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0. Introduction

In this paper we investigate certain moduli spaces (“Hurwitz spaces”) of branched covers of the Riemann
sphere S?, and representations of finite index subgroups of the spherical braid group which arise from these
Hurwitz spaces. (By spherical braid group, we mean the group of braids in the 2-sphere; we will refer to the

more classical group of braids in the plane as the planar braid group.)

Hurwitz spaces play an important role in realizing groups as Galois groups, a role which has been
explored primarily by Fried and Volklein in [F1], [F2], [FV], [V1], [V2], etc. In these works, they have
given a couple of constructions of Hurwitz spaces, examined their algebraic structure, and explored their
applications to the inverse Galois problem. In section 1 of this paper we give an alternative construction of
the Hurwitz spaces, exhibiting them as homogeneous spaces of Aut(S?), the group of orientation preserving
homeomorphisms of S2. This point of view enables us to prove that the universal cover of a Hurwitz space
is homotopy equivalent to S® (see the discussion just after Proposition 4), which is equivalent to showing
that the Teichmuller space of a sphere with 3 or more punctures is contractible. Of course this is not a new
result, but we believe our rather elementary topological proof is interesting enough to include.

In [A], Arnol’d described representations of the planar braid groups on the homology of hyperelliptic
curves. Later, Magnus and Peluso [MP] analyzed these representations and related ones obtained from
“generalized” hyperelliptic curves in more detail and expressed them in terms of Burau representations. (Note
that the Burau representation doesn’t satisfy the extra relation it would need to provide a representation of
the spherical braid group.) In [F2], M. Fried used Hurwitz spaces to describe an action of certain finite index
subgroups of the spherical braid group on the homology of Riemann surfaces given as branched covers of
S? without automorphisms. (Since these subgroups have finite index, one may obtain representations of the
whole spherical braid group by inducing.) In Section 1 of this paper, we describe these representations using
the topological point of view developed in our construction of the Hurwitz spaces. We also show that in the
case where the original branched cover has nontrivial automorphisms, instead of obtaining a representation
of a subgroup of the spherical braid group, one obtains a representation of an eztension of this subgroup,
where the extension is precisely by the group of automorphisms of the original covering space of S2.

To compute explicit examples of these representations we give, in Section 2, an algorithm that enables us
to construct a homology basis of a branched cover of S? given its combinatorial description. Such algorithms
have been described before (e.g., Tretkoff and Tretkoff [T]). We give one which is different than what we
have seen in print, and seems best suited to our needs.

In Section 3, we use this algorithm to compute explicitly two examples which illustrate the ideas above —
one with automorphisms and one without automorphisms. For the example with automorphisms, we use the
classical example of hyperelliptic curves. This example was discussed by Arnol’d and by Magnus and Peluso,
but they only considered the planar braid group, not the spherical one (i.e., they didn’t let any non-infinite
branch points pass through infinity and, if infinity was a branch point, they didn’t let it move around).
Since the automorphism group is Z5 in this case, our general theory shows that one obtains a representation
of a Z, extension of the spherical braid group. We show that, in this case, the representation does not
factor through a representation of the unextended braid group. For the example without automorphisms,
we compute generators of the appropriate subgroup of the braid group and compute their images under the
representation as automorphisms of the homology of the covering surface. We then use a theorem of Fried to
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conclude that a generic Riemann surface of genus 1 can be mapped analytically to S? such that the resulting

branched cover has the same combinatorial description as this second example.

1. A Topological Construction of Hurwitz Spaces

Let ¢ : ¥ — S? be an n-sheeted branched cover, and let X = {z1,...,7,} denote the points of S?
over which branching occurs. Suppose one chooses a new set X' = {={,...,z.} with each z} close to its
corresponding x;. One may deform the original branched cover to a new one in which the branching takes
place over X' instead of X, and whose structure over a neighborhood of X' corresponds precisely to the
old structure over a neighborhood of X. To be a bit more precise, one may obtain the new branched cover
¢ : ¥ — S? by letting ¢' = g o ¢, where g is a self-homeomorphism of S2, close to the identity, taking
each z; to ;. We will construct a connected moduli space H, called a Hurwitz space, encoding the above
deformations in the sense that each point of H corresponds to an equivalence class of branched covers, where
¢1: 81 = S? is equivalent to ¢ : By — S? if and only if there is a homeomorphism A : ¥; — X5 such that

¢1=¢20h.
We will see that the construction of this Hurwitz space H is straightforward.

