form w of class C*.
Similarly to it follows that 0Cy = 0C5.

The case k = 1 is special; for higher k we’ll see that C; ~ Cy implies
0C, ~ 9Cy but not 9C, = 9C,. Nothing like exists for higher k.

Let us try to prove that Cy ~ Cy; = 09C; ~ 0Cs for k = 1 without
[11c1] The only problem is that C*(R") # C°(R™). However, C*(R") is dense
in C°(R™) in the following sense.
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11c5 Lemma. For every f € C°(R") there exist f; € C*(R") such that
fi = f uniformly on bounded sets.

Proof (sketch, for n =2). Define f. for e > 0 by

1
fora) = [ f,
€ [1’1 ,T1 +E] X [Z‘Q,Z‘Q-i-&]

then the partial derivative

0 1
a_xlfs(xlax2) ] /{mmﬁ] (f(«Tl +e,-) = flz, ))

is continuous; similarly, the other partial derivative is continuous; thus, f. €
C*(R™). The uniform convergence to f (as ¢ — 0) follows from uniform
continuity of f (on bounded sets). O

11c6 Exercise. Complete the proof, and generalize it to all dimensions.

Thus, C° may be replaced with C! in Def. [11b3| for k£ = 0.

11d Order 1 and order 2: exterior derivative
The boundary of a singular 2-box I' is, by definition, the 1-chain

D C

Ulag + e +Tlep +Ulpa =Tag +Ulgec — Ulpe —T'ap -

A B

This is not really a definition of a 1-chain, since I did not specify the four
1-dimensional boxes (which is very easy to do); but its equivalence class is
well-defined, and this is all we need solving the following question.

Given a 1-form w, can we construct a 2-form, call it dw, such that | o dw =
facw for all 2-chains C?

We have a function C' — faow of a singular box; this is an additive
function, since the map I' — OI" is additive (up to equivalence).

We want to differentiate this additive function in the hope that its derivative
exists and is a 2-form dw.
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Note that
(11d1) J(0T') =0 for a singular 2-box I';

by Jor dw = [5oryw = 0 for every O-form w. It should be [ d(dw) =
Jop dw = 0 for all T, that is, d(dw) = 0. Indeed, this fact will be proved,
see ([L1ed). A wonder: the second derivative of a 0-form is always zero, irre-
spective of the second derivatives of the function! Indeed, exterior derivative
is very similar to the usual derivative for 0-forms, but very dissimilar for
1-forms.

For now we only need to guess a formula for dw; having the formula,
hopefully we’ll be able to prove the equality.

Given a point x € R"™ and two vectors h,k € R"™, we consider small
singular boxes I'. : [0,1] x [0, 1] — R",

[o(uy,ug) = o + eurh + cugk;

an additive function on I'. should be of order €2 as ¢ — 0+4; we divide it by
e? and calculate the limit:

1 1! e
= W= _/ w(x + eurh, eh) du1+—/ w(x + eh + cugk, k) duy—
€2 Jor. e Jo e2 Jo

I I
— 5_2/ w(z + eurh + ek, eh) duy — 6—2/ w(z + eugk, ek) dug =
0 0

B /1 w(z +eurh, h) —w(x + cuyh + €k, h)
=/ -

+/1 w(x + eh + eugk, k) — w(x + eusk, k)
0 5

du1+

duy = —(Drw(-, b)) o+ (Dpw(-, k) -

Taking into account that

1
= dw — (dw)(z, h, k)
Ie
(for arbitrary 2-form dw) we see that the needed dw (if exists) is as follows.

11d2 Definition. The exterior derivative of a 1-form w of class C' is a
2-form dw defined by

(dw)(+, h, k) = Dpw(-, k) — Dyw(-, h) .

11d3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in R", and w a 1-form of class C* on R”. Then

/dw:/ w.
c ac

The proof will be given in Sect. [I1g]
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11e Algebra of differential forms

For every k = 0,1,...,n all k-forms (of class C™) on R™ are a vector space.
For k = 0 this space is just C™(R").

The product fw of a O-form f and a k-form w is another k-form fw
defined by

(fw)(‘r7h17“'7hk) - f(x)w(x7hl77hk) for ‘T7h17“'7hk € ]Rn7

it is of class C™ whenever f and w are; the mapping (f,w) + fw is bilinear;

also, g(fw) = (g9.f)w.
The exterior derivative of a O-form f € C*(R") is a 1-form df defined by

(recall (11c2))
(11el) (df)(x, h) = (Df)a(h) = (Dpf)a;

the mapping f — df is linear; also, d(fg) = fdg + g df.
The exterior derivative of the i-th coordinate function x +— x; is tradi-
tionally denoted by dx; (for i = 1,...,n); thus,

(11e2)  (dx;)(x,h) = h; for all z € R" and h = (hy,...,h,) € R".

