G. M. Levin

INTRODUCTION

Let J_f and μ_f be the Julia set and the maximal entropy measure of the rational function f [1-5]. In this paper it is proved that the class of all rational functions of a fixed degree with common Julia set J_f or, in exceptional cases with common measure μ_f , is finite, with one exception. Also considered is the following question: How are the function of this class connected with f? For polynomials a complete answer was obtained in [6]. Our method leads to a generalization of results of Fatou [7], Julia [8], and Ritt [9] on commuting rational functions in the style of the paper [10].

With the theory of iteration of rational functions one can become acquainted from the surveys [11, 12]. The Julia set J_f is defined as the set of points of the Riemann sphere \overline{C} , in the neighborhood of which the set of iterates $(f^n)_{n\geq 0}$ is not precompact (normal in the sene of Montel [13]). The Julia set coincides with the closure of the repulsive periodic points of f. The measure μ_f is defined to be the unique measure of maximal entropy of the endomorphism f: $\overline{C} - \overline{C}$ [4]; it is characterized by the balancedness property [5]: $\mu_f(f(A)) = m\mu_f(A)$, where m = deg f, for any Borel set A on which f is injective; the support of μ_f coincides with J_f .

The rational f is said to be critically finite if the set P_f of iterates of its critical points is finite. According to Thurston [14, 15], to each such function there corresponds an orbifold $\mathcal O$ that is a sphere C together with the map $n\colon\thinspace \overline C\to N\ \cup\ \{\infty\}$, defined as follows. If the point z is not in P_f then n(f)=1, whereas if $z\in P_f$ then n(z) equals the least-common multiple of the numbers $n(t)\deg_t f$ for all preimages t of the point $z\colon\thinspace f(t)=z(\deg_t f)$ denotes the multiplicity of the function f at the point t). The orbifold is said to be parabolic if $\sum_{z\in P_f} (1-1/n(z))=2$. In this case there exist a covering map $F\colon\thinspace C\to \overline C$ and a

lift $f\colon z\mapsto az+b$, such that $\deg_Z F=n(F(z)),\,z\in C$, and $f\circ F=F\circ f$ [14, 15]. The measure μ_f is the image $F_{\chi}\ell_2$ of the lebesgue measure ℓ_2 on R^2 . The parabolic orbifolds and the corresponding covering maps and lifts are described in [15]. We shall use the following assertion, proved in [10]: f is critically finite with parabolic orbifold if and only if the measure μ_f is fibered at some point $z_0\in J_f$. Here a locally finite Borel measure σ on R^2 is said to be lamellar at the point $z_0\in \sup \sigma$ [10] if there exists a diffeomorphism ψ of some domain onto a neighborhood of z_0 such that the measure $\psi^*\sigma$ is invariant under translations along the x axis in R^2 .

1. Main Results. We term exceptional those cases in which the Julia set is the Riemann sphere \overline{C} , a circle, or a segment (in \overline{C}). Fix a rational function f of degree m \geq 2. Let $J = J_f$, $\mu = \mu_f$, and let $H \neq id$ be a function that is meromorphic in some disc B(a, r) of radius r centered at the point $\in J$.

<u>Definition 1.</u> We call H a symmetry on J if the following conditions are satisfied: 1) $x \in B(a, r) \cap J$ if and only if $H(x) \in H(B(a, r)) \cap J$; 2) in the exceptional cases there exists an $\alpha > 0$ such that $\mu(H(A)) = \alpha \mu(A)$ for any set A on which the map H: $A \to \overline{C}$ is injective. A family $\mathcal H$ of symmetries in the disc B(a, r) is said to be nontrivial if $\mathcal H$ is normal in B(a, r) and no limit function for $\mathcal H$ is equal to a constant.

Let us state our main result.

THEOREM 1. The function f is critically finite with parabolic orbifold if and only if there exists an infinite nontrivial family of symmetries on J_f .

Kuibyshev Civil Engineering Institute. Translated from Matematicheskie Zametki, Vol. 48, No. 5, pp. 72-79, November, 1990. Original article submitted August 15, 1989; revision submitted January 23, 1990.

We let $R_d(f)$ denote the set of rational functions g of degree d with the property that $J_g = J_f$ and, in the exceptional cases, $\mu_g = \mu_f$. Set

$$R(f) = \bigcup_{d \geqslant 2} R_d(f).$$

Two rational functions are said to be equivalent if they are conjugate by means of a linear-fractional map. Notice that if f is equivalent to $z^{\pm m}$, then for any $d \ge 2$ the set $R_d(f)$ is isomorphic to the unit circle.