Next, we would like to construct a total space U which is a bundle over H with fiber ¥ in which each
fiber maps to S? by the branched cover corresponding to the point in the base space H over which that
fiber lies, and all of these maps fit together to give a continuous map ® : U — S2. One interesting result
of this construction (when it is possible!) is a natural action (up to isotopy) of m1(H) on X, and hence
a representation of m1(H) on H;(X) (in this paper, all homology will be with integer coefficients unless
otherwise indicated). It turns out that the construction of U is straightforward if we assume there are no
non-trivial automorphisms (i.e., self-equivalences) of the original branched cover ¢ : ¥ — S2. However, if we
start with a ¢ that admits nontrivial automorphisms, then one cannot in general construct U with the above
properties and cannot obtain a natural representation of 71 (H) on H;(X) as just described. In this case, we
will show how to make a related construction which results in a representation on H;(X) of an extension of
m1(H) by Aut(X). In Section 3 of this paper, we will give an example in which this extension is nontrivial

and the representation doesn’t factor through m (H).

We now turn to the construction of H. As above, fix an n-sheeted branched cover ¢ : ¥ — S? and
let X = {x1,...,2,} denote the points of S? over which branching occurs. Let Aut(S?) denote the group
of orientation-preserving homeomorphisms of S? with the compact-open topology. The key idea in this
construction is to define H as a homogeneous space of the group Aut(S?). We begin with the following

lemma. (We thank Allen Hatcher for showing us its proof.)

Lemma 1: The inclusion SO(3) — Aut(S?) is a weak homotopy equivalence (i.e., it induces an isomorphism
on all homotopy groups and, hence, on all homology groups).

Proof: Kirby and Siebenmann ([KS], p. 254) prove that O(2) — Homeo(R?) is a homotopy equivalence.
Using the 5-lemma to compare the homotopy exact sequences of the fibrations

0(2) = 0(3) — §2
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and
Homeo(R?) — Homeo(S?) — S2

then proves the lemma.

Note: The stronger theorem, that SO(3) — Aut(S?) is a homotopy equivalence, is proved by Haver in [H].

Define the “large diagonal” A C (S%)" by A = {(y1,...,¥r) : ¥i = y; for some i # j}. Let S, denote

the symmetric group and define
CRE
Sr '

Clearly, (S?)" — A — II is a covering space. Let P denote the composition

II =

Aut(S?) = (SH)" — A =TI,

where the first map is the evaluation f +— (f(z1),...,f(z,)). Define the following three subgroups of
Aut(S?):
g:P_l[wla"'amT]

Go = the path component of G containing Id

G = {g € Aut(S?) : there exists a homeomorphism h : ¥ — ¥ with ¢ = go ¢ o h}

We now observe that Gy C G C G: The second of these inclusions is easy since, by definition, if g € G
then the branched covers ¢ and g o ¢ are equivalent and, hence, have the same branch locus in S2. The first

of these inclusions follows immediately from Lemma 3, below.

We define H = Aut(S?)/G to be our Hurwitz space, where we are associating to each coset gG the
branched cover go ¢ : ¥ — S2. Note that, since II = Aut(S?)/G and G contains the identity component
of G, the map H = Aut(S?)/G — Aut(S?)/G = II exhibits H as a covering space of II. This cover is
finite-sheeted since once you fix the images of the branch points there are only a finite number of n-sheeted
branched covers of S? (up to equivalence). The fundamental group of II is the well known r-strand braid
group of S2, which we will denote B,.(S?). Thus 7 (H) is a finite index subgroup of B,.(S?).

We now pause to prove two lemmas involving Gy. One of these lemmas we have already used; we will
also need them in what follows.

Lemma 2: If r > 3, then m;(Gy) = 0 for all i.

Lemma 3: Given g € Go, there is a homeomorphism hy : ¥ — X such that go¢ = ¢pohy. If r > 3,
there is a unique way of choosing each hy such that g — h, defines a continuous group homomorphism
Go — Homeo(X) and such that ¢ is equivariant with respect to the resulting action of Go on X.

Proof of Lemma 2: During this proof, we will incorporate the number r into the notation for Gy and
related constructions as a superscript in order to keep track of which r we are considering. Let G" = {g €
Aut(S?) : g(w;) = z; for 1 <i < r}. Clearly G is the identity component of G and Aut(S?)/G" = (S2)" —A.
It follows that Q = Aut(S?)/G} is a covering space of (S?)” — A. We will now show that m;(G5) = 0 for all
r and for 7 > 3. Consider the homotopy sequence of the fibration