A linear form L on R" is generally L(h) = >, ¢;h; for some ¢4, ..., ¢, €
R; thus, a 1-form w on R" is generally w(z,h) = >, fi(x)h; for some
fi,-oy fn: R" = R. That is (recall Sect. 10c),

W = ifidxi;
i=1

w is of class C™ if and only if all f; are. In particular,

i=1 i=1 v

since Dpf =31 (D;f)h;.

A 1-form on R! is f dz;. Treating a box B C R! as a singular 1-box (id :
B — R') we have [yw = [, f(z1)dzy for w = fdxy, since (dy)(z,e;) =1
(recall and (11e2)).

The exterior (or wedge) product of two 1-forms wy,ws is a 2-form w; A ws
defined by!

(w1 Awa)(x, h, k) = wi(x, h)wa(x, k) — wi(x, k)ws(x, h) ;

"Why dz; A dz; rather than dz;dz;? In fact, both notations are in use; the wedge
symbol “A” helps us remember that this operation is antisymmetric.
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it is of class C™ whenever w; and wy are; the mapping (wy,ws) — wi A wy

is bilinear and antisymmetric: wy; A we = —wqo A wy. Also, (fwy) A (gws) =
(fg)(w1 Aws). By (11e2),

h; k;

hj k;

A bilinear form L on R” is generally

L(h, k) = i i CZ'J‘hik'j 5

i=1 j=1

it is antisymmetric if and only if ¢; ; = —c¢; ;; in this case L(h, k) =), i Cijhik;

> icj Cij(hikj — hjk;). Thus, by (11ed), a 2-form w on R" is generally

1
w = Z fi,j d![’l A dl‘j = 5 Z fi,j dl’z A\ de ;
4,

i<j

in the former notation f; ; are given for ¢ < j only, while in the latter notation
fij = —fji; wis of class C™ if and only if all f; ; are. For example, the 2-form
of 10el2 is x; dxy A dxs.

A 2-form on R? is fdx; A dxy. Treating a box B C R? as a singular
2-box (id : B — R?) we have [, fdxy Adxy = [, f(x) dwydas, since (dzy A

dxs)(x,eq,e9) =1 (recall and ((11e3))).

We turn to Def. [11d2] Let w = df, f € C%(R"); then, by (and
Sect. 2g), (dw)(-,h, k) = Dpw (-, k) — Dyw(:, h) = Dip(Dyf) — De(Drf) = 0,
that is,

(11ed) d(df) =0,

as it should be (recall (11d1]) and the paragraph after it).
Now consider d(fw) for f € C'(R") and a 1-form w of class C* on R™.
We have

(d(fw)) (-, h, k) = Dy (fw(-,k)) — Dy (fw(-, h)) =
= (Dnf)w(- k) + fDpw(- k) = (Diflw(:, h) = fDww(-, h) =
= fdw('a ha k) + (th)w('a k) - (Dkf)w(7 h) =
= fdw(-, h k) +df (-, h)w(- k) — df (-, k)w(-, h) =
= fdw(-, h, k) + (df ANw)(-, h, k) ;

thus,

(11eb) d(fw)=df N\w+ fdw.
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It follows via (11e4)) that
(11e6) d(fdg) =df Ndg

for f € C1(R"), g € C*(R"), and we get the following definition equivalent
to M1d2l

11e7 Definition. The exterior derivative of a 1-form w of class C! is a
2-form dw defined by

dw:i;dfi/\dxi forwzi;fid:ci.

The 2-form dw is of class C™ whenever w is of class C™*!; the mapping
w +— dw is linear; and d(fw) is given by (11e5)).

11e8 Exercise. Check that

for every 2-form w = ZKJ. fij dv;Adz; on R™ and singular 2-box I' : B — R";
here x = (z1,...,x,) = I'(u1, us) and

ox; ox;
a('ri?xj) — g_zl g_z;
8(u1,u2) a—ii 8_2;

In particular,

/dxi/\dxj:/ Mduldm.
r B O(

O(uy,usg)

11e9 Exercise. ! (a) Let I' : B — R? be a singular 2-box in R3, and Ty :
B — R? its projection onto the zy plane; that is, I'(u) = (T'1(u), [a2(w), T3(u))
and To(u) = (T1(u), Ta(u),0) for u € B. Prove that [ dzAdy = [, dxAdy.

