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i. We will describe the basic results of the article. Let W and W ~ be one-connected 

domains in C=CU {~}; T: W + W' is a polynomially similar mapping of degree m ~ 2 [i]. 
This means that W e W' and T: W § W' is an analytic m-sheeted ramified covering. We de- 
note by F(T) the set of points that do not leave W under the action T: F(T) = {z ~ W : 
Tnz e W u } (fn is the n-th iteration of arbitrary mapping f). The name of the map- 
ping T is explained by the Douady-Hubbard theorem [I]: there exist polynomial mapping P: 
C-+ C of degree m and K-quasiconformal homeomorphism ~ of neighborhood V of set F(P) = 
{z:supIpnz I < ~} onto a neighborhood U of set F(T) such that (p joins PIV and TIN, i~ 

~o~(~)=~~ (1) 

for all z for which P(z) e V. 

The boundary of set F(P) of polynomial P is called the Julia set J(P) of the given 
polynomial [2-5]. Repelling periodic points of P are dense on J(P) [point z is called per- 
iodic of period n for mapping f if fnz = z, fiz # z, 1 <_ i ~ n - i; if its multiplier X = 
(fn)'(z) is greater than 1 in modulus, point z is called repelling]. By analogy we denote 
J(T) = 8F(T). From (I) it follows that repelling periodic points of mapping T are dense 
on J(T). 

In the present article we will show that if F(T) is connected, then for any repelling 
periodic point a E J(T) of period n, its multiplier % = (Tn)'( a ) satisfies the inequality 

lil ~ ra 2~~, (2) 

where r is a natural number with simple geometric meaning: r is the number of ways in 
which point a is accessible from domain W\F(T) (see Sec. 5). 

It is clear that if T is a polynomial with connected J(T), then we can take K = io 

We define the number K0(T) as the lower bound of x > 0 such that the inequality IXI 
m 2nx holds for multiplier % of any periodic point of mapping T of period n (for all n ~ N )o 
From (2) it immediately follows that K0(T) <_ K. 

The next result of the article can be stated this way: if the mapping T introduced 
above is hyperbolic on J(T) [4], then K0(T) < K. In particular, for a polynomial T that 
is hyperbolic on its connected Julia set, K0(T) < I. 

The proof of these and other assertions is based on application of the method of ex- 
tremal lengths [6-8] and some facts of holomorphic dynamics [4, 5]. 

2. We will prove a lemma which we will call the fundamental lemma. Fix (to the end 
of this section) the mapping f: U § C, defined and conformal on a neighborhood U of 
point z = 0 and such that f(0), f'(0) = X, IXI > i. Let D(r) = {~: l~I < r, Im0J > 0}o 
We will say that mapping h canonizes f on the domain ~ if 

a) ~ c U, ~ c f(~), 0 ~ @~, 

b) there exist numbers p > i, E > i, and K e i such that h: D(gp) § f(O) is a k-quasi- 
conforma! homeomorphism that joins fln with the expansion g: m + p~, ~ ~ D(E), i.e~ h o 
g=f o h. 

For mapping f let there exist no more than countably many pairwise nonintersecting 
domains ~i and mappings h i that canonize f on ~i, i e I. We will denote by K i the coeffi- 
cient of quasiconformaiity of mapping h i and by Pi the coefficient of the corresponding ex- 
pansion gi: ~ ~+ Pi ~, m ~ D(~i), i ~ I. In these conditions we have 
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LEMMA I. 