THEOREM 2. If f is not equivalent to $z^{\pm m}$, then $R_d(f)$ is finite for any d.

THEOREM 3. Suppose $g \in R(f)$ and one of the following conditions is satisfied: 1) there is a point \underline{a} that is preperiodic (i.e., a preimage of a periodic point) for f and periodic and repulsive for g; 2) the limit set P_f of the iterates of critical points of f is finite and contains no neutral irrational periodic points of f. Then either f and g are critically finite and have a common parabolic orbifold, or $f^{\ell} \circ g^k = f^{2\ell}$ for some positive integers ℓ and k.

Remark 1. Suppose f and g commute. Then, by Theorem 3, either $f^{\ell} = g^k$, or f and g are critically finite with common parabolic orbifold, and so we recover Ritt's theorem [9].

Remark 2. The condition $f^{\ell} \circ g^k = f^{2\ell}$ guarantees that $J_g = J_f$ and $\mu_g = \mu_f$.

THEOREM 4. If J_f is a circle and $g \in R(f)$, then either f is equivalent to $z^{\pm m}$, or there exists a linear-fractional symmetry h and numbers ℓ , $k \in N$ such that $f^{\ell} \circ h = f^{\ell}$ and $g^k = h \circ f^{\ell}$.

2. Auxiliary Propositions. The following assertions are of independent interest.

<u>LEMMA 1.</u> Let $\lambda \in \mathbb{C}$, $|\lambda| > 1$, and let Φ_n be a sequence of univalent functions in B(0, ϵ), such that $\Phi_n(0) \neq 0$ for all $n \in \mathbb{N}$ and $\Phi_n \to \mathrm{id}$ $(n \to \infty)$. Then there exist $\delta \in (0, \epsilon/2)$, $q \in \mathbb{C} \setminus \{0\}$, and sequences (ℓ_i) and (n_i) of positive integers, such that for any $m \in \mathbb{N} \cup \{0\}$, starting with some number i, the maps $R_i \colon B(0, \delta) \to B(0, 2\delta)$ given by the formulas

$$R_{i}(z) = \lambda^{l_{i}-m} \Phi_{n_{i}}(\lambda^{-(l_{i}-m)} \Phi_{n_{i}}^{-1}(z))$$
 (1)

and

$$\lim_{\delta \to \infty} R_i(z) = z + q\lambda^{-m}, \quad z \in B(0, \delta). \tag{2}$$

<u>Proof.</u> Let $q_n = \Phi_n(0)$. Since $q_n \neq 0$ and $q_n \to 0$, there exist sequences of positive integers (ℓ_i) and (n_i) such that $\lambda^{\ell_i}q_{n_i} \to q\ (i \to \infty)$, where $|q| \neq 0$ and is small. For these sequences and small $\delta > 0$ we expand the functions (1) in series and obtain (2).

LEMMA 2. Suppose the map R is holomorphic in a neighborhood of the point a, R(a) = a, R'(a) = 1, and R preserves a finite measure σ such that $\sigma(\{a\}) = 0$ and $\sigma(U) > 0$ for any neighborhood U of the point a. Then R = id.

The proof follows from the description of the local dynamics of R [11].

LEMMA 3. Let $\lambda \in \mathbb{C}$, $|\lambda| > 1$, and suppose in the half-plane $\{z \mid \text{Re } z > \text{M}_0\}$, $\text{M}_0 > 0$ there is defined a single-valued analytic function ψ of the form $\psi(z) = 1 + z + O(|z|^{-\gamma})$, $\gamma > 0$, $|z| \to \infty$. Then for any c > 0 there exist sequences of positive integers (n_i) and (ℓ_i) and a number M > M₀ such that $\lambda^{-n_i} \psi^{\ell_i} (\lambda^{n_i} z) \to z + c \ (i \to \infty)$ for all $z \in \Pi = \{z \mid \text{Re } z > \text{M}\}$.