= (8" —A—=(SH-A (1)
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where I is the complement of r — 1 points in S? and, hence, homotopy equivalent to a graph. It immediately
follows that m;((S?)" — A) — m((S?)"~! — A) is an isomorphism for ¢ > 3 and r > 1. By looking at a

sequence of such maps, we see that for this range of i and r, m;((S%)" — A) = m;(S?). Now consider the

commutative diagram

mi(Aut(S?) — m(Q)
!
0 m((S%)" - A)

mi(SO(3)) - 7¢n(52)
The two vertical maps on the right are isomorphisms by what we just proved and because one is induced by
a covering map. The horizontal map on the bottom is an isomorphism by the fibration S* — SO(3) — S2.
The left-hand vertical map (induced by inclusion) is an isomorphism by Lemma 1. It follows that the top
map is an isomorphism for 4 > 3 and for all r > 1. Applying this fact to the fibration G5 — Aut(S?) — Q
and its long exact homotopy sequence

s = Q) = mim1(GE) = i1 (Aut(S?) = 1 (Q) = - - (2)

proves that m;(GJ) = 0 for 4 > 3 and for all » > 1. Because, in addition, we know that ma(Aut(S?)) =
m2(SO(3)) = 0, it follows that m2(Gf) = 0. To show that, for r > 3, m1(G§) = 0, we observe from the long
exact sequence (2) that it will suffice to show first that m5(Q)) = 0 and secondly that 71 (Aut(S?)) — m (Q)
is injective.

For the first, we instead show that mo((S2)” — A) = 0 which is equivalent since @ — (S?)" — A is a
covering map. Since PSL(2,C) acts freely and transitively on (5?)® — A, it follows that m((S?)® — A) =
7o (PSL(2,C)) = 75(SO(3)) = 0. Now assume inductively that » > 4 and m2((S?)"~! — A) = 0. The
inductive step then follows immediately from the fibration (1) above and its long exact sequence.

We now need to show that m; (Aut(S?)) — 71 (Q) is injective for » > 3. First, note that 7 (Aut(S?)) —
71 ((S2)% — A) is injective since Aut(S?) ~ SO(3) ~ (S?)® — A. By applying m; to the commutative diagram

Q
'
Aut(S?) — (827 —A
N4
($2)% — A

and using the fact that m;(Aut(S?)) — m1((S?)® — A) is an isomorphism, the desired injectivity follows for
r > 3. This completes the proof of lemma, 2.

Proof of Lemma 3: Let g € Go. Choose a path g; in Gy from the identity to g. Let y € ¥ — ¢~ 1(X). Let
a: I =% —¢H(X) be the lift of the path g:(¢(y)) which starts at y, and define hy(y) = a(1). Define h,
to be the identity on ¢~!(X). Then h, : ¥ — ¥ is a homeomorphism and g o ¢ = ¢ o h,. Furthermore, if
r > 3 then, since m1(Go) = 0, any two such paths g; would lead to homotopic paths in S — X. Hence, for
r >3, g — hy is a well-defined homomorphism Gy — Homeo(X) making ¢ equivariant. This completes the
proof of Lemma, 3.

Clearly, the subgroups G, G, and Gy are not normal in Aut(S?). However Gy, being the path component
of the identity, is normal in both G and G. As a result, we know that the covers Q — H and @ — II are
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regular covers, with deck groups G/Go and G/Gy respectively. The question of whether G is normal in G
(or, equivalently, whether H — II is regular) is more subtle and will depend on the original branched cover
¢ : ¥ — S2. Tt is fairly easy to see that if ¢ : ¥ — S2 is not regular than G cannot be normal in G. However

the converse is not true.

By considering the exact sequence (2) introduced in the proof of Lemma 2, we see that @ is homotopy
equivalent to SO(3) (since both are weakly homotopy equivalent to Aut(S?)). The group PSL(2,C) C
Aut(S?) acts on @ from the left. Since SO(3) — PSL(2,C) — @Q is a homotopy equivalence, we have:

Proposition 4: The space PSL(2,C)\Q is contractible.

Note: This is not a new result, since PSL(2,C)\Q is just the Teichmuller space of the r-punctured
sphere.

Since m1(Q) = Za, it follows that @ is not quite the universal cover of II. We conclude that the universal
cover of @ and, in fact, of all the spaces H (no matter which branched cover we began with, as long as r > 3)
is homotopy equivalent to S3, the universal cover of SO(3). To understand more precisely the covering
space @ — II, we will begin by recalling some basic facts about the braid group B,(S?) = m (II). (Our
main reference for these facts is Birman’s book [B].) A presentation for B,(S?) is given by the generators
Q1,-..,Q,_1 and the following relations:

QiQ; = Q;Q; when [j —i| > 1
QiQi+1Qi = Qiy1QiQiqr fori=1,...,r -1
Q1Q2 Tt QT’—IQT—IQT—2 e Ql =1.