(b) Consider T': [0,a] x [0,7] — R3, T'(r,0) = (rcosf,rsinf,r?). Sketch
the surface noting that 6 varies from 0 to m, not from 0 to 27w. Try to
determine fr dx N\ dy by geometrical reasoning, and then check your answer
by integration. Do the same for dy A dz and dz A dx.

11e10 Exercise. 2 (a) Integrate a 2-form x dy A dz + ydx A dy on R3 over
the singular 2-box I": [0,1] x [0,1] — R3, T'(u,v) = (u + v, u? — v ww).
(b) The same for T': [0,27] x [0,1] — R3, T'(u,v) = (vcosu, vsinu, u).

'Shurman, Ex. 9.5.1
2Shurman, Ex. 9.5.2
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11ell Exercise. ! (a) Calculate (a; dzy +as das) A (by dxy + by dzs), observe
a 2 X 2 determinant;

(b) calculate (a; dxy + ag dxg + az dzs) A (by dxy + by dxg + b3 dz3), observe
a cross product.

11e12 Exercise. Check that d(zdy — ydz) = 2dx A dy.

11f Change of variables

Given a mapping ¢ € C*(R* — R"), every singular k-box I' : B — R’ leads
to a singular k-box p o I' : B — R™. Thus, every k-form w on R" leads to
a box function I' — f@or w; it is additive (since the mapping I' — ¢ o I is).
Can we find a k-form ¢*w on R’ such that fSOOF w = [p¢*w for all I'?

11f1 Definition. Given a k-form w on R" and a mapping ¢ € C*(R¢ — R"),
the pullback of w along ¢ is a k-form p*w on R? defined by

(30*("))(‘757 hi, ..., hk) - W(W(IL (Dgp)z(hl)v R (D@>$(hk)) =
=w(p(@), (Dn@)as- - (Dnyp)s) for a,hy,... hy € RE.

The form p*w is of class C™ whenever w is of class C™ and ¢ is of class
C™* The mapping w + ©*w is linear. For k& = 0 the pullback is just the
composition: (¢*f)(z) = f(p(x)); p*f = fo¢ (no need in C™*! in this

case). And ¢*(fw) = (¢ f)(¢p*w) = (f o p)¢*w for f € CH(R").
A singular k-box I' in R” is a C'-mapping B — R™ on a box B C R*
rather than the whole R¥, but still, the pullback I*w is well-defined (on B),

(T*w)(u, b, ... he) = w(T(w), (Dpy D)y - .., (Dp D))

for w € B and hy,...,h; € R¥. In particular, for the usual basis eq, ..., ep
of R* we have (I"w)(u,eq,...,ex) = w(D(u),(Dil)y,...,(Dil'),). Thus,
the definition of [,w given in Sect. 10e may be rewritten as [fw =

Jp(T*w)(u, eq, ..., e) du. Using (11al) we get

(11£2) /Fw:/BF*w.

We see that it was the integral of the pullback, from the very beginning!
By the chain rule 2b12,

(D(¢oT))u = (Dg)rw o (DL)y;

!Shurman, Sect. 9.7
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thus,

(o) w)(u, ha, .., b)) = w((ol) (), (D(pol))u(ha), - ., (D(wol))u(hi)) =
= w(p(l(w)), (DY)r@w (D), . .., (D@)rw) (D) hy) =
= (¢*w)(T(w), (DT)yh, ..., (DT)uhi) = (I*(¢*w)) (u, ha, . .. )
that is,*
(pol)'w=T"(p'w),
which leads to the change of variable formula

/worwz/B(soof)*wz/BF*(SO*w)Z/Fsaw

for singular boxes, and therefore (by linearity in C), also for k-chains C' is
R™:

(11£3) / w:/go*w,
poC' (&

where p o C' =ci(pol'y)+---+cy(poly) for c =iy + - - - + ¢, 1.

11f4 Lemma. For every 0-form f € C*(R") and ¢ € C'(R* — R"),
" (df) = d(¢"f).

Proof.

("(df)) (@, h) = (df)(p(@), (Dp)sh) =

= (D)ot (Dp)sh ™= D(f 0 @)oh = d(¢" f)(w, h) .