<u>Proof.</u> Choose M > M₀ such that $\overline{\psi(\Pi)} \subset \Pi$. It is known [1] that

$$\psi^{l}(z) = l + z + o(|z|) + o(l) \quad (l \to +\infty, z \to \infty).$$

Let c > 0 and the sequence (n_i) be such that $\lambda^{n_i} \to 0$ $(i \to \infty)$. Set $l_i = [c \mid \lambda \mid^{n_i}]$. Then

$$\lambda^{-n_i} \psi^{l_i} (\lambda^{n_i} z) \to z + c \quad (i \to \infty).$$

Using Lemmas 2 and 3 we prove

<u>Proposition 1.</u> If the rational function f and the symmetry H on J_f have a common repulsive fixed point a, then f and H commute.

<u>Proof.</u> In a small neighborhood of a consider the function $R = H \circ f \circ H^{-1} \circ f^{-1}$, where the branches of H^{-1} and f^{-1} are chosen so that $H^{-1}(a) = f^{-1}(a) = a$. We have: R(a) = a, R'(a) = 1. In the exceptional cases R preserves the measure μ_f and, by Lemma 2, R = id, i.e., $H \circ f = f \circ H$. Now suppose J_f is not the Riemann sphere, a circle, or a segment. Assume $R \neq id$. Let us show that if the point $z \in J_f$ is close to a, then J_f contains an analytic arc connecting z and a. As shown in [7, 8] (see also [10]), this forces J_f to be \overline{C} , or a circle, or a segment. Thus, let $z \in J_f$ be close to a. Then $R^k(z) \to a$ when $k \to \infty$, where R denotes R or R^{-1} . By a theorem of Schröder [5], there exists a holomorphic change of coordinates in a neighborhood of a which maps J_f into a set that is invariant under the map $a \in R$ where $a \in R$ is an analytic and $a \in R$. Now subject the new coordinates to the change $a \in R$ with suitable $a \in R$ and $a \in R$. And then apply Lemma 3. Proposition 1 is proved.

We shall need the following fact.

Remark 3. A. É. Eremenko showed that there is no neighborhood U such that U \cap J_f is diffeomorphic to the product of an interval and a Cantor set.

Indeed, suppose the ocntrary holds.

One can assume that U is a neighborhood of a repulsive fixed point. Let F be its Poincaré function [1]. Then the full preimage $I = F^{-1}(J_f)$ is the product of a line (say the x axis) and a Cantor set. Now consider some component of the set $\overline{\mathbb{C}} \setminus J_f$ that is periodic for f [11] and let P be a component of the preimage $F^{-1}(D)$; the horizontal strip P is bounded by lines ℓ_1 and ℓ_2 from I. The boundary of D consists of $F(\ell_1)$ (i = 1, 2) and the boundaries of the two periodic cluster sets C_+ and C_- for the meromorphic function $F\colon P\to \overline{\mathbb{C}}$, obtained when $\operatorname{Re} z \to +\infty$ and $\operatorname{Re} z \to -\infty$. By Iversen's theorem [16], the boundaries of the complete cluster sets C_+ and C_- are contained in the boundary of cluster sets

$$C^0_+ = \bigcap_{M>0} \overline{F(\partial P \cap \{z : \operatorname{Re} z > M\})}$$

and

$$C^0_- = \bigcap_{M>0} \overline{F(\partial P \mid | \{z : \operatorname{Re} z < -M\})}.$$

Since C_+^0 and C_-^0 are at most two-connected and lie in ∂D , the domain D is finitely connected. Since the boundary of D contains analytic curves, D cannot be a Siegel disc or a Herman ring [11]. If D is a simply connected domain of direct attraction, then, by a theorem of Fatou [2], J_f is a circle or a segment. We reached a contradiction.