X Kilnpi ~ ]ln~l----'-~, :~I (3) 

where the number ~, O<a ~ i, is the lower density of domain fl = U ~i at point zero in 
logarithmic metric [dz/z[. i~ 

Proof. It is sufficient to prove (3) for one domain ~i" We will fix i and introduce 
the notation fl = ~i, h = hi, g = gi, K = K i, p = Pi, where h joins g[D(r with f[~. We 

will fix as well a small neighborhood of zero U0, U 0 c U, such that mapping f-z: f(U0 ) 
U 0 is conformally conjugate to mapping f0-1: z + l-lz (Schroeder's theorem [4]). For 
each t e (0, 1/2), the restriction of h to angle ~t = {~: argm e (~t, n - ~t)} is contin- 
uous at point ~ = 0. Therefore we can find 8 > 0, 6 = 6(t), such that image h(V t) of dom- 
ain V t = D(6) 0 E t lies in neighborhood U 0. We introduce the domain 

V =  ugh,  ~o= Uh(gd.  
t 

By the construction we have n 0 c U 0 n ~. Therefore it follows that it is sufficient to 
prove the inequality 

t 2%1nI%[ 
Klnp ~ i lnZl2 ~ (4)  

where % i s  t h e  lower  d e n s i t y  o f  domain ~0 a t  p o i n t  0 in  t h e  l o g a r i t h m i c  m e t r i c  and mapping 
h i s  a K - q u a s i c o n f o r m a l  homeomorphism such  t h a t  

%h(~) .=h(p~) ,  ~ V .  (5)  

We d e n o t e  by z0A t h e  s e t  o f  p r o d u c t s  o f  number z 0 e C by e l e m e n t s  o f  s e t  A e C. We 
i n t r o d u c e  domains 

n =  ~o~u, Q*= ~ ~ 0 .  
h ~ 0  h~O 

By the construction we have V c pV, n o c X~0, ~ is the upper halfplane and h can be contin- 
ued to a K-quasiconformal homeomorphism E on ~* with preservation of (5). 

We will fix the boundary S r of circle B r = {z: [z I < r} and ray ~={~: arg~=~}, 0< 
<~ An arc S c S r N ~* can be found with endpoints on boundary 8~, through which the 

curve ~=h(~) exits from circle B r. Then any curve ~ = h(~), 0 < ~ < ~ intersects S. 
We denote for the rest of the article s = h-l(s). Each ray ~@, 0 < ~ < ~ intersect s We 
introduce two families of curves F and F. We will consider first the family of all seg- 
ments that join points m e s and m/p; then on each ray ~, 0 < ~ < ~ we leave exactl~ one 
such segment ~ = ~ nearest to zero. We denote the resulting family of segments by F. It 
fills out the set of points R c E. We define the second family F as the family of images 

X = h(x), Y e F. 

Now we introduce the logarithmic metric on C \{0}: o(z) = [z[ -~ and the induced 
metric 

~(~) [ ' 
z=,,(.> 

existing almost everywhere on ~. We define the numbers 

M =  AL -2, M =  ~E  -2, 
where  z = x + i y ,  ~ = u + i v .  

I t  i s  known [6] t h a t  

.Zff < KM. (6)  
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We estimate M from below. For this we use the Holder inequality and obtain the relation 

2 

~L2~Sd,(f:(m)Idm,) <{d~ ::'(m, lml,dm, . . =:Inp. (7) 

~ . V ,  ~ ,% v ,  

which implies M ~ ~/in p. Now we estimate M from above. Let z e H(R) and points z z = Xz, 
z 2 = z/X not be the endpoints of some curve y e F. From the definition of family F it fol- 
lows that then z I and z 2 do not lie in h(R). Now if the point z from H(R) does not lie in 
the ring C = {z : r\[l I < [z I < r} then we take z into C by mapping z + %kz with some k = 
• • .... As a result 

A = I (h(R))  < I (~*  n c ) ,  

where I(X) is an area of set X c C \{0} in metric o(z). Here we used equation I(%X) = 
I(X). On the other hand, from the definition of ~* it follows that the density ~0 of ~0 
at point zero in the metric o(z) exists and equals 

Thus, we have shown that 

and finally 

! (~* N C) 
=0= 2 n l n l s  

M = ___A _< a 2u% In 1 }. 1 

t n ~r 2~ao In ! )~ I 
K 1-~ '~ ' - f - '~  ~<M~-< Iln~,lu ' 

i.e., inequality (4) and the lemma have been proved. 