Note that the first two relations give the classical r-strand braid group of the disc, while the third is necessary
because our braids are in $2. This presentation may be found in [B], p. 34], but was discovered originally by
Fadell and Van Buskirk [FB]. The center of this group is the subgroup of order 2 generated by (Q1 - -- Qr—1)".
(For a proof, see [B], p. 154 or [G].) If one pictures the 7 strands as drawn lengthwise on a single ribbon,
this generator corresponds to performing a single full twist of the ribbon.

Proposition 5: The covering space ) — II corresponds to the center of 7y (II)

Proof: Since Gy is contractible, 1 Q = 71 Aut(S?) = 711S0(3) = Z,. Furthermore, the generator of this Z,
is a single rotation of S2. The braid arising from this rotation is precisely the indicated generator of the

center of the braid group, proving the proposition.

We now turn to the construction of the universal bundle U over H. For the remainder of this section,
we assume that r > 3. It is natural to construct this bundle first over Aut(S?) since H is a quotient of
Aut(S?). Thus, define

®:Aut(S?) x ¥ = §?
by ®(f,z) = f(¢(z)). For each f € Aut(S?), observe that ®|{f} x ¥ is precisely the branched cover f o ¢.
Note that Go acts on Aut(S?) x ¥ from the right by (f,z)-g = (f o g,h;"(x)) (where g = hy is the
homomorphism defined in Lemma 3). Clearly, (®(f,z)) - g = ®((f,z) - g); in other words, g identifies the
fiber over f with the fiber over f o g by an equivalence between the branched covers obtained by restricting
® to these fibers. Define

W = (Aut(S?) x %)/Go;

then @ induces a map (which we continue to call by the same name) ® : W — S2. Note that W is a fiber
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bundle over @ = Aut(S5?)/Go with fiber . Because Gy is connected, there is a canonical homeomorphism (up
to isotopy) between any two fibers of W — @, and hence a canonical isomorphism between their homology

groups.

We have an action of G/Gy on @ with quotient H. Can this action be covered by an action of G/Gg
on W by maps which induce equivalences between the fibers (with respect to the branched covers induced
by ®)? If so, the quotient will give us the desired space U. The answer to this question is, in general, no,
but depends on the group Aut(¢) of automorphisms (self-equivalences) of the branched cover ¢ : ¥ — S2.
Define
G ={(g,h): g€ G,h:% = % is a homeomorphism, and go ¢ o k™1 = ¢}.

There is an exact sequence
1= Aut(¢) = G = G = 1.

Clearly, G' acts on Aut(S?) x ¥ from the right by (f,z) - (3,h) = (f o g,h 1 (z)).

For the remainder of this section, we assume that » > 3. Lemma 3 provides a continuous injective group
homomorphism Gy — G defined by g + (g, hy). The image of this map is the identity component of G' and,
hence, a normal subgroup of G. Hence we have the exact sequence

1= Aut(¢) = G/Go = G/Go — 1. 3)

Furthermore, the group G /Go acts on W in a way that covers the action of G/Gy on @ (as the group of deck
transformations of Q — H). If Aut(¢) = 1, then G/Go = G/Go and U = W/(G/Go) is our universal Z-bundle
over H which, in turn, yields the desired representation of 71 (H) on H;(X). In general, however, we obtain
such a universal bundle only if there is a monomorphism G/Gy — G /Go splitting the exact sequence (3)
above.

2. The Homology of a Branched Cover: An Algorithm

Since we now wish to carry out these computations for specific examples, we will need an algorithm for
calculating a basis of the fundamental group and first homology of a branched cover of S2. Because this
procedure will be used more than once in this paper, we give a fairly detailed explanation in this section.

Let S, (i-e., the symmetric group) act on {1,...,n} from the right. Let {z1,...,z,} be a set of r
distinct points in S?; denote by X the disjoint union of r open discs in S?, one centered at each z;. Let
wy,...,w,_1 be based, pairwise disjoint (except at the basepoint) simple loops in S? — X such that each w;
winds once counterclockwise around x;, but encloses none of the other ;. Hence wyw, ... wr—; is a loop
which winds once clockwise around z,. It follows that 7 (S2 — X) = F,_; = F(wy,...,w,_1).