- 3. Proof of Theorem 1. Suppose \mathcal{H} is an infinite nontrivial family of symmetries on J_f . Let us prove that f is critically finite with parabolic orbifold (the converse is obvious). The proof is broken into steps.
- 1. By Definition 1, there exist a sequence (H_n) , $H \in \mathcal{H}$, a point $a \in J_f$, and a number $\rho_0 > 0$ such that each H_n is univalent in the disc $B_0 = B(a, \rho_0)$ and (H_n) converges in B to a univalent function H. One can assume that: a) $H = \mathrm{id}$ (this is achieved by replacing H_n with $H_{n+1}^{-1} \circ H_n$; b) a is a repulsive fixed point of f and in B_0 there is defined the branch f_0^{-1} of the function f_0 , singled out by the condition $f_0^{-1}(a) = a$. Set $F_n = H_n^{-1} \circ f_0^{-1} \circ H_n$. Starting with some f0, the maps f1 are defined in a smaller disc f2 by f3 considering properties: 1.1) each f3 is univalent in f3; 1.2) f4 considering f5 in f6. By f7 considering f8 if and only if f8 considering f9 co
- 2. Suppose that $a_n=a$ for some n. Consider the function $R=f\circ F_n$. Then R(a)=a, R'(a)=1. A verbatim repetition of the proof of Proposition 1 gives R=id. Therefore, $F_n\neq f_0^{-1}$ implies $a_n\neq a$.
- 3. Schröder's theorem and properties 1.1)-1.3) of F_n guarantee the existence of an $\varepsilon > 0$, a sequence of functions (h_n) , and a function h, all univalent in $B(0, \varepsilon)$, such that $h_n(0) = a_n$, $h_n'(0) = 1$, $h_n \to h$ $(n \to \infty)$, $f_n \circ h_n = h_n(z/\lambda)$, $f_0^{-1} \circ h = h(z/\lambda)$, $z \in B(0, \varepsilon)$. Set $\Phi_n = h^{-1} \circ h_n$, $q_n = \Phi_n(0)$. By Sec. 2, either $q_n \neq 0$, or $F_n = f_0^{-1}$. Suppose $F_n \neq f_0^{-1}$ for large n. Now notice that

$$\lambda^l \Phi_n \left(\Phi_n^{-1}(z)/\lambda^l \right) = h^{-1} \circ (f^l \circ F_n^l) \circ h(z),$$

and apply Lemma 1. If $I = h^{-1}(J_1 \cap B)$ and $\nu = h^*\mu$ (the preimage of the measure μ), then we conclude that the set I and the measure ν are invariant under the translations $z \mapsto q + z/\lambda^m$, $q \neq 0$, $m \in N$. Therefore, the set I is either a full neighborhood of zero, or an interval, or the product of a Cantor set and an interval. The last case is impossible (see Remark 3). In the first two cases the measure μ is lamellar at the point α . It follows that f is critically finite with parabolic orbifold.

4. Thus, we showed that either f has a parabolic orbifold or, starting with some index, $F_n = f_0^{-1}$, i.e.,

$$f_0^{\mathsf{k}} \circ H_n = H_n \circ f_0^{\mathsf{r}}, \quad k \in \mathbb{N}. \tag{3}$$

Now let us carry out the last step: In the disc B choose a small disc B_1 centered at another repulsive fixed point b, $a \neq b$, of some iteration f^p , and let f_1^{-p} be a branch of f^{-p} satisfying $f_1^{-p}(b) = b$, $f_1^{-p}(B_1) \subset B_1$. Repeating the arguments (for the new functions $\tilde{f}_n = H_n^{-1} \circ f_1^{-p} \circ H_n$), we arrive at the equality $f_1^{-p} \circ H_n = H_n \circ f_1^{-p}$. From this and (3) it follows that $H_n(f_0^{-k}(b)) = f_0^{-k}(b)$, $k \in N$, i.e., $H_n = id$. The theorem is proved.

4. Functions with Common Julia Set or Common Maximal Entropy Measure: Proofs.

<u>Proof of Theorem 2.</u> Suppose f is not equivalent to $z^{\pm m}$. Find a sequence (g_n) in $R_d(f)$ which converges to a rational function \tilde{g} everywhere but at finitely many points. If $\tilde{g}(z) \equiv c$, then $c \in J_f$. On the other hand, for large n the sequence of iterates of g_n is normal in a neighborhood of c. We reached a contradiction. Therefore, $\tilde{g} \neq const$ and, by Theorem 1, it suffices to consider the case where f has a parabolic orbifold O. Let $g \in R_d(f)$. Since $\mu_g = u_f$, O is also an orbifold for g. One can assume that $J_f = \overline{C}$. If F_f and F_g are covering maps for f and g, then $F_g^{-1} \circ F_f$ locally preserves the Lebesgue measure on R^2 . Consequently, there exists a covering map common for all $g \in R_d(f)$, and only finitely many of lifts, corresponding to a given degree d [15, 10]. Theorem 2 is proved.

<u>Proof of Theorem 3.</u> Suppose $g \in R_d(f)$ and f, g are not critically finite with parabolic orbifold.