Remark i. a) In the following we will use the equation 
r 

~ o l n  T 6 

(s) 

( 9 )  

where s is the length of the part of the circle Izl = 9 which lies in ~. 

b) Analysis of (6)-(8) allows the conclusion that if we put the equality sign in (3), 
then each mapping h i extends to a continuous mapping of a closed semineighborhood D(e 0 of 
point m = 0 and maps the boundary intervals to analytic arcs. 

3. Now we apply Lemma I to evaluate the multipliers of periodic points of mappings 
that are defined "globally." 

In [9, i0] the class of RB-domains and mappings is presented. This class contains, 
for example, immediate attraction domains of the attracting fixed points of a rational func- 
tion. 

Thus, let a one-connected hyperbolic domain a c C be given, along with a holomorphic 
mapping T: U + 6 defined on a neighborhood U of boundary ~. 
on T and a the conditions 

T(un~)=un~,  T(O~)=O~, 
10) 

[T-n(A) is the complete preimage of set A under mapping Tn]. We introduce the Riemann map- 
ping h: V = {[ml < i } + a and the mapping g = h -l - T o H : D § V, D = h-l(U n ~) conjug- 
ate to T. Condition (i0) is equivalent to the fact that g holomorphically extends to a 
neighborhood of 8V and hyperbolically to aV [I0]. 

Consider this situation. Let a e 8~ be a repelling fixed point of T. We will assume 
that point a is a radial limit of mapping h: D + ~ at some point m0 e ~V and w0 is a per- 
iodic point of mapping g: aV + 8 V. 

Remark 2. This has been proved [i, 15, 3] in the following cases: 

a) mapping T: ~a + 8~ is hyperbolic; 

Following [9, i0], we impose 
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b) point ~0 is a repelling fixed point for mapping g; then there eixsts a radial lim- 
it a = h (~  0) and T(a)=a,  ] T ' ( a ) ] > t ;  

c)  T i s  a p o l y n o m i a l ,  ~ = D~ i s  i t s  domain o f  a t t r a c t i o n  t o  ~ and J u l i a  s e t  J = 3D~ 
is connected; in this case g(~)  = ~m, where m = degT. 

Assertions a) and b) were proved in [15] for rational functions, but the proof does 
not change in the case of RB-mappings. 

Thus, let a be the radial limit over a finite number of directions, the endpoints of 
which form k cycles of g with periods s Z2 .... , s and multipliers pi, p=, ~ Ok. We 
will call the total quantity r = s + ... + s the number of ways in which point a is ac- 
cessible from ~. 

We will apply the fundamental lemma. Fix j and consider point b of a c[cle of period 
s = s By Schroeder's theorem, ina neighborhood V b of point b the mapping gs is holo- 
morphically conjugate to mapping gj: ~ ~ pjm and here the part of the circle 8V ~ V b pass- 
es to an interval. Further, semineighborhood V fl V b determines in ~ the domain h(V fl Vb). 
Thus, we obtain r domains ~jn, J = 1 ..... k, n = i .... , s to each cycle of period s 
there correspond s such domains. In this connection 

T ~ ( Q ~ ) ~  Q ~ ,  ] = 1 . . . . .  k ,  n = 1 . . . .  , l~, 

where we have set L = s 

which implies 

THEOREM 1, 

�9 �9 �9 " g k "  
The fundamental lemma gives the inequality 

~lj~ l n ~  ~ 1L-- ~ 2 ,  
5=i In pL/lj 

~l~ zA h i i_ ! 
2. 

i=i ]n O~ (Ii) 

