Letter to the Editor

G. M. Levin

Received November 29, 1998

1. Theorem 2 of [1] is not proved in full generality. Indeed, in the notation of $[1], g_{n} \rightarrow \tilde{g}$ outside a finite set $C \subset J_{f}$. The case in which the function \tilde{g} is not a constant is impossible; see [1]. If $\tilde{g} \equiv c$, then the case $c \notin C$ is impossible as well, because otherwise, for a large fixed n, the sequence of iterates of g_{n} is normal at c. The case $c \in C$ is missing in the proof. Consider two subcases.
(A) $J(g)$ is an exceptional Julia set (i.e., J_{f} is either the Riemann sphere, a circle, or an interval). Then, by the definition of the class $R_{d}(f)$, all the functions g_{n} share with f the same measure of maximal entropy μ. If U is a small neighborhood of a point from $J_{f} \backslash C$, then the sets $u_{n}=g_{n}(u)$ tend to the point c. On the other hand, $\mu\left(u_{n}\right) \geq \mu(u)>0$. This leads to a contradiction. Indeed, there is a k_{0} such that for any $k>k_{0}$ the point $f^{k}(c)$ is not a critical point of f (otherwise, there would be a periodic orbit in J_{f} which contained a critical point of f). Therefore, for a fixed k such that $d^{k-k_{0}} \cdot \mu(u) \geq 1$ and for any n large enough we have the inequalities $\mu\left(f^{k}\left(u_{n}\right)\right) \geq d^{k-k_{0}} \cdot \mu\left(u_{n}\right) \geq 1$, which leads to a contradiction.
(B) J_{f} is not exceptional and $c \in C$. This subcase remains open. Thus, for an arbitrary f, the statement of Theorem 2 is a conjecture (call it C1).
2. Let us stress that Theorem 2 is not used in the proofs of other results of [1], and also in the paper [2]. In particular, the main result of [1] (Theorem 1), Theorem 3, Theorem 4, as well as all proofs and results of [2] remain unchanged.

Notice, nevertheless, that in the proof of Theorem 3(1) of [1] (in the part where $\left|\lambda_{2}\right|=1$) is assumed) one should define the functions H_{1} and H_{2} holomorphic at the point a in such a way that $H_{1}=g$ and $f \circ H_{2}=f^{2}, H_{2}(a)=a$. Then $H_{2}^{\prime}(a)$ is equal to the chosen value $\lambda_{2}^{1 / p}$, where $p \geq 1$ is the multiplicity of the root $x=a$ in the equation $f(x)=b$. Then we consider two possibilities as in the article: either there exists an integer $q \geq 1$ such that $\left(\lambda_{2}^{1 / p}\right)^{q}=1$ or not. Note that $H_{2}^{n} \neq \mathrm{id}$ for any $n \geq 1$ because otherwise $f=f^{n+1}$. In the exceptional case $\mu_{f}=\mu_{g}=\mu$ we have $\mu\left(H_{1} \circ H_{2}(A)\right) \geq d \cdot m \cdot \mu(A)$. Since $\left|H_{1}^{\prime}(a)\right|=\left|\left(H_{1} \circ H_{2}\right)^{\prime}(a)\right|=\left|\lambda_{1}\right|>1$, we have

$$
\lim _{\varepsilon \rightarrow 0} \frac{\ln \mu(B(a, \varepsilon))}{\ln \varepsilon}
$$

is simultaneously equal to $\ln d / \ln \left|\lambda_{1}\right|$ and bigger than or equal to $\ln (d m) / \ln \left|\lambda_{1}\right|$, a contradiction. The rest of the proof of Theorem 3 remains unchanged.
3. For the following classes of functions f, Theorem 2 (i.e., the conjecture C 1) has been proved:

1) J_{f} is an exceptional Julia set (see the case (A) above).
2) f satisfies the condition of Theorem 3 (2). Then, as follows from Theorem 3 and Remark 2 (see also [2, p. 2186, (A2)]), all the functions g_{n} share with f the same measure of maximal entropy. As we know, this is impossible (see the case (A) above). In particular, Theorem 2 holds for all hyperbolic rational functions f.
4. In [3] the following conjecture is stated (call it C2): If J is not an exceptional Julia set of a rational function f, and A is a Möbius transformation such that $A(J)=J$, then $A^{q}=$ id for some $q \in \mathbb{N}$. The conjecture C 2 is apparently weaker than C 1 : if C 1 holds for a function f, then C 2 also holds for the same f (otherwise there would be an infinite set of rational functions $A_{0}^{-n} f_{0} A^{n}$ with the same Julia set J). Under an additional assumption, C2 is proved in the following proposition, which generalizes the main result of [3] and follows easily from Theorem 1 of [1].
Proposition. Let A be a Möbius transformation such that $A(J)=J$, and let a fixed point of A be (pre)periodic for f. If J is not exceptional, then $A^{q}=$ id for some $q \in \mathbb{N}$.

Proof.

1) If A is an irrational rotation, the Julia set is locally diffeomorphic to a product of an interval and a Cantor set. This is impossible (see the proof of this fact due to A. Eremenko in [1]).
2) Let A not be a rotation. We can assume (passing to an iterate of f) that $A(0)=0, f(0)=a$, $f(a)=a$. Let $\lambda=f^{\prime}(a)$. Then $|\lambda| \geq 1$, because $a \in J$. There exists a holomorphic at zero function H_{1} such that $f \circ H_{1}=f^{2}$ and $H_{1}(0)=0,\left|H_{1}^{\prime}(0)\right|=|\lambda|^{1 / p}$, where $p \geq 1$ is the multiplicity of the root $x=0$ in the equation $f(x)=a$. Denote $H_{2}=A$ and $R=H_{2}^{-1} \circ H_{1}^{-1} \circ H_{2} \circ H_{1}$ (cf. the proof of Proposition 1 in [1]). If $R=\mathrm{id}$, then H_{1} and H_{2} commute and $H_{i}(0)=0$. Since H_{2} is Möbius, H_{1} is Möbius too, contrary to $f \circ H_{1}=f^{2}$. If R is not the identity, we have $R^{\prime}(0)=1$. Consider two cases:

2a) $A^{\prime}(0)=1$. After the change $z \mapsto 1 / z$, one can assume $H_{2}(z)=A(z)=z+1, R(z)$ is holomorphic at ∞ and $R(z)=z+b_{0}+b_{1 / z}+\cdots$. Pick a point $x \in J$ close enough to ∞. Consider maps $h_{m}=H_{2}^{-m} \circ R \circ H_{2}^{m}$. Then $h_{m}(z) \rightarrow z+b_{0}$ as $n \rightarrow \infty$, uniformly on z from a neighborhood V of the point $x \in J$. Since J is not exceptional, by Theorem $1, h_{j}=h_{j+i}$ for some $i>0$. Hence, R commutes with H_{2}^{i} (which is the shift $z \mapsto z+i$). It follows that R is also a shift, and H_{1} is a linear map (in the z-coordinate). But $f \circ H_{1}=f^{2}$, a contradiction.

2b) $\mid A^{\prime}(0) \neq 1$. Repeat the proof of Proposition 1 or Lemma 3 to show that $R=\mathrm{id}$.

ACKNOWLEDGMENTS

I express my gratitude to A. Eremenko for letting me know about the preprint [3] with a discussion of Theorem 2 of [1].

REFERENCES

1. G. M. Levin, Mat. Zametki [Math. Notes], 48 (1990), 72-79.
2. G. Levin and F. Przytycki, $R A M S$, 125 (1997), 2179-2190.
3. D. Boyd, Translation Invariant Julia Sets, Preprint, 1998.

Institute of Mathematics, Hebrew University, Jerusalem, Israel