1) Passing to iterates one can consider that the points a and b=f(a) are fixed for f and g, respectively, and a is repulsive for g. First, let us prove that b, too, is repulsive for f. Assume the contrary, i.e., $|\lambda_2|=1$, where $\lambda_2=f'(b)$. Let p be the multiplicity of the point a in the equation f(x)=b. Since $|\lambda_1|>1$, where $\lambda_1=g'(a)$ in a neighborhood of b there is defined a holomorphic function H_1 such that $H_1\circ f=f\circ g$. Set $H_2=f$. The symmetries H_1 and H_2 satisfy $H_1(b)=H_2(b)=b$, $H_1'(b)=\lambda_1P$, $H_2'(b)=\lambda_2$. By a holomorphic change of coordinates one can ensure that $H_1(z)=\lambda_1Pz$. If $\lambda_2q=1$ for some $q\in N$ then by Lemma 3 we reach an exceptional case (see the proof of Proposition 1). If, however, $\lambda_2q=1$ for all $q\in N$, then expanding H_2 in a series we obtain: λ_1P^Q $H_2(z/\lambda_1P^Q)\to\lambda_2z$, $Q\to\infty$, and again we arrive at an exceptional case. Therefore, Q=0 and Q=0 but then Q=0 but Q=0 and Q=0 and Q=0 and Q=0 but Q=0 and Q=0 for a small neighborhood Q=0 but Q=0 but Q=0 and Q=0 and Q=0 but Q=0 but Q=0 consequently, Q=0 but Q=0

Thus, we proved that $|\lambda_2| \neq 1$. Hence, $|\lambda_2| > 1$. We fix a small neighborhood B of the point a and we shall construct a nontrivial family of symmetries in B. In B there is defined a branch of g_0^{-1} by the condition $g_0^{-1}(a) = b$. Also, in a small neighborhood B_1 of the point b consider the branch of f_0^{-1} specified by the condition $f_0^{-1}(b) = b$. Let h_1 and h_2 be holomorphic changes of coordinates that are defined in neighborhoods of zero and take g_0^{-1} and f_0^{-1} into the maps $z \mapsto z/\lambda_1$ and $z \mapsto z/\lambda_2$, respectively. Set $H_{\ell} = f^{pk_l} \circ f_0 g_0^{-n_l} = h_2 \circ (\lambda_2^{pk_l} h_2^{-1}) \circ (f \circ h_1 \circ (\lambda_1^{-n_l} h_1^{-1}))$, where (k_{ℓ}) and (n_{ℓ}) are chosen so that $\lambda_2^{k_{\ell}} / \lambda_1^{n_{\ell}} \to 1$, $l \to \infty$, and p is the multiplicity of the point a under f. We have $H_l = h_2 \circ (\lambda_2^{pk_l} \psi) \circ (h_2^{-1} / \lambda_1^{n_l})$, where $\psi = h_2^{-1} \circ f \circ h$, $\psi(u) \sim CuP$, $u \to 0$, $C \neq 0$. Expanding ψ in a series, one verifies that the sequence (H_{ℓ}) converges in B to a holomorphic function $H \neq const$. Now apply Theorem 1 and conclude that $H_1 = H_1$ for some $i \neq j$, $n_1 > n_j$. It remains to put $x = g_0^{-n_l}(z)$. Then $f^{pk_l}(x) = f^{pk_l} \circ g^{n_l - n_j}(x)$. This completes the examination of the case 1). In case 2), fix a repelling fixed point a of the function g. Two subcases are possible: a) $\omega_f(a) \subset P_f$; b) there exists a point $b \in \omega_f(a) \setminus P_f$ [here $\omega_f(a)$ denotes the set of limit points of the sequence $(f^n(a))_{n \geq 0}$]. Since P_f ' is finite and contains no neutral irrational cycles, in subcase a) the point a is periodic for f and we arrive at case 1) of the theorem. Now consider subcase b). For some $\delta > 0$ and some sequence $n_k \to \infty$, $f^{n_k}(a) \to b$ and in each disc $B(f^{n_k}(a), 2\delta)$ there is defined a branch $f_k^{n_k}$ by