Example 1. Let fl be a Betkher domain [4, 5]. More precisely, T is defined on a 
neighborhood of the closure of ~, which is a domain of attraction of some critical fixed 
point q e ~ : T(q) = q, T'(q) = ... = T(m-l)(q) = 0, r(m)(q) # 0 and in addition T'(z) 
0 V z e ~\{q}. We note that m = degTl~. We have 

g ( ~ )  = ~ ,  p~ = mZJ, 

and inequality (ii) acquires the form 
h 

Z l j  / j ln]~] = r l n l ~ l  
l. ln m 1-]"n-~ ~ 2' 

j = l  1 

i . e . ,  11[ ~ m 2 / r  f o r  a m u l t i p l i e r  o f  any f i x e d  p o i n t  a a c c e s s i b l e  f rom a .  T h i s  example  i s  
i n t e r e s t i n g  b e c a u s e  i t  i s  r e a l i z e d  f o r  any n o n l i n e a r  p o l y n o m i a l  w i t h  c o n n e c t e d  J u l i a  s e t  
(the role of ~ is played by the domain of attraction to ~). 

Example 2. Let Pt(z) = z = + t and let t e C be the center of the hyperbolic compon- 
ent of the Mandelbrot set [12-14, 4, i] (for example, t = 0 or -i). This means that crit- 
ical point z = 0 is a periodic point of some period n of mapping Pt" Let f(z) = Ptn(z), 
let fli be the domain of immediate access of fixed point 0 of mapping f(z), and let ~2 be 
the domain of attraction to ~. 

We evaluate multiplier I of periodic point a of period m of mapping f(z) that lies on 
the boundary of ~I�9 Since f does not have critical points on 3~i, then f: 8~ I + 8~ l is 
hyperbolic�9 Therefore point a is accessible from ill; from ~2 it is everywhere accessible. 
Now we apply the fundamental lemma. We have f(~i) = ~i, i = i, 2; the restriction fl~ 2 is 
conformally equivalent to g2(~) = ~deg f, where deg f = 2 n and lift i does not have critical 
points distinct from zero; since f(0) = 0, f'(0) =O, f"(0) = 2nTt(0)'...'Ttn-i(0), then 
deg fl~i = 2 and fI~ i is conformally equivalent to gi(m) = m2. If r i is the number of ways 
ol access of a from ~i, i = i, 2, then by Lemma I 

rl (rl In [s 2)+  r2.(r2 In b,I/r2nmln 2 ) 4  2, 

which implies In III ~ 2m in l/(l + I/n). 
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4. We will strengthen the basic assertions in the hyperbolic case. Let compactum 
F c C be given with property (s): there exist numbers K e (0, i) and a > 0 such that for 
any circle Sr(z) with center at arbitrary point z e 8F and radius r < s 

~(S~(z) n f )  /~(S~(z) ) >~ • ( i 2 )  

where ~ is the Lebesgue measure on R 2. 

We denote by Su, 9 the part of circle Is -ul= 9~ u e 8F lying outside F. Let Zu(9) 
be its length, x = in(i/p), ~(x) = s It is obvious that (pu(in(i/9)) is the ang- 
ular measure of arc Su, p. 

LEMMA 2. When (s) holds, we can find a number a, 0 < ~ < I, such that for any u ~ 8F, 

R 0 > ~ + in(i/e) 
R 

li__p_m ~ R-------~ . q%(z)dz~<~.  
/ ~  R 0 

Proof. Let E(c) be a ring with center at point u and radii 
In (12) let r = (r I + r2)/2 and choose a point v e 8F at a distance r + r I from v. 
~(Sr(v))/D(E(c)) = (a n - e-~)/4(e ~ + e -n) = ~ and St(v) c E(c), then 

~t (E (c) \F)/jx (E (c)) < ~, ( 13 ) 

where ~ = 1 - x$. Now we recall the above-introduced notation and we rewrite (13): 

r 2 T 2 

j /~(9) d9< ~ f 2~9@.  
~',1 rl 

Here we make the change c + t = in (i/9) and integrate the result with respect to c from 
R 0 to R, divide by R - R 0, and pass to the lower limit for R § ~, obtaining the desired 
result. The lemma is proved. 

