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Terms “boundary” and “derivative” get new meaning, and become dual
to each other.

11a What is the problem

A box B ⊂ Rn may be treated as a special case of a singular n-box in Rn:
Γ : B → Rn, Γ(u) = u. Thus every n-form ω on Rn leads to an additive box
function

B 7→
∫
B

ω =

∫
B

ω(u, e1, . . . , en) du

where (e1, . . . , en) is the usual orthonormal basis in Rn. It is natural to define

(11a1)

∫
E

ω =

∫
E

ω(u, e1, . . . , en) du

for all Jordan measurable sets E ⊂ Rn. (In this sense, every n-form in Rn is
locally proportional to the volume.)

The singular 2-box Γ of 10e2 is not a homeomorphism between the box
B = [0, 1] × [0, 2π] ⊂ R2 and the disk D = {x : |x| ≤ 1} ⊂ R2. And
nevertheless,

(11a2)

∫
Γ

ω =

∫
D

ω for every 2-form ω
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since∫
Γ

ω =

∫
B

ω
(
Γ(u), (D1Γ)u, (D2Γ)u

)
du =

∫ 1

0

dr

∫ 2π

0

dθ ω
((

r cos θ
r sin θ

)
,
(

cos θ
sin θ

)
,
(
−r sin θ
r cos θ

))
,∫

D

ω =

∫ 1

0

r dr

∫ 2π

0

dθ ω
((

r cos θ
r sin θ

)
,
(

1
0

)
,
(

0
1

))
,

and
L
((

cos θ
sin θ

)
,
(
−r sin θ
r cos θ

))
= rL

((
1
0

)
,
(

0
1

))
for every antisymmetric bilinear form L on R2 (think, why). The missing
segment {0} × [0, 1] does not matter for the 2-dimensional integral.

We may say that this singular box is equivalent to the disk (w.r.t. 2-forms).
However, what happens to the boundary? The boundary ∂B of B is not a
box but the union of four 1-dimensional boxes, and Γ|∂B may be treated as
a path ∂Γ consisting of four singular 1-boxes (one degenerated to a point).

∂B

r

θ

1

2π ∂Γ

Γ

Interestingly,

(11a3)

∫
∂Γ

ω =

∫
S

ω for every 1-form ω ;

here
∫
S
ω =

∫ 2π

0
ω
(
( cos θ

sin θ ), ( − sin θ
cos θ )

)
dθ. The segment {0}×[0, 1] does not harm

since it occurs twice, with opposite signs. We may say that the boundary of
this singular box is equivalent to the boundary of the disk.

Just a good luck? No! Rather, a manifestation of a deep and important
relation between singular boxes and their boundaries. Another example:

B

∂B

B1 B2

∂B1 ∂B2

∼

∼
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11b Chains

11b1 Definition. A (singular) k-chain (in Rn) is a formal linear combination
of singular k-boxes.

That is,
C = c1Γ1 + · · ·+ cpΓp ,

where a1, . . . , ap ∈ R and Γ1, . . . ,Γp are singular k-boxes. More formally, this
is a real-valued function with finite support on the (huge!) set of all singular
k-boxes;

c1 = C(Γ1), . . . , cp = C(Γp) ; C(Γ) = 0 for all other Γ .

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all
singular k-boxes. Less formally we say that the singular k-boxes are the
basis, and each singular box is (a special case of) a chain: Γ = 1 · Γ.

11b2 Definition. ∫
C

ω = c1

∫
Γ1

ω + · · ·+ cp

∫
Γp

ω

for every k-chain C = c1Γ1 + · · ·+ cpΓp and every k-form ω.

Note that the integral is bilinear;
∫
C
ω is linear in C for every ω (by

construction), and linear in ω for every C (since
∫

Γ
ω evidently is linear in

ω).

11b3 Definition. Two k-chains C1, C2 are equivalent if∫
C1

ω =

∫
C2

ω for all k-forms ω (of class C0) .

Let B ⊂ Rk be a box, P its partition, and Γ : B → Rn a singular box.
Then

Γ ∼
∑
b∈P

Γ|b ,

since Γ 7→
∫

Γ
ω is an additive function of a singular box.

∼

∼
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Recall that singular 1-boxes are C1-paths.
By 10c12, equivalent paths are equivalent 1-chains.
By 10c10, the 1-chain γ + γ−1 is equivalent to 0; here γ−1 is the inverse

path.