the condition $\int_{\mathbb{R}}^{n_k} (f^{n_k}(a)) = a$. Fix a small neighborhood $B_0 = B(a, \epsilon)$ of the point a such that $|g^{\dag *}x(| < 2|\lambda_1|)$ for all $x \in B_0$, where $\lambda_1 = g^{\dag}(a)$. In $B_k = B(f^{n_k}(a), \delta)$ consider the function $\phi_k = g^{\ell_k} \circ f_k^{n_k}$. where ℓ_k is the smallest number for which diam $\phi_k(B_k) > \varepsilon/4|\lambda_1|$. Then diam $_k(B_k) < \varepsilon/2$ and, by the distortion theorem $C_1 < |\phi_k'(x)| < C_2$ for some C_1 , C_2 , $0 < C_1 < C_2 < \infty$, and all $k \in \mathbb{N}$, $x \in B_k$. It follows that there exists a disc B centered at a such that $B \subset \phi_k(B_k)$ for all k. Set $H_k = |\phi_k^{-1}|_B$. Then (H_k) is a nontrivial family of symmetries in B and $H_k = f^{nk} \circ g_0^{-l} k$, where the branch g_0^{-1} is defined in B_0 by the condition $g_0^{-1}(a) = a$. By Theorem 1,

$$f^{n_i} = f^{n_j} \circ g^{l_i - l_j}$$

for some i \neq j, ℓ_i > ℓ_j . Theorem 3 is proved.

Proof of Theorem 4. Suppose f is not equivalent to $z^{\pm m}$. Since $J_f = S$ is a circle, condition 2) of Theorem 3 is satisfied. Therefore, $f^{2\ell} \circ g^{2k} = f^{4k}$, $g_1 = g^{2k}$. The maps f_1 , $g_1 \colon S \to S$ preserve orientation. Let F and G be lifts of these maps to R, and let $\tilde{\mu}$ be a lift of the measure μ = μ_f = μ_g to R Introduce the homeomorphism

$$\phi\colon\thinspace R\to R,\ \phi\left(x\right)=\mu\left(\left[0,\ a\right]\right),\ \ \text{if}\ \ x\Subset\left[0,\ 1\right)\ \text{and}$$

$$\varphi(x+n)=\varphi(x)+n, n\in \mathbb{Z}, x\in\mathbb{R}.$$

From the fact that the measure μ is balanced, it follows that the difference $\Psi \circ F(x)$ - $\Psi \circ \mathsf{G}(\mathtt{x})$ does not depend on $\mathtt{x} \in \mathbf{R}$. From this it follows, upon descending to S, that for some homeomorphism $h_0: S \to S$ and some number α , $|\alpha| = 1$, we have

$$h_0 \circ g_1(z) = \alpha (h_0 \circ f_1)(z), z \subseteq S.$$

Thus we proved that $h = g_1 \circ f_1^{-1}$ does not depend on the branch f_1^{-1} on S. Therefore, h is a linear-fractonal function. The theorem is proved.

Remark 4. All assertions of this paper carry over to polynomial-like maps [17] and to RB-domains and maps [18].

The author is grateful to A. É. Eremenko and M. Yu. Lyubich for stimulating and useful discussions on the topics of this work.

LITERATURE CITED

- 1. P. Fatou, "Sur les équations fonctionnelles," Bull. Soc. Math. Fr., $\frac{47}{48}$, 161-271 (1919).
 2. P. Fatou, "Sur les équations fonctionnelles," Bull. Soc. Math. Fr., $\frac{48}{48}$, 33-94, 208-314
- G. Julia, "Mémoire sur l'itération des fonctions rationnelles," J. Math. Pure Appl., 8, 47-245 (1918).
- 4. M. Ju. Lyubich, "Entropy properties of rational endomorphisms of the Riemann sphere,"
- Ergodic Theory and Dynam. Syst., 3, 351-386 (1983).

 5. A. Freire, A. Lopes, and R. Mane, "An invariant measure for rational maps," Bol. Soc. Bras. Math., <u>14</u>, 45-62 (1983).
- 6. I. N. Baker and A. Eremenko, "A problem on Julia sets," Ann. Acad. Sci. Fenn., 12, 229-236 (1987).
- 7. P. Fatou, "Sur l'iteration analytique et les substitutions permutables," J. Math., 2, 343-362 (1923).
- 8. G. Julia, "Mémoire sur le permutabilité des fractoins rationnelles," Ann. Sci. École Norm. Sup., 39, 131-215 (1922).
- 9. J. F. Ritt, "Permutable rational functions," Trans. Am. Math. Soc., 25, 399-348 (1923).
- 10. A. E. Eremenko, "Sone functional equations connected with the iteration of rational functions," Alg. Anal., <u>1</u>, No. 4, 102-116 (1989).
- 11. M. Yu. Lyubich, "The dynamics of rational mappings: the topological picture," Usp. Mat. Nauk, 41, No. 4, 36-95 (1989).
- 12. A. É. Eremenko and M. Yu. Lyubich, "The dynamics of analytic transformations," Alg. Anal., 1, No. 3, 1-70 (1989).
- 13. P. Montel, Lecons sur les Familles Normales de Fonctions Analytiques et leurs Applications, Gauthier-Villars, Paris (1927).