Assume we are given a representation p : F,._; — S, such that p(F,._1) acts transitively on {1,...,n}.
Denote p(w;) by p;. Let ¢ : ¥g — S? — X denote the connected covering space corresponding to the
subgroup p~'(Stab(1)). In the natural way, identify ¢! (basepoint) with the set {1,...,n}. Let w;; (for
1<i<r—-1and1 < j < n) denote the lift of w; to X which starts at the point j (and hence ends at
the point (j)p;). Let ¢ : ¥ — S? denote the branched cover obtained by glueing a disjoint union of discs
(one for each component of %) to ¥, each disc being attached by a homeomorphism from its boundary
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to the corresponding component of the boundary of ¥y. Then ¢ is extended to ¥ as a branched cover in the
obvious way, so that all branch points are contained in ¢~!{z1,...,z,.}. Following Magnus, we refer to the
(r — 1)-tuple (p1,-..,pr_1) as the signature of the branched cover. We now give an algorithm for getting

from the signature of ¥ to a set of generators of 71 (X) which is also a basis of the free abelian group H;(X).

Step 1: Denote by I the subset of S? with the following structure as a graph: its only vertex is the basepoint,
and its edges are the closed loops wy,...,w,—_1. Let

T=¢7(T)={1,...,n} U Jwi;.

i,5

Let T denote a maximal tree in T (probably found using a breadth-first search) and, for each i = 1,...,n,
let a; denote the unique simple edge path in T joining 1 to ¢. Note: «; should be expressed as a word in the

w;j. Also, if you use a breadth-first search to find T', the «; may be recorded virtually as a by-product.

Step 2: It follows that (3o, 1) is free, with one generator u;; for each w;; € T. To be precise, u;; =

ajwija(_j;pi. Of course, thought of as homology classes, the u;; form a basis of the free abelian group
H; (%o).

Step 3: Define a matrix A with (r — 1)n columns as follows: index the columns by the ordered pairs (4, 5)
where 1 < i <r—1and1<j <mn. Given a cycle (i1,...,ir) appearing in p;, construct a corresponding
row of A to have a 1 in each of the columns (4,%1), (4,42), - - ., (4,%%) and a 0 in all other columns. Do this for

every cycle in every p; for 1 <i<r—1.

Next, let p, = p1p2...pr—1. Foreachi=1,...,n, let

By = {(L,i), 2 ()p1), (3, (D)p1p2)s - (1 = 1, (D)p1pa - - prs) .

Given a cycle C' = (i1,...,4) appearing in p,, let Ec = E;, UE;, U...UE;, . (This is a disjoint union.)
Then define a new row of A to have a 1 in column (4, j) for each (i,j) € E¢ and a 0 in all other columns.
In this manner define one new row of A for each cycle C appearing in p,.. This completes the construction
of A; it has one row for each cycle in each of the permutations py,...,p,. Clearly, A is the matrix of the
boundary operator from the 2-chains to the 1-chains of X, since each cycle in each p; corresponds to the
boundary of a 2-cell.

Step 4: The purpose of step 4 is to choose a subset of the set {u;;} which will actually be a basis of H;(X).
Before describing the algebra, we give a geometric description of this process. First remove a 2-cell from
Y. (This corresponds to deleting one row of A.) This does not change the homology of the surface. Next
perform a sequence of elementary collapses on the remaining surface as follows. Choose a 1-cell which is in
the boundary of the now-punctured surface but is not in the tree 7T'. This is a “free edge,” i.e., it is contained
in the boundary of only one 2-cell. The removal of this edge together with the 2-cell in whose boundary it
appears constitutes an elementary collapse and does not change the homotopy type of the remaining surface.
(The algebraic version of this process will be the removal of a row and a column of A.) Continue to perform
elementary collapses in this manner (never collapsing edges in the tree T') until there are no remaining 2-cells.
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The generators corresponding to those remaining edges which are not in T are then seen to be a basis of
H,(X). Meanwhile, note that each time we perform a collapse we express the generator being eliminated
in terms of the remaining generators using the relation which corresponds to the boundary of the collapsed
2-cell. Thus once we are finished we have produced a basis and we have also expressed all of the generators
{u;;} in terms of that basis.