A

B

C D ACD +BC ∼ AC +BCD ∼ AC +BC + CD

∼ ∼

11c Order 0 and order 1

The case k = 0 is included as follows. The space R0 consists, by definition,
of a single point 0. The only 0-dimensional box is {0}. A singular 0-box in
Rn is thus {x} for some x ∈ Rn.1 A 0-form on Rn is a function ω : Rn → R
(of class Cm). And ∫

{x}
ω = ω(x) ,

of course. Accordingly,
∫
C
ω = c1ω(x1) + · · · + cpω(xp) for a 0-chain C =

c1{x1}+ · · ·+ cp{xp}.

11c1 Exercise. If two 0-chains are equivalent then they are equal.
Prove it.

The boundary of a singular 1-box γ : [t0, t1] → Rn is, by definition, the
0-chain

∂γ = {γ(t1)} − {γ(t0)} ,
a linear combination of two singular 0-boxes (not to be confused with γ(t1)−
γ(t0)). Thus, ∫

∂γ

ω = ω(γ(t1))− ω(γ(t0)) for a 0-form ω .

1Well, more formally, it is {(0, x)}.
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The boundary of a 1-chain C = c1γ1 + · · ·+ cpγp is, by definition, the 0-chain
∂C = c1∂γ1 + · · ·+ cp∂γp. For example,

the boundary of
A

B

C D
is − {A} − {B}+ {C}+ {D} ;

the boundary of ∼ ∼ is 0 .

Note that the map C 7→ ∂C is linear (by construction).
Given a 0-form ω of class C1 on Rn, that is, a continuously differentiable

function ω : Rn → R, its derivative Dω may be thought of as a 1-form of
class C0 on Rn, denoted dω;

(11c2) (dω)(x, h) = (Dω)x(h) = (Dhω)x .

11c3 Proposition. (Stokes’ theorem for k = 1)
Let C be a 1-chain in Rn, and ω a 0-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

Proof. By linearity in C it is sufficient to prove it for C = γ (a single 1-box,
that is, a path γ : [t0, t1]→ Rn). We have∫

γ

dω =

∫ t1

t0

dω
(
γ(t), γ′(t)

)
dt =

∫ t1

t0

(Dω)γ(t)(γ
′(t)) dt =

=

∫ t1

t0

( d

dt
ω(γ(t))

)
dt = ω(γ(t1))− ω(γ(t0)) =

∫
∂γ

ω .

11c4 Corollary.
C1 ∼ C2 implies ∂C1 = ∂C2

for arbitrary 1-chains C1, C2 in Rn.

Indeed,
∫
∂C1

ω =
∫
C1
dω =

∫
C2
dω =

∫
∂C2

ω for every 0-form ω of class C1.
Similarly to 11c1 it follows that ∂C1 = ∂C2.

The case k = 1 is special; for higher k we’ll see that C1 ∼ C2 implies
∂C1 ∼ ∂C2 but not ∂C1 = ∂C2. Nothing like 11c1 exists for higher k.

Let us try to prove that C1 ∼ C2 =⇒ ∂C1 ∼ ∂C2 for k = 1 without
11c1. The only problem is that C1(Rn) 6= C0(Rn). However, C1(Rn) is dense
in C0(Rn) in the following sense.
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11c5 Lemma. For every f ∈ C0(Rn) there exist fi ∈ C1(Rn) such that
fi → f uniformly on bounded sets.

Proof (sketch, for n = 2). Define fε for ε > 0 by

fε(x1, x2) =
1

ε2

∫
[x1,x1+ε]×[x2,x2+ε]

f ,

then the partial derivative

∂

∂x1

fε(x1, x2) =
1

ε2

∫
[x2,x2+ε]

(
f(x1 + ε, ·)− f(x1, ·)

)
is continuous; similarly, the other partial derivative is continuous; thus, fε ∈
C1(Rn). The uniform convergence to f (as ε → 0) follows from uniform
continuity of f (on bounded sets).

11c6 Exercise. Complete the proof, and generalize it to all dimensions.

Thus, C0 may be replaced with C1 in Def. 11b3 for k = 0.

11d Order 1 and order 2: exterior derivative

The boundary of a singular 2-box Γ is, by definition, the 1-chain

Γ|AB + Γ|BC + Γ|CD + Γ|DA = Γ|AB + Γ|BC − Γ|DC − Γ|AD .
A B

D C

This is not really a definition of a 1-chain, since I did not specify the four
1-dimensional boxes (which is very easy to do); but its equivalence class is
well-defined, and this is all we need solving the following question.