If ~ is an RB-domain and T: 8~ + a~ is hyperbolic, then compactum F = C \~ satisfies 
condition b). This was shown in [9]. Therefore the fundamental lemma, Eq. (9) and Lemma 
2 imply this strengthening of Theorem i: 

THEOREM 2. In the conditions of Theorem i, if T is hyperbolic, then we can find ~ 
(0, i) such that for any periodic point 

5. We will prove the results mentioned in Sec. i for polynomially-similar mappings~ 

Let T: W + W' be polynomially-similar mapping of degree m and let the set F(T) = 
{z e W : Tnz e W V n e N} be connected. There exist a polynomial P of degree m and a K- 
quasiconformal homeomorphism ~ of neighborhoods V and U of sets F(P) and F(T), respective- 
ly, such that To~=~oP . We will take the domain D~ = {z: Pnz + ~ n § ~} and conformally 
transform the unit circle to D~ and V n D~ by mapping ~ to U\F(T). We obtain the mapping 
h, a K-quasiconformai homeomorphism joining g(~) = mm with T. 

Now let a e aF(T) be a repelling periodic point of period n. A repelling periodic 
point ~-l(a) e aF(P) of polynomial P accessible from D~ by some number r of ways corresponds 
to it (see Remark 2). Then from the fundamental lemma and Example 1 it follows that 

2 ~  K nljlnm K n lnm'  
J 

i.e., we have proved 

THEOREM 3. For multiplier ~ of point e, we have 

In [?~[ ~ (2Kn/r)ln m. 

Now we note that C \F(T) is an RB-domain for mapping T (since D~ is such a domain for 
P). Therefore from Lemma 2 we derive 

rl = e -(c+~), r2 = e -(c-~). 

Since 
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THEOREM 4. If T: J(T) + J(T) is hyperbolic, then there exists ~, 0 < ~ < i, such 
that 

In I%[ ~< (2Kn~/r) In m. 

COROLLARY i. Let P be a polynomial of degree m ~ 2, let its Julia set J(P) be con- 
nected, and let mapping P: J(P) + J(P) be hyperbolic. Then ~ e (0, i) can be found such 
that for a multiplier ~ of any periodic point a of period n 

ln[s  ~(2,~n/r)ln m, 

where  r i s  t h e  number  o f  ways o f  a c c e s s  o f  p o i n t  a f rom D~. I n  p a r t i c u l a r ,  lkl  ~ m 2an. 

C o n c l u d i n g  Remarks .  Thus ,  we h a v e  p r o v e d  t h e  i n e q u a l i t y  

t - - - ln l~ I~<2~ ,  (14) 
n 

where X is the multiplier of any repelling periodic point of period n of polynomial T (of 
degree m e 2) with connected Julia set J, and X = X(T) is the Lyapunov index of maximal 
measure of T, which in the case of a polynomial coincides with the harmonic measure of dom- 
ain D= [9, i0] (we note that X = inm, if J is connected). It turns out that for polynom- 
ial tc(Z) = z m + c, m ~ 2 inequality (14) remains true for any c e C. For the proof we 
can consider the harmonic function in IXl/n - 2x(T c) on the complement of the Mandelbrot 
set [12] and apply the maximum principle. It is not known to the author whether (14) is 
preserved for an arbitrary polynomial with disconnected Julia set. In connection with 
this we state the lower limit for k. Let 

u=min{G(q): T' (q)  = 0}, 

where G is the Green's function of domain D~ with pole at ~. Then in IXl/n e (m - l)u. 

In conclusion the author would like to acknowledge the referee for pointing out [15], 
in which Theorem i is proved for rational functions. The fundamental lemma of the present 
article is a generalization of Theorem 3 of [15]. 
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