- 14. W. Thurston, "On the combinatorics of iterated rational maps," Preprint, Princeton Univ. and Inst. of Advanced Study, Princeton (1985).
- and Inst. of Advanced Study, Princeton (1985).15. A. Douady and J. H. Hubbard, "A proof of Thurston's topological characterization of rational functions," Report No. 2, Inst. Mittag-Leffler (1985).
- 16. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge (1966).
- 17. A. Douady and J. H. Hubbard, "On the dynamics of polynomial-like mappings," Ann. Sci. École Norm. Sup., <u>18</u>, 287-343 (1985).
- 18. F. Przytycki, "Riemann map and holomorphic dynamics," Invent. Math., 85, 439-455 (1986).

GENERALIZATION OF THE PALEY-WIENER THEOREM IN WEIGHTED SPACES

V. I. Lutsenko and R. S. Yulmukhametov

1. Introduction

Let X be a linear topological space of complex functions defined on some subset $T \subset \mathbf{R}^n(\mathbf{C}^n)$, and assume that a system of functions $\mathbf{e}^{\langle \mathbf{t},\mathbf{z} \rangle}$, $\mathbf{z} \in \Omega$, is complete in this space. Then the generalized Laplace transform, which takes a linear continuous functional S on X to a function $\hat{\mathbf{S}}(\mathbf{z}) = (\mathbf{S}, \exp(\langle \mathbf{t}, \mathbf{x} \rangle))$, $\mathbf{z} \in \Omega$, establishes an isomorphism between the adjoint space X* and a linear topological space of functions defined on Ω .

Many mathematicians have devoted their work to the problem of describing the adjoint space in terms of generalized Laplace transform. For example in [1] the projective limit of weighted Banach spaces of the form

$$\{f \in H (D): ||f|| = \sup_{z \in \mathbb{R}} [|f(z)|/\exp(-\psi(-\ln d(z)))] < \infty\}$$

was considered, where D is a convex, bounded region in C^n , d(z) is the distance from a point z to ∂D and ψ is a convex function, and a complete description was given of the adjoint space in terms of the generalized Laplace transform. In [3, 4] some generalization of the Paley-Wiener theorem for weighted Hilbert spaces.

The present article is devoted to the problem of describing adjoint spaces in terms of the Laplace transform on the space

$$L^{2}(I,W) = \left\{ f \in L_{loc}(I) \colon \|f\|_{L^{2}(I,W)}^{2} \stackrel{\text{def}}{=} \int_{\mathbb{T}} |f(t)|^{2}/W(t) \, \mathrm{d}t < \infty \right\},$$

where I is a bounded interval on the real axis and 1/W(t) is a measurable function on I.

THEOREM 1. Let W(t) be a function on I bounded from below by a positive constant and bounded from above on each compact subinterval of I. Let $\tilde{h}(x) = \sup_{t \in I} (xt - \ln \sqrt{W(t)})$ — Young's conjugate function of the function $\ln \sqrt{W(t)}$, and define $\rho_{\tilde{h}}(x)$ by the condition

$$\int_{x-\rho_{\tilde{h}}(x)}^{x+\rho_{\tilde{h}}(x)} |\tilde{h}'(x) - \tilde{h}'(t)| dt \equiv 1.$$

Then

1. The generalized Laplace transform $\hat{S}(z)$ of the functional S on $L^2(I, W)$ is an entire function satisfying the condition $|\hat{S}|(z)| < C_S \exp(\tilde{h}(x))$,

$$\|\hat{S}\|^{2} = \int_{\mathbf{R}} \int_{\mathbf{R}} |\hat{S}(x+iy)|^{2} e^{-2\tilde{h}(x)} \rho_{\tilde{h}}(x) dh'(x) dy \leqslant \pi e \|S\|_{L^{2}(I,W)}.$$

Division of Physics and Mathematics and Computing Center, Bashkirskii Division, Academy of Sciences of the USSR. Translated from Matematicheskie Zametki, Vol. 48, No. 5, pp. 80-87, November, 1990. Original article submitted April 19, 1988.