Given a 1-form ω, can we construct a 2-form, call it dω, such that
∫
C
dω =∫

∂C
ω for all 2-chains C?
We have a function C 7→

∫
∂C
ω of a singular box; this is an additive

function, since the map Γ 7→ ∂Γ is additive (up to equivalence).

∼

We want to differentiate this additive function in the hope that its derivative
exists and is a 2-form dω.
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Note that

(11d1) ∂(∂Γ) = 0 for a singular 2-box Γ ;

by 11c3,
∫
∂Γ
dω =

∫
∂(∂Γ)

ω = 0 for every 0-form ω. It should be
∫

Γ
d(dω) =∫

∂Γ
dω = 0 for all Γ, that is, d(dω) = 0. Indeed, this fact will be proved,

see (11e4). A wonder: the second derivative of a 0-form is always zero, irre-
spective of the second derivatives of the function! Indeed, exterior derivative
is very similar to the usual derivative for 0-forms, but very dissimilar for
1-forms.

For now we only need to guess a formula for dω; having the formula,
hopefully we’ll be able to prove the equality.

Given a point x ∈ Rn and two vectors h, k ∈ Rn, we consider small
singular boxes Γε : [0, 1]× [0, 1]→ Rn,

Γε(u1, u2) = x+ εu1h+ εu2k ;

an additive function on Γε should be of order ε2 as ε→ 0+; we divide it by
ε2 and calculate the limit:

1

ε2

∫
∂Γε

ω =
1

ε2

∫ 1

0

ω(x+ εu1h, εh) du1 +
1

ε2

∫ 1

0

ω(x+ εh+ εu2k, εk) du2−

− 1

ε2

∫ 1

0

ω(x+ εu1h+ εk, εh) du1 −
1

ε2

∫ 1

0

ω(x+ εu2k, εk) du2 =

=

∫ 1

0

ω(x+ εu1h, h)− ω(x+ εu1h+ εk, h)

ε
du1+

+

∫ 1

0

ω(x+ εh+ εu2k, k)− ω(x+ εu2k, k)

ε
du2 → −

(
Dkω(·, h)

)
x+
(
Dhω(·, k)

)
x .

Taking into account that

1

ε2

∫
Γε

dω → (dω)(x, h, k)

(for arbitrary 2-form dω) we see that the needed dω (if exists) is as follows.

11d2 Definition. The exterior derivative of a 1-form ω of class C1 is a
2-form dω defined by

(dω)(·, h, k) = Dhω(·, k)−Dkω(·, h) .

11d3 Theorem. (Stokes’ theorem for k = 2)
Let C be a 2-chain in Rn, and ω a 1-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

The proof will be given in Sect. 11g.
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11e Algebra of differential forms

For every k = 0, 1, . . . , n all k-forms (of class Cm) on Rn are a vector space.
For k = 0 this space is just Cm(Rn).

The product fω of a 0-form f and a k-form ω is another k-form fω
defined by

(fω)(x, h1, . . . , hk) = f(x)ω(x, h1, . . . , hk) for x, h1, . . . , hk ∈ Rn ;

it is of class Cm whenever f and ω are; the mapping (f, ω) 7→ fω is bilinear;
also, g(fω) = (gf)ω.

The exterior derivative of a 0-form f ∈ C1(Rn) is a 1-form df defined by
(recall (11c2))

(11e1) (df)(x, h) = (Df)x(h) = (Dhf)x ;

the mapping f 7→ df is linear; also, d(fg) = f dg + g df .
The exterior derivative of the i-th coordinate function x 7→ xi is tradi-

tionally denoted by dxi (for i = 1, . . . , n); thus,

(11e2) (dxi)(x, h) = hi for all x ∈ Rn and h = (h1, . . . , hn) ∈ Rn .

A linear form L on Rn is generally L(h) =
∑n

i=1 cihi for some c1, . . . , cn ∈
R; thus, a 1-form ω on Rn is generally ω(x, h) =

∑n
i=1 fi(x)hi for some

f1, . . . , fn : Rn → R. That is (recall Sect. 10c),

ω =
n∑
i=1

fi dxi ;

ω is of class Cm if and only if all fi are. In particular,

df =
n∑
i=1

Dif dxi =
n∑
i=1

∂f

∂xi
dxi ,

since Dhf =
∑n

i=1(Dif)hi.
A 1-form on R1 is f dx1. Treating a box B ⊂ R1 as a singular 1-box (id :

B → R1) we have
∫
B
ω =

∫
B
f(x1) dx1 for ω = f dx1, since (dx1)(x, e1) = 1

(recall (11a1) and (11e2)).
The exterior (or wedge) product of two 1-forms ω1, ω2 is a 2-form ω1 ∧ω2

defined by1

(ω1 ∧ ω2)(x, h, k) = ω1(x, h)ω2(x, k)− ω1(x, k)ω2(x, h) ;

