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1. Theorem 2 of [1] is not proved in full generality. Indeed, in the notation of [1], g, — § outside

a finite set C C Jy. The case in which the function g is not a constant is impossible; see [1].
If § = ¢, then the case ¢ ¢ C is impossible as well, because otherwise, for a large fixed n, the
sequence of iterates of g, is normal at ¢. The case ¢ € C' is missing in the proof. Consider two
subcases.

(A) J(g) is an exceptional Julia set (i.e., Jy is either the Riemann sphere, a circle, or an
interval). Then, by the definition of the class R4(f), all the functions g,, share with f the same
measure of maximal entropy p. If U is a small neighborhood of a point from J¢ \ C, then the
sets u, = gn(u) tend to the point ¢. On the other hand, p(u,) > p(u) > 0. This leads to a
contradiction. Indeed, there is a ko such that for any k > ko the point fF(c) is not a critical
point of f (otherwise, there would be a periodic orbit in J; which contained a critical point of f).
Therefore, for a fixed k such that d*=% . py(u) > 1 and for any n large enough we have the
inequalities u(f*(u,)) > d*=*o . yu(u,) > 1, which leads to a contradiction.

(B) Jf is not exceptional and ¢ € C'. This subcase remains open. Thus, for an arbitrary f,
the statement of Theorem 2 is a conjecture (call it C1).

2. Let us stress that Theorem 2 is not used in the proofs of other results of [1], and also in the
paper [2]. In particular, the main result of [1] (Theorem 1), Theorem 3, Theorem 4, as well as all
proofs and results of [2] remain unchanged.

Notice, nevertheless, that in the proof of Theorem 3 (1) of [1] (in the part where |[As2] = 1) is
assumed) one should define the functions H; and Hs holomorphic at the point a in such a way
that H; = g and f o Hy = f2, Ho(a) = a. Then H}(a) is equal to the chosen value )\é/p,
where p > 1 is the multiplicity of the root z = a in the equation f(z) = b. Then we consider
two possibilities as in the article: either there exists an integer ¢ > 1 such that ()\;/ Y4 =1 or
not. Note that HY # id for any n > 1 because otherwise f = f"*1. In the exceptional case
iy = g = o we have pu(Hy o Hy(A)) = d-m - u(A). Since |H}(a) = |(Hy o Hz)'(a)] = || > 1,
we have

i RA(B(a, €))
e—0 Ine

is simultaneously equal to Ind/In |A;| and bigger than or equal to In(dm)/In |A{|, a contradiction.
The rest of the proof of Theorem 3 remains unchanged.

3. For the following classes of functions f, Theorem 2 (i.e., the conjecture C1) has been proved:

1) Jy is an exceptional Julia set (see the case (A) above).

2) f satisfies the condition of Theorem 3 (2). Then, as follows from Theorem 3 and Remark 2
(see also [2, p. 2186, (A2)]), all the functions g,, share with f the same measure of maximal
entropy. As we know, this is impossible (see the case (A) above). In particular, Theorem 2
holds for all hyperbolic rational functions f.
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4. In [3] the following conjecture is stated (call it C2): If J is not an exceptional Julia set of a
rational function f, and A is a Mdbius transformation such that A(J) = J, then A7 = id for some
q € N. The conjecture C2 is apparently weaker than C1: if C1 holds for a function f, then C2 also
holds for the same f (otherwise there would be an infinite set of rational functions A, " foA™ with
the same Julia set J). Under an additional assumption, C2 is proved in the following proposition,
which generalizes the main result of [3] and follows easily from Theorem 1 of [1].

Proposition. Let A be a Mdébius transformation such that A(J) = J, and let a fized point of A
be (pre)periodic for f. If J is not exceptional, then A =1id for some q € N.

Proof.

1) If A is an irrational rotation, the Julia set is locally diffeomorphic to a product of an interval
and a Cantor set. This is impossible (see the proof of this fact due to A. Eremenko in [1}).

2) Let A not be a rotation. We can assume (passing to an iterate of f) that A(0) =0, f(0) = a,
fla) = a. Let A = f'(a). Then |A\| > 1, because a € J. There exists a holomorphic at zero
function H; such that foH; = f2 and H;(0) =0, |H;(0)| = |)\|1/p, where p > 1 is the multiplicity
of the root = 0 in the equation f(x) = a. Denote Hy = A and R = H2_1 ) H1_1 o Hy o Hy (cf.
the proof of Proposition 1 in [1]). If R =1id, then H; and H; commute and H;(0) = 0. Since Hy
is Mobius, H; is Mébius too, contrary to fo H; = f2. If R is not the identity, we have R'(0) = 1.
Consider two cases:

2a) A’(0) = 1. After the change z — 1/z, one can assume Hsy(z) = A(z) = 2+ 1, R(2) is
holomorphic at co and R(z) = z + by + b1/, + ---. Pick a point x € J close enough to oo.
Consider maps h,, = Hy ™ o Ro H3*. Then h,,(z) — z 4+ by as n — oo, uniformly on z from a
neighborhood V' of the point z € J. Since J is not exceptional, by Theorem 1, h; = h;j;; for
some i > 0. Hence, R commutes with Hi (which is the shift z + z +1i). It follows that R is also
a shift, and H; is a linear map (in the z-coordinate). But f o H; = f?, a contradiction.

2b) |A’(0) # 1. Repeat the proof of Proposition 1 or Lemma 3 to show that R =id. O
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