We now give a strictly algebraic description of Step 4: Delete the columns of A indexed by those pairs
(i, ) for which w;; € T. Delete one row of A (it doesn’t matter which one). Call the resulting matrix B, and
perform the following procedure on it. Find a column of B containing a single 1 (so that all other entries in
that column are 0). Eliminate from B the row and the column containing that 1. Note that the deleted row
gives a relation which enables us to express the generator corresponding to the deleted column in terms of
the generators corresponding to the other 1’s in the deleted row. Hence the generator corresponding to the
deleted column is superfluous, which is why we delete it. (It is worth stopping to record the expression for
this generator in terms of the others — this expression will be useful in the ensuing computations.) Repeat
this procedure (finding a column with only one 1 and then deleting the corresponding column and a row)
until there is only one row remaining. Denote by S the set of those pairs (i,7) which correspond to the
remaining columns of B. Choose a pair (ig, jo) € S such that the entry indexed by (ig, jo) in the remaining
row of B is 1. Let S = S — {(io,jo)}- Then the set {u;; : (i,5) € S} generates m; (X,1) (note that the
basepoint is the point of the fiber labelled “1”); in fact it freely generates the fundamental group of ¥ with
one puncture (to be precise, of ¥ minus the disc corresponding to that row of A which was deleted when
producing the original B). Thought of as homology classes, this set of u;; also provides a basis of the free
abelian group H; ().

3. Examples

In this section, we work out two examples of the constructions made in the first two sections. In the first
example, a double branched cover of S? (i.e., hyperelliptic curve), there exists a nontrivial automorphism of
the cover; as the theory predicts, our efforts to extract from this situation a representation of the spherical
braid group don’t work, and we show the reader precisely what “goes wrong.” In the second example, a
branched cover with no automorphisms, we run through the entire procedure outlined in sections 1 and 2,
and arrive at an interesting representation of an index 12 subgroup of the spherical braid group.

Example 1. Hyperelliptic surfaces. We consider the hyper-elliptic curve for which n = 2 and the
genus is T2;2 where r (an even number) is the number of branch points. In this case, the moduli space H is
simply (($%)" — A)/S,, instead of some nontrivial cover of it, the signature is simply {(12), (12),...,(12)},
and 71 (H) is the entire spherical braid group B,(S?). To apply the algorithm from section 2, we choose a
maximal tree consisting of the single edge wy1. Our algorithm then yields the r — 2 basis elements (for Hy (X))
given by uso = wiw2,Uzz = W1W3, ..., Ur_1,2 = W1Wr—_1, and the relations u11 = w12 = 0 and u;; = —u;e for

2 <i<r—1. It is then easy to compute the action of ()q,...,Q,—1 on the basis as follows:
Q1(u2e) = Q1(wrws) = wzwglwlwz = w21w§11w11w22 = u22

Q1(Uz’2) = Ql(wlwz’) = WaW; = W21Wi2 = —Ua2 + s for i > 2.
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(To help the reader see what we’re doing here, recall that to express a word in the w;;’s in terms of the
basis elements we (1) replace each w;; by w;;, and (2) apply the relations among the u;;’s given above to
express it in terms of the basis elements. In this last step, we also change from multiplicative notation to
additive notation to emphasize that H,(X) is abelian.)

Similarly, we compute the action of Qs,...,Q,_1 on the basis to obtain the matrices:
1 -1 ... -1
0 1 o ... ... ... ... 0
Qi— |0 0 r 0 ... ... ... 0|,
0 O 0 1
I, 0 0
0 -1
Qz' — 0 (1 9 ) 0
0 0 I 2
forl<i<r—1and .
Ir73 +1
Qr—l — -1
0 +1

The careful reader will now ask, “But how can a representation of the braid group be obtained, since
there is a nontrivial automorphism group Z, and hence no bundle space?” To address this question, note
that when calculating the action of the @);’s on the basis elements we made a hidden assumption, since after
applying the relevant braid, there are actually two ways of identifying the resulting Riemann surface with
the original one; the two ways differ by the nontrivial automorphism that interchanges the two leaves. An
easy exercise shows that this automorphism acts on H; (X) by —Id. Hence each of these matrices is only
well defined up to a sign. The reader may verify by direct computation that these matrices (as computed)
do satisfy the planar braid relations Q;Qi1+1Q: = Qi+1Q:Qi+1 for all i and Q;Q; = Q;Q; for |i —j| > 1. But
when we plug them into the word Q1Q2---Qr_1Q-—_1 - - @1, we obtain —Id; hence they do not satisfy the
last relation required of the spherical braid group. Since each @); appears twice in this word, the situation
cannot be remedied by changing the sign of one or more of these matrices. Hence our attempt to build
a representation of the spherical braid group in this case is stymied, as the theory predicted it might be
(because of the existence of automorphisms). To get an actual representation, we would have to use as our
domain a certain Zs-extension of the braid group as indicated in section 1. Note that the representation of
the planar braid group we constructed here is identical to the one constructed by Arnol’d in [A]; it arises if
we restrict the branch points from passing through oo.