1Why dxi ∧ dxj rather than dxi dxj? In fact, both notations are in use; the wedge
symbol “∧” helps us remember that this operation is antisymmetric.
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it is of class Cm whenever ω1 and ω2 are; the mapping (ω1, ω2) 7→ ω1 ∧ ω2

is bilinear and antisymmetric: ω1 ∧ ω2 = −ω2 ∧ ω1. Also, (fω1) ∧ (gω2) =
(fg)(ω1 ∧ ω2). By (11e2),

(11e3) (dxi ∧ dxj)(x, h, k) = hikj − kihj =

∣∣∣∣hi ki
hj kj

∣∣∣∣ .
A bilinear form L on Rn is generally

L(h, k) =
n∑
i=1

n∑
j=1

ci,jhikj ;

it is antisymmetric if and only if ci,j = −cj,i; in this case L(h, k) =
∑

i,j ci,jhikj =∑
i<j ci,j(hikj − hjki). Thus, by (11e3), a 2-form ω on Rn is generally

ω =
∑
i<j

fi,j dxi ∧ dxj =
1

2

∑
i,j

fi,j dxi ∧ dxj ;

in the former notation fi,j are given for i < j only, while in the latter notation
fi,j = −fj.i; ω is of class Cm if and only if all fi,j are. For example, the 2-form
of 10e12 is x1 dx2 ∧ dx3.

A 2-form on R2 is f dx1 ∧ dx2. Treating a box B ⊂ R2 as a singular
2-box (id : B → R2) we have

∫
B
f dx1 ∧ dx2 =

∫
B
f(x) dx1dx2, since (dx1 ∧

dx2)(x, e1, e2) = 1 (recall (11a1) and (11e3)).
We turn to Def. 11d2. Let ω = df , f ∈ C2(Rn); then, by (11e1) (and

Sect. 2g), (dω)(·, h, k) = Dhω(·, k) −Dkω(·, h) = Dh(Dkf) − Dk(Dhf) = 0,
that is,

(11e4) d(df) = 0 ,

as it should be (recall (11d1) and the paragraph after it).
Now consider d(fω) for f ∈ C1(Rn) and a 1-form ω of class C1 on Rn.

We have(
d(fω)

)
(·, h, k) = Dh

(
fω(·, k)

)
−Dk

(
fω(·, h)

)
=

= (Dhf)ω(·, k) + fDhω(·, k)− (Dkf)ω(·, h)− fDkω(·, h) =

= fdω(·, h, k) + (Dhf)ω(·, k)− (Dkf)ω(·, h) =

= fdω(·, h, k) + df(·, h)ω(·, k)− df(·, k)ω(·, h) =

= fdω(·, h, k) + (df ∧ ω)(·, h, k) ;

thus,

(11e5) d(fω) = df ∧ ω + f dω .
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It follows via (11e4) that

(11e6) d(f dg) = df ∧ dg

for f ∈ C1(Rn), g ∈ C2(Rn), and we get the following definition equivalent
to 11d2.

11e7 Definition. The exterior derivative of a 1-form ω of class C1 is a
2-form dω defined by

dω =
n∑
i=1

dfi ∧ dxi for ω =
n∑
i=1

fi dxi .

The 2-form dω is of class Cm whenever ω is of class Cm+1; the mapping
ω 7→ dω is linear; and d(fω) is given by (11e5).

11e8 Exercise. Check that∫
Γ

ω =

∫
B

∑
i<j

fi,j(x)
∂(xi, xj)

∂(u1, u2)
du1du2

for every 2-form ω =
∑

i<j fi,j dxi∧dxj on Rn and singular 2-box Γ : B → Rn;
here x = (x1, . . . , xn) = Γ(u1, u2) and

∂(xi, xj)

∂(u1, u2)
=

∣∣∣∣∣ ∂xi∂u1

∂xi
∂u2

∂xj
∂u1

∂xj
∂u2

∣∣∣∣∣ .
In particular, ∫

Γ

dxi ∧ dxj =

∫
B

∂(xi, xj)

∂(u1, u2)
du1du2 .

11e9 Exercise. 1 (a) Let Γ : B → R3 be a singular 2-box in R3, and Γ0 :
B → R3 its projection onto the xy plane; that is, Γ(u) =

(
Γ1(u),Γ2(u),Γ3(u)

)
and Γ0(u) =

(
Γ1(u),Γ2(u), 0

)
for u ∈ B. Prove that

∫
Γ
dx∧dy =

∫
Γ0
dx∧dy.