]

11f5 Lemma. For all 1-forms wy,w, on R® and ¢ € C1(R* — R"),

@ (w1 Aws) = (P wi) A (p*ws2) -
Proof.
(" (w1 Aws)) (2, b, k) = (w1 Aws) (@(), (Dp)sh, (D), k) =
= wi((2), (Dg)ah)ws (p(x), (Dp)ock) —wi(0(2), (Dg)ok)wa (¢ (@), (Dp)oh) =
= (¢"wi)(z, h)(p*w2) (@, k) — (¢ w1)(z, k) (" w2)(~”’3 h) =
= ((90 w1) A (@ ws )

]

!The same argument gives a more general formula (¢ o 1))*w = ¥*(p*w).



Tel Aviv University, 2013/14 Analysis-IILIV 185

11f6 Lemma. For every 1-form w of class C! on R" and ¢ € C?*(R* — R"),

" (dw) = d(¢*w) .

Proof. We have w = Y_" | fidx; and dw = > | df; A dz;. Tt is sufficient to
prove that ¢*(df; A dz;) = d(¢*(f; dz;)). We have

o (df A dae) 2 ¥ (dfs) A o () LD
— d(¢" f)Ad(p™ ) T (0" () dio" () B (9 ()" (i) = d(" (f: das))
]

A differential form may be defined on an open subset of R™ (rather than
the whole R™); everything generalizes readily to this case. Below, in some
exercises, some forms are defined on R?\ {(0,0)}.

11f7 Exercise. ' (a) (z,y) = ¢(r,0) = (rcosf,rsinf); find p*w for w =

dx N dy;
(b) the same ¢, but w = %;

(c) the same w as in (b), but (x,y) = ¢(u,v) = (u* — v%, 2uw).

11f8 Exercise. ? Consider mappings: ¢(r,0) = (rcosf,rsind), ¥(u,v) =
(u? — v? 2uw), and &(r,0) = (r?,20). For w = % find p*w, &*(p*w),
Y*w, and ¢*(¢Y*w). Explain the result.

11f9 Exercise. ® For a given 7 > 0 consider a singular 2-box I' : [0, 2] x
[0,7] — R3, T'(#,p) = (rcosfsinp,rsinfsinp,rcosy) and a 2-form w =
—2dy Ndz — 2 dz ANdw — Zdx A dy. Find the pullback Iw.

11g Proving the theorem

11g1 Exercise. Let I',I'y,['5,--- : B — R" be singular k-boxes such that
[; — T'in O, that is,

ri—-nr, DiI'y— DI, ..., Dgl'y— DI uniformly on B.
Then

/ w — / w for every k-form w on R".

Prove it.

IShurman, Sect. 9.9.
2Shurman, Sect. 9.9.
3Shurman, Ex. 9.9.4.
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11g2 Exercise. Let I')T';,I'y,--- : B — R" be singular 2-boxes such that
I, = T'in C'. Then

/ W — / w for every 1-form w on R".
or or

Prove it.

11g3 Lemma. For every I' € C'(B — R") there exist I'; € C*(B — R")
such that I'; — ' in C.

Proof (sketch, for B =1[0,1] x [0,1] C R?). The argument of|[11c5/needs only
a slight modification. We define I'; for € > 0 by

1 1 Vg
o) =3 | (2.
e? [u1,u1 €] X [ug,uz+e] 1+ 1+e¢

then the partial derivative
0 1 1
_Fa(ulaUQ):_/ _<F<U1+€7 ki ) _F<La 2 ))dUQ
Ouq € Jiuguste] € 14e’ 1+¢ l4+e 1+¢

is of class C' and converges (uniformly) to 3 F(ul, Us). O

Proof of Theorem [11d3, It is sufficient to prove the equality fr dw = |, op w for
every singular 2-box I". Applying to the 2-box B and the four 1-boxes
constituting 9B we transform the needed equality into [, I'*(dw) = [, 5 T*w.
By [11g1], [11g2] and [11g3| we may assume that I' is of class C?. Thus,
applies, and the needed equality becomes

e = [

Now we may forget the singular 2-box I' in R” and the 1-form w on R"; it
remains to prove the equality [ pdw = i) op W for every 1-form w of class ct
on the square B = [0, 1] x [0,1] C R%

In general w = f; duy + f5dus; by linearity in w we may consider two
1-forms separately, fidu; and fydug; we consider only w = f(uy,us) duy,
since the other case is similar.