Our second example is a branched cover ¢ : ¥ — S2? with no automorphisms (i.e., no self-
homeomorphisms of ¥ covering the identity on S?). We calculate the subgroup of the braid group and
its representation on H;(X) as described in section 1. In order for the corresponding representation of the
subgroup of the braid group to be non-trivial, we choose a covering for which Aut(¢) = 1 and genus(X) is
nonzero. The example we choose is a 3-to-1 cover of S? branched over a set X = {z1,Z2, 3,74} of four points
with branching data over these four points given by the signature. (p1, p2, p3,p4) = ((12),(23), (132), (132)).
To be precise, for each i = 1,...,4 let w; denote a based simple closed curve in S? enclosing x; but excluding
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the other elements of X. Then 71(S? — X) = (w1,...,wslwrwawsws = 1) = F3 = the free group on any 3
of these generators. Our branched cover is defined by the homomorphism p : 71 (S% — X) — S3 which takes
each w; to p;. By the usual Hurwitz formula, we see that genus(X) = 1. The fact that Aut(¢) = 1 for this
example follows from the fact that the subgroup of S3 generated by the p; has trivial centralizer (actually,
it is all of S3 in this case).

We begin by calculating a basis for H; (¥) using the procedure outlined earlier. As our maximal tree,
we choose wy; and wis. Our procedure then yields generators w1_21w22 and 11)1_21’11]3211)1_11 as generators of

m1(X,1); the images of these elements give a basis of Hy(X).

We will now construct the Hurwitz space H (resulting from X) as a cover of Il = ((S?)* — A)/S,. Recall
that G = {f € Aut(S?) : f(X) = X} and Gy = the identity component of G. Let

M4(S%) =G/Go

By isotopy extension, there is a (surjective) map B4(S?) — M,(S?) (extend the isotopy of X to all of
S?; then, look at the final homeomorphism of the isotopy); the kernel of this map is the center of B4(S?), a
subgroup of order 2 whose generator we described above (for a proof see [B], p. 165). Given an element @
of B4(S?), we will use the same symbol for the corresponding element of M4(S?). We wish to describe the
“points” of H lying above [X] € II. Such a point will correspond to a branched cover ¢' : ¥’ — S2. These

two branched covers will be related to each other by the commutative diagram

F
x oy
¢2 o iz
s % S

where F'is a homeomorphism. We wish to describe ¥’ by giving its signature (pi, ..., p}), where p'(w;) = pj.

To do this, we note that @ induces a map Q. : 71 (S? — X) — 71 (S% — X) and for the map F to be defined,
we must have p = p' 0 Q,, i.e., p' = poQ,*. (Of course, we could conjugate this p' by any element of S3 and
obtain an equivalent branched cover.) Thus to describe these branched covers, we need to write down the
action of B4(S?) (with generators {Q1,Q2,Q3}) on 71(S? — X), (with generators {w1,ws,ws,ws}). This
action is given by the well-known formulae:

Qi(w;) = wit1
Qi(wit1) = w;rllwiwzurl
Qi(wj) = w;j for _] 75 Z,Z + 1.

It follows that if, for example, Q = Q; € B4(S?), then the signature of the corresponding ' is given by
(P4, P, Phs P4) = (p1p2pyt, p1, p3, pa), and similarly for the other ;. This gives us an action of B4(S?) on
the set of signatures (actually an action on the set of equivalence classes of signatures where two signatures
are considered equivalent if they are conjugate by some element of S3). To enumerate the points of H lying
above [X] € II, we begin with the original signature ((12), (23), (132),(132)) and repeatedly apply Q1, Q>
and @3, each time checking whether the resulting signature is equivalent to any of the ones we’ve already
enumerated. Eventually we arrive at a set of signatures which is closed (up to conjugation in S3) under
application of all of the ;. In this case we obtain the following 12 signatures:
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The reader may check that applying any @); to any of these signatures produces a signature which is
equivalent to one of these and that no two of these are equivalent. So each @); acts as a permutation of these
signatures. These permutations are given as follows:

Q. = (BCFH)(EGIK)

Q2 = (ABDF)(GJKL)
Q3 = (BEFI)(CGHK)
The reader may also check that these three permutations generate a transitive subgroup of Sis.

By identifying the 12 points of H lying above [X] € II, and showing how the generators of 7 (II) permute
these points, we have described completely the covering space H — II. By the theoretical considerations
of the first section, we know that there is a fiber bundle U with fiber ¥ and base H, and a resulting
representation of 71 (H) on H;(X). To calculate this representation, we must first find generators of w1 (H).
We choose the “point” in H corresponding to the signature C as a basepoint. Then 71 (H,C) is identified
with the subgroup of B4(S?) which fixes C. To identify generators of this subgroup, we use a procedure
rather analogous with the procedure in section 2 we used to calculate generators of m(X), although in this

case we use the unbranched cover H — II instead of the branched cover ¥ — S2.