(b) Consider Γ : [0, a]× [0, π]→ R3, Γ(r, θ) = (r cos θ, r sin θ, r2). Sketch
the surface noting that θ varies from 0 to π, not from 0 to 2π. Try to
determine

∫
Γ
dx ∧ dy by geometrical reasoning, and then check your answer

by integration. Do the same for dy ∧ dz and dz ∧ dx.

11e10 Exercise. 2 (a) Integrate a 2-form x dy ∧ dz + y dx ∧ dy on R3 over
the singular 2-box Γ : [0, 1]× [0, 1]→ R3, Γ(u, v) = (u+ v, u2 − v2, uv).

(b) The same for Γ : [0, 2π]× [0, 1]→ R3, Γ(u, v) = (v cosu, v sinu, u).

1Shurman, Ex. 9.5.1
2Shurman, Ex. 9.5.2
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11e11 Exercise. 1 (a) Calculate (a1 dx1 +a2 dx2)∧ (b1 dx1 + b2 dx2), observe
a 2× 2 determinant;

(b) calculate (a1 dx1 +a2 dx2 +a3 dx3)∧ (b1 dx1 + b2 dx2 + b3 dx3), observe
a cross product.

11e12 Exercise. Check that d(x dy − y dx) = 2 dx ∧ dy.

11f Change of variables

Given a mapping ϕ ∈ C1(R` → Rn), every singular k-box Γ : B → R` leads
to a singular k-box ϕ ◦ Γ : B → Rn. Thus, every k-form ω on Rn leads to
a box function Γ 7→

∫
ϕ◦Γ ω; it is additive (since the mapping Γ 7→ ϕ ◦ Γ is).

Can we find a k-form ϕ∗ω on R` such that
∫
ϕ◦Γ ω =

∫
Γ
ϕ∗ω for all Γ?

11f1 Definition. Given a k-form ω on Rn and a mapping ϕ ∈ C1(R` → Rn),
the pullback of ω along ϕ is a k-form ϕ∗ω on R` defined by

(ϕ∗ω)(x, h1, . . . , hk) = ω
(
ϕ(x), (Dϕ)x(h1), . . . , (Dϕ)x(hk)

)
=

= ω
(
ϕ(x), (Dh1ϕ)x, . . . , (Dhkϕ)x

)
for x, h1, . . . , hk ∈ R` .

The form ϕ∗ω is of class Cm whenever ω is of class Cm and ϕ is of class
Cm+1. The mapping ω 7→ ϕ∗ω is linear. For k = 0 the pullback is just the
composition: (ϕ∗f)(x) = f(ϕ(x)); ϕ∗f = f ◦ ϕ (no need in Cm+1 in this
case). And ϕ∗(fω) = (ϕ∗f)(ϕ∗ω) = (f ◦ ϕ)ϕ∗ω for f ∈ C1(Rn).

A singular k-box Γ in Rn is a C1-mapping B → Rn on a box B ⊂ Rk

rather than the whole Rk, but still, the pullback Γ∗ω is well-defined (on B),

(Γ∗ω)(u, h1, . . . , hk) = ω
(
Γ(u), (Dh1Γ)u, . . . , (DhkΓ)u

)
for u ∈ B and h1, . . . , hk ∈ Rk. In particular, for the usual basis e1, . . . , ek
of Rk we have (Γ∗ω)(u, e1, . . . , ek) = ω

(
Γ(u), (D1Γ)u, . . . , (DkΓ)u

)
. Thus,

the definition of
∫

Γ
ω given in Sect. 10e may be rewritten as

∫
Γ
ω =∫

B
(Γ∗ω)(u, e1, . . . , ek) du. Using (11a1) we get

(11f2)

∫
Γ

ω =

∫
B

Γ∗ω .