We have dw = df A du; = (aa—fl du; + g—lf;dm) Adu, = _Z?ng duy A dus,
thus

af
dw:—/ —dudu /du/du
/B [0,1]x[0,1] Oug R ' 2 Oy 8U2

1
=— [ d 1 , ,1)d ,0)duy .
/0 U1(f(u1 ) — f(u1,0 /fu1 U1+/ f(u1,0)du,

On the other hand, fan_fo (u,0)du; — fo (ug, 1)duy. O
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11h First implications

Here is a counterpart of

11h1 Corollary.
01 ~ CQ implies 801 ~ (902

for arbitrary 2-chains C', Cy in R"™.
Indeed, facl W= fCl dw = fc2 dw = fac2 w for every 1-form w of class C1,

and therefore also for every 1-form of class C°, since generalizes readily
to 1-forms.

Now we return to a question posed in Sect. 10c (after 10c11): is the path
function v — f7 w continuous?

11h2 Proposition. Assume that v,vq,7y9,- -+ € C’l([to,tl] — R”), Vi are
bounded in C' (that is, sup, max; |7, ()| < 00), and 7, — 7 in C? (that is,
max; |v,(t) —v(t)] = 0 as k — o0). Then

/w—>/w as k — o0
Yk Y

for every 1-form w (of class C°) on R™.

11h3 Remark. The condition that -y, are bounded in C*! cannot be dropped.
Here is a counterexample:

1
Ye(t) = —=(cos kt,sinkt) for t € [0,27],

VEk
W=, () =(0,0);
w=uxdy —ydx;

2m 1
/ w= / E(COS kt - (sinkt)’ — sinkt - (coskt)') dt =2 for all k;
Vi 0

/w:O.
.

Proof of Prop.[1Th3 First, we may assume that w is of class C'. Otherwise
we approximate it by 1-forms w; of class C';

n

w = Zfz dr;; wj= qu dr;; fij € Cl(Rn)Q
i=1

=1
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fij = fi as j — oo, uniformly on bounded sets (recall ;

‘/w—/w [o=[als|[w-fal+][o- [
Vi Y Vi Vi Yk Y v v

Jo= [ ngﬁﬂwwwwv[fgmwwwwwk

S/tlZ\fi,j(V(t)) — fi(Y®)| - (@) dt =0 asj — oo;

0

< + +

Y

similarly, f% w— f% w; — 0 as j — oo, uniformly in & (since all () are
a bounded subset of R", and all v, (¢) are bounded). Given ¢ > 0, we take
j such that the first and third terms are less than e (irrespective of k), and
then we take k such that the second term is less than e.

So, w is of class C'. We take & — 0 such that |y (t) — v(¢)| < &, for all
t. We introduce boxes By, = [to, t1] X [0, ;] C R? and define singular 2-boxes

u u
Pelt, ) = (1= ) (t) + =)
Ek €k
We have I'y(-,0) = v, and 'g(-, ) = 7, thus,
Ok =y — 7 + B — ay,

where ay, B : [0,e] — R”,

ag(u) = <

We have

L= = )ulto) + —(to) . Bulw) = (1= )ltn) + vt

/ w= /6k zn:fl(ak(u))a;(u) du =0 ask — oo,
e 0 =1

since g, — 0, |} (u)| = é|'yk(t0)—'y(to)| < 1, and f;(-) is bounded. Similarly,
i) 5w — 0. In order to prove that f% w — fvw it remains to prove that
Jop, w— 0.

k

By Theorem (11d3] farkw = [p dw. We have dw = Y
(forget the f;; used before); by [11e8}

B A (9(.351‘,1']') w
LM—A;]mrarﬂm,

i<j ’ u)

fl}j dlL‘Z A\ d[Ej

i<j
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where © = (21,...,2,) = ['k(t,u). In order to prove that ka dw — 0 it
remains to check that the integrand is uniformly bounded (since v(Bj) =

(ti — to)er — 0). We have | 22| < max(|y,(t)],[7/(¢)]) and |22| < 1, thus

% is uniformly bounded. Also f;;(z) is uniformly bounded (since all
[x(t,u) are a bounded subset of R™). O

11h4 Remark. Prop. [11h2] generalizes readily to paths 74, that are only
piecewise continuously differentiable. To this end we split By as needed,

to t1

apply Stokes’ theorem to each fragment, and sum up.

Index
boundary, Stokes’ theorem,
0-box, [I76]
a(ar), 179
chain, 7,
0-chain, [I76] d(dw), [179
change of variable, d(df),
o,
equivalent chains, df,
exterior derivative, dz;,
exterior product, fw,
Jow,
0-form, [176] w1 A wa, 130
IMw, 183

pullback, ©*w, [183
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