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1. Theorem 2 of [1] is not proved in full generality. Indeed, in the notation of [1], gn → g̃ outside
a finite set C ⊂ Jf . The case in which the function g̃ is not a constant is impossible; see [1].
If g̃ ≡ c , then the case c /∈ C is impossible as well, because otherwise, for a large fixed n , the
sequence of iterates of gn is normal at c . The case c ∈ C is missing in the proof. Consider two
subcases.

(A) J(g) is an exceptional Julia set (i.e., Jf is either the Riemann sphere, a circle, or an
interval). Then, by the definition of the class Rd(f) , all the functions gn share with f the same
measure of maximal entropy µ . If U is a small neighborhood of a point from Jf \ C , then the
sets un = gn(u) tend to the point c . On the other hand, µ(un) ≥ µ(u) > 0. This leads to a
contradiction. Indeed, there is a k0 such that for any k > k0 the point fk(c) is not a critical
point of f (otherwise, there would be a periodic orbit in Jf which contained a critical point of f).
Therefore, for a fixed k such that dk−k0 · µ(u) ≥ 1 and for any n large enough we have the
inequalities µ(fk(un)) ≥ dk−k0 · µ(un) ≥ 1, which leads to a contradiction.

(B) Jf is not exceptional and c ∈ C . This subcase remains open. Thus, for an arbitrary f ,
the statement of Theorem 2 is a conjecture (call it C1).

2. Let us stress that Theorem 2 is not used in the proofs of other results of [1], and also in the
paper [2]. In particular, the main result of [1] (Theorem 1), Theorem 3, Theorem 4, as well as all
proofs and results of [2] remain unchanged.

Notice, nevertheless, that in the proof of Theorem 3 (1) of [1] (in the part where |λ2| = 1) is
assumed) one should define the functions H1 and H2 holomorphic at the point a in such a way

that H1 = g and f ◦ H2 = f2 , H2(a) = a . Then H ′2(a) is equal to the chosen value λ
1/p
2 ,

where p ≥ 1 is the multiplicity of the root x = a in the equation f(x) = b . Then we consider

two possibilities as in the article: either there exists an integer q ≥ 1 such that (λ
1/p
2 )q = 1 or

not. Note that Hn2 
= id for any n ≥ 1 because otherwise f = fn+1 . In the exceptional case
µf = µg = µ we have µ(H1 ◦H2(A)) ≥ d ·m · µ(A) . Since |H ′1(a)| = |(H1 ◦H2)′(a)| = |λ1| > 1,
we have

lim
ε→0

lnµ(B(a, ε))

ln ε

is simultaneously equal to ln d/ ln |λ1| and bigger than or equal to ln(dm)/ ln |λ1| , a contradiction.
The rest of the proof of Theorem 3 remains unchanged.

3. For the following classes of functions f , Theorem 2 (i.e., the conjecture C1) has been proved:

1) Jf is an exceptional Julia set (see the case (A) above).
2) f satisfies the condition of Theorem 3 (2). Then, as follows from Theorem 3 and Remark 2

(see also [2, p. 2186, (A2)]), all the functions gn share with f the same measure of maximal
entropy. As we know, this is impossible (see the case (A) above). In particular, Theorem 2
holds for all hyperbolic rational functions f .
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4. In [3] the following conjecture is stated (call it C2): If J is not an exceptional Julia set of a
rational function f , andA is a Möbius transformation such that A(J) = J , then Aq = id for some
q ∈ N . The conjecture C2 is apparently weaker than C1: if C1 holds for a function f , then C2 also
holds for the same f (otherwise there would be an infinite set of rational functions A−n0 f0A

n with
the same Julia set J). Under an additional assumption, C2 is proved in the following proposition,
which generalizes the main result of [3] and follows easily from Theorem 1 of [1].

Proposition. Let A be a Möbius transformation such that A(J) = J , and let a fixed point of A
be (pre)periodic for f . If J is not exceptional, then Aq = id for some q ∈ N .
Proof.

1) If A is an irrational rotation, the Julia set is locally diffeomorphic to a product of an interval
and a Cantor set. This is impossible (see the proof of this fact due to A. Eremenko in [1]).

2) Let A not be a rotation. We can assume (passing to an iterate of f) that A(0) = 0, f(0) = a ,
f(a) = a . Let λ = f ′(a) . Then |λ| ≥ 1, because a ∈ J . There exists a holomorphic at zero

function H1 such that f◦H1 = f2 and H1(0) = 0, |H ′1(0)| = |λ|1/p , where p ≥ 1 is the multiplicity
of the root x = 0 in the equation f(x) = a . Denote H2 = A and R = H−12 ◦H−11 ◦H2 ◦H1 (cf.
the proof of Proposition 1 in [1]). If R = id , then H1 and H2 commute and Hi(0) = 0. Since H2
is Möbius, H1 is Möbius too, contrary to f ◦H1 = f2 . If R is not the identity, we have R′(0) = 1.
Consider two cases:

2a) A′(0) = 1. After the change z �→ 1/z , one can assume H2(z) = A(z) = z + 1, R(z) is
holomorphic at ∞ and R(z) = z + b0 + b1/z + · · · . Pick a point x ∈ J close enough to ∞ .

Consider maps hm = H−m2 ◦ R ◦Hm2 . Then hm(z) → z + b0 as n → ∞ , uniformly on z from a
neighborhood V of the point x ∈ J . Since J is not exceptional, by Theorem 1, hj = hj+i for
some i > 0. Hence, R commutes with Hi2 (which is the shift z �→ z+ i). It follows that R is also
a shift, and H1 is a linear map (in the z-coordinate). But f ◦H1 = f2 , a contradiction.

2b) |A′(0) 
= 1. Repeat the proof of Proposition 1 or Lemma 3 to show that R = id . �
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