We see that it was the integral of the pullback, from the very beginning!
By the chain rule 2b12,(

D(ϕ ◦ Γ)
)
u = (Dϕ)Γ(u) ◦ (DΓ)u ;

1Shurman, Sect. 9.7]
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thus,(
(ϕ◦Γ)∗ω)(u, h1, . . . , hk) = ω

(
(ϕ◦Γ)(u), (D(ϕ◦Γ))u(h1), . . . , (D(ϕ◦Γ))u(hk)

)
=

= ω
(
ϕ(Γ(u)), (Dϕ)Γ(u)(DΓ)uh1, . . . , (Dϕ)Γ(u)(DΓ)uhk

)
=

= (ϕ∗ω)
(
Γ(u), (DΓ)uh1, . . . , (DΓ)uhk

)
=
(
Γ∗(ϕ∗ω)

)
(u, h1, . . . , hk) ,

that is,1

(ϕ ◦ Γ)∗ω = Γ∗(ϕ∗ω) ,

which leads to the change of variable formula∫
ϕ◦Γ

ω =

∫
B

(ϕ ◦ Γ)∗ω =

∫
B

Γ∗(ϕ∗ω) =

∫
Γ

ϕ∗ω

for singular boxes, and therefore (by linearity in C), also for k-chains C is
Rn:

(11f3)

∫
ϕ◦C

ω =

∫
C

ϕ∗ω ,

where ϕ ◦ C = c1(ϕ ◦ Γ1) + · · ·+ cp(ϕ ◦ Γp) for c = c1Γ1 + · · ·+ cpΓp.

11f4 Lemma. For every 0-form f ∈ C1(Rn) and ϕ ∈ C1(R` → Rn),

ϕ∗(df) = d(ϕ∗f) .

Proof.(
ϕ∗(df)

)
(x, h) = (df)

(
ϕ(x), (Dϕ)xh

)
=

= (Df)ϕ(x)(Dϕ)xh
2b12
= D(f ◦ ϕ)xh = d(ϕ∗f)(x, h) .

11f5 Lemma. For all 1-forms ω1, ω2 on Rn and ϕ ∈ C1(R` → Rn),

ϕ∗(ω1 ∧ ω2) = (ϕ∗ω1) ∧ (ϕ∗ω2) .

Proof.(
ϕ∗(ω1 ∧ ω2)

)
(x, h, k) = (ω1 ∧ ω2)

(
ϕ(x), (Dϕ)xh, (Dϕ)xk

)
=

= ω1

(
ϕ(x), (Dϕ)xh

)
ω2

(
ϕ(x), (Dϕ)xk

)
−ω1

(
ϕ(x), (Dϕ)xk

)
ω2

(
ϕ(x), (Dϕ)xh

)
=

= (ϕ∗ω1)(x, h)(ϕ∗ω2)(x, k)− (ϕ∗ω1)(x, k)(ϕ∗ω2)(x, h) =

=
(
(ϕ∗ω1) ∧ (ϕ∗ω2)

)
(x, h, k) .

1The same argument gives a more general formula (ϕ ◦ ψ)∗ω = ψ∗(ϕ∗ω).
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11f6 Lemma. For every 1-form ω of class C1 on Rn and ϕ ∈ C2(R` → Rn),

ϕ∗(dω) = d(ϕ∗ω) .

Proof. We have ω =
∑n

i=1 fi dxi and dω =
∑n

i=1 dfi ∧ dxi. It is sufficient to
prove that ϕ∗(dfi ∧ dxi) = d

(
ϕ∗(fi dxi)

)
. We have

ϕ∗(dfi ∧ dxi) 11f5
= ϕ∗(dfi) ∧ ϕ∗(dxi) 11f4

=

= d(ϕ∗fi)∧d(ϕ∗xi)
11e6
= d

(
ϕ∗(fi) dϕ

∗(xi)
) 11f4

= d
(
ϕ∗(fi)ϕ

∗(dxi)
)

= d
(
ϕ∗(fi dxi)

)
.

A differential form may be defined on an open subset of Rn (rather than
the whole Rn); everything generalizes readily to this case. Below, in some
exercises, some forms are defined on R2 \ {(0, 0)}.

11f7 Exercise. 1 (a) (x, y) = ϕ(r, θ) = (r cos θ, r sin θ); find ϕ∗ω for ω =
dx ∧ dy;

(b) the same ϕ, but ω = x dy−y dx
x2+y2

;

(c) the same ω as in (b), but (x, y) = ϕ(u, v) = (u2 − v2, 2uv).

11f8 Exercise. 2 Consider mappings: ϕ(r, θ) = (r cos θ, r sin θ), ψ(u, v) =
(u2 − v2, 2uv), and ξ(r, θ) = (r2, 2θ). For ω = x dy−y dx

x2+y2
find ϕ∗ω, ξ∗(ϕ∗ω),

ψ∗ω, and ϕ∗(ψ∗ω). Explain the result.

11f9 Exercise. 3 For a given r > 0 consider a singular 2-box Γ : [0, 2π] ×
[0, π] → R3, Γ(θ, ϕ) = (r cos θ sinϕ, r sin θ sinϕ, r cosϕ) and a 2-form ω =
−x
r
dy ∧ dz − y

r
dz ∧ dx− z

r
dx ∧ dy. Find the pullback Γ∗ω.

11g Proving the theorem

11g1 Exercise. Let Γ,Γ1,Γ2, · · · : B → Rn be singular k-boxes such that
Γi → Γ in C1, that is,

Γi → Γ , D1Γi → D1Γ , . . . , DkΓi → DkΓ uniformly on B .

Then ∫
Γi

ω →
∫

Γ

ω for every k-form ω on Rn.

Prove it.

1Shurman, Sect. 9.9.
2Shurman, Sect. 9.9.
3Shurman, Ex. 9.9.4.
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11g2 Exercise. Let Γ,Γ1,Γ2, · · · : B → Rn be singular 2-boxes such that
Γi → Γ in C1. Then∫

∂Γi

ω →
∫
∂Γ

ω for every 1-form ω on Rn.

Prove it.

11g3 Lemma. For every Γ ∈ C1(B → Rn) there exist Γi ∈ C2(B → Rn)
such that Γi → Γ in C1.

Proof (sketch, for B = [0, 1]× [0, 1] ⊂ R2). The argument of 11c5 needs only
a slight modification. We define Γε for ε > 0 by

Γε(u1, u2) =
1

ε2

∫
[u1,u1+ε]×[u2,u2+ε]

Γ
( v1

1 + ε
,
v2

1 + ε

)
,

then the partial derivative

∂

∂u1

Γε(u1, u2) =
1

ε

∫
[u2,u2+ε]

1

ε

(
Γ
(u1 + ε

1 + ε
,
v2

1 + ε

)
− Γ

( u1

1 + ε
,
v2

1 + ε

))
dv2

is of class C1 and converges (uniformly) to ∂
∂u1

Γ(u1, u2).

Proof of Theorem 11d3. It is sufficient to prove the equality
∫

Γ
dω =

∫
∂Γ
ω for

every singular 2-box Γ. Applying (11f2) to the 2-box B and the four 1-boxes
constituting ∂B we transform the needed equality into

∫
B

Γ∗(dω) =
∫
∂B

Γ∗ω.
By 11g1, 11g2 and 11g3 we may assume that Γ is of class C2. Thus, 11f6
applies, and the needed equality becomes∫

B

d(Γ∗ω) =

∫
∂B

Γ∗ω .

Now we may forget the singular 2-box Γ in Rn and the 1-form ω on Rn; it
remains to prove the equality

∫
B
dω =

∫
∂B
ω for every 1-form ω of class C1

on the square B = [0, 1]× [0, 1] ⊂ R2.
In general ω = f1 du1 + f2 du2; by linearity in ω we may consider two

1-forms separately, f1 du1 and f2 du2; we consider only ω = f(u1, u2) du1,
since the other case is similar.

We have dω = df ∧ du1 =
(
∂f
∂u1

du1 + ∂f
∂u2

du2

)
∧ du1 = − ∂f

∂u2
du1 ∧ du2,

thus∫
B

dω = −
∫

[0,1]×[0,1]

∂f

∂u2

du1du2 = −
∫ 1

0

du1

∫ 1

0

du2
∂f

∂u2

=

= −
∫ 1

0

du1

(
f(u1, 1)− f(u1, 0)

)
= −

∫ 1

0

f(u1, 1)du1 +

∫ 1

0

f(u1, 0)du1 .

On the other hand,
∫
∂B
ω =

∫ 1

0
f(u1, 0)du1 −

∫ 1

0
f(u1, 1)du1.
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11h First implications

Here is a counterpart of 11c4.

11h1 Corollary.
C1 ∼ C2 implies ∂C1 ∼ ∂C2

for arbitrary 2-chains C1, C2 in Rn.

Indeed,
∫
∂C1

ω =
∫
C1
dω =

∫
C2
dω =

∫
∂C2

ω for every 1-form ω of class C1,

and therefore also for every 1-form of class C0, since 11c5 generalizes readily
to 1-forms.

Now we return to a question posed in Sect. 10c (after 10c11): is the path
function γ 7→

∫
γ
ω continuous?

11h2 Proposition. Assume that γ, γ1, γ2, · · · ∈ C1
(
[t0, t1] → Rn

)
, γk are

bounded in C1 (that is, supk maxt |γ′k(t)| < ∞), and γk → γ in C0 (that is,
maxt |γk(t)− γ(t)| → 0 as k →∞). Then∫

γk

ω →
∫
γ

ω as k →∞

for every 1-form ω (of class C0) on Rn.

11h3 Remark. The condition that γk are bounded in C1 cannot be dropped.
Here is a counterexample:

γk(t) =
1√
k

(cos kt, sin kt) for t ∈ [0, 2π] ,

γk → γ , γ(t) = (0, 0) ;

ω = x dy − y dx ;∫
γk

ω =

∫ 2π

0

1

k

(
cos kt · (sin kt)′ − sin kt · (cos kt)′

)
dt = 2π for all k ;∫

γ

ω = 0 .

Proof of Prop. 11h2. First, we may assume that ω is of class C1. Otherwise
we approximate it by 1-forms ωj of class C1;

ω =
n∑
i=1

fi dxi ; ωj =
n∑
i=1

fi,j dxi ; fi,j ∈ C1(Rn) ;
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fi,j → fi as j →∞, uniformly on bounded sets (recall 11c5);∣∣∣∣ ∫
γk

ω −
∫
γ

ω

∣∣∣∣ ≤ ∣∣∣∣ ∫
γk

ω −
∫
γk

ωj

∣∣∣∣+

∣∣∣∣ ∫
γk

ωj −
∫
γ

ωj

∣∣∣∣+

∣∣∣∣ ∫
γ

ωj −
∫
γ

ω

∣∣∣∣ ;
∣∣∣∣ ∫

γ

ωj −
∫
γ

ω

∣∣∣∣ =

∣∣∣∣ ∫ t1

t0

n∑
i=1

fi,j
(
γ(t)

)
γ′(t) dt−

∫ t1

t0

n∑
i=1

fi
(
γ(t)

)
γ′(t) dt

∣∣∣∣ ≤
≤
∫ t1

t0

n∑
i=1

∣∣fi,j(γ(t)
)
− fi

(
γ(t)

)∣∣ · |γ′(t)| dt→ 0 as j →∞ ;

similarly,
∫
γk
ω −

∫
γk
ωj → 0 as j → ∞, uniformly in k (since all γk(t) are

a bounded subset of Rn, and all γ′k(t) are bounded). Given ε > 0, we take
j such that the first and third terms are less than ε (irrespective of k), and
then we take k such that the second term is less than ε.

So, ω is of class C1. We take εk → 0 such that |γk(t)− γ(t)| ≤ εk for all
t. We introduce boxes Bk = [t0, t1]× [0, εk] ⊂ R2 and define singular 2-boxes
Γk : Bk → Rn by

Γk(t, u) =
(

1− u

εk

)
γk(t) +

u

εk
γ(t) .

We have Γk(·, 0) = γk and Γk(·, εk) = γ, thus,

∂Γk = γk − γ + βk − αk ,

where αk, βk : [0, εk]→ Rn,

αk(u) =
(

1− u

εk

)
γk(t0) +

u

εk
γ(t0) , βk(u) =

(
1− u

εk

)
γk(t1) +

u

εk
γ(t1) .

We have ∫
αk

ω =

∫ εk

0

n∑
i=1

fi(αk(u))α′k(u) du→ 0 as k →∞ ,

since εk → 0, |α′k(u)| = 1
εk
|γk(t0)−γ(t0)| ≤ 1, and fi(·) is bounded. Similarly,∫

βk
ω → 0. In order to prove that

∫
γk
ω →

∫
γ
ω it remains to prove that∫

∂Γk
ω → 0.

By Theorem 11d3,
∫
∂Γk

ω =
∫

Γk
dω. We have dω =

∑
i<j fi,j dxi ∧ dxj

(forget the fi,j used before); by 11e8,∫
Γk

dω =

∫
Bk

∑
i<j

fi,j(x)
∂(xi, xj)

∂(t, u)
dtdu ,
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where x = (x1, . . . , xn) = Γk(t, u). In order to prove that
∫

Γk
dω → 0 it

remains to check that the integrand is uniformly bounded (since v(Bk) =
(t1 − t0)εk → 0). We have

∣∣∂xi
∂t

∣∣ ≤ max
(
|γ′k(t)|, |γ′(t)|

)
and

∣∣∂xi
∂u

∣∣ ≤ 1, thus
∂(xi,xj)

∂(t,u)
is uniformly bounded. Also fi,j(x) is uniformly bounded (since all

Γk(t, u) are a bounded subset of Rn).

11h4 Remark. Prop. 11h2 generalizes readily to paths γk, γ that are only
piecewise continuously differentiable. To this end we split Bk as needed,

t0 t1

apply Stokes’ theorem to each fragment, and sum up.
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