We construct a 2-complex K with one 0-cell, three 1-cells (which we call g1, g2, and g3, corresponding
to the generators of B4(S?)), and four 2-cells which are attached according to the relations Q1Q3Q; 1Q; 1

QlQQQlQZ_IQl_lQQ_I, Q2Q3Q2Q3_1Q2_1Q3_1, and Q1Q2Q3Q3Q2Q1. We form the 12-to-1 covering space K

of K corresponding to the stabilizer of the point C' in the homomorphism B, (S?) — Si2 given above.

Note: In order to arrange that the action of B4(S?) on {4, B,C,..., L} is from the right instead of the left,
we let each ¢; act on this set as Q;l
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We label the 0-cells of K by A, B, C,...L, and denote by ¢;4 the lift of ¢; starting at A, by ¢;p the lift

of ¢; starting at B, etc. We choose as our maximal tree in K the set

T= {(hB,q1c;th,Q237Q2D,(I2K7Q2L,(I3B,(I3C,Q3E,(I3G}-

Using C' as our basepoint, we obtain 25 generators of 7 (H), one for each edge of K not included in our
tree. Note that K has 48 2-cells. We may reduce the number of generators of m; (H) using the 48 relations
arising from these 2-cells. We give an example to show how this works. The edge g14 ¢ T Since (A)q; = A,
the generator corresponding to ¢14 is u14 = aaq: Aazl where g4 = qi1cgep is the unique simple path in T
from C to A. Now consider the lift of g1g3q; 1q3_ ! starting at C. It is q1¢93B4 qu;é and corresponds to the
attaching map of a 2-cell in K. Since qic, ¢sp and gsc are in T, this 2-cell induces the relation u1x = 1 in
m1(H), enabling us to throw out this generator. Using 22 of the 48 relations in this manner, we are able to
reduce the number of generators from 25 to 3. (In most cases, the relations don’t kill generators directly, but
express one in terms of some remaining ones, enabling us to eliminate one.) For the reader’s convenience,

the following table lists the 22 2-cells we used and, for each, the generator it eliminated.

2-cell boundary generator eliminated
GeBBY KT U1K
QGePBEGE G e
QCWRBUALBTC o U1 A
“DpEDNBL Y 5% u1D
©DBBRIGEL DD Uy
NEBEDRBGAL Y U2E
QBBH G p Usg
(I1EQ3K(11_§ l];:,_bl UK
6111“13(7'1@%613714l U3F
NIBce R uir
GFRohotpdplar e
BCIBCPK Y Gl usJ
BeBLELGE T 50 e
Q1 BP2HY3HI3G2Cq1C Uusr
q1C92BY3Aq3AqQ2Aq1F U2A
N1J9279B3GBCRK1T U2J
QBLHUHG A A G U1y
QLRLOKSGT Girder ULL
BECKUI DGR D plepn urg
©BIAPRAGT G G5 U3p
%F%D@D@é@é@ﬁ UlE
NePENESG] 61 S usL

The three remaining generators of w1 (H) are
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-1 —1

U2F = QF@2FQp = q1FQ2F42DYq; ¢
_ 1 _ -1 -1
U2H = CHQPHOy = 1ciB92HY 8% ¢

1 -1 -1
U3A = QXAQ3AQ s~ = q1092B93AY92 591

Expressing these in terms of the original @;’s (and inverting them) produces the following three gener-
ators for the image of m (H, C) in B4(S?):

Q1Q72Q1,Q7Q2Q77, and Q1Q2Q:Q5' Q7"

Our next task is to calculate a basis for Hy (X¢) (using the algorithm of section 2), and then to calculate
the action of the above generators of 71 (H) on H;(X¢) in terms of this basis. The signature of ¢ is
((132), (12), (23), (132)). As a maximal tree in T', we select {w;1,w12}. For each w;; not in the maximal tree,
we obtain a generator u;; for Hi(X¢). The remainder of the algorithm yields the fact that {uss,us2} is a
basis for H;(X¢). To be precise, the curves in X corresponding to the basis elements are usy = ’11)1_21’11)22
and ugy = w1_21w32w1_11. The images of these elements in 71 (S? — {x1, T2, T3,24}) are simply ugy = wl_lw2
and ugs = wy 1w3w1_ ! In addition, the algorithm expresses the other 5 generators in terms of this basis as

follows:

U1z = 0
U21 = —U22
U23 = 0
U3zl = 0
U3z = —U32

To calculate the action of one of our generators @ of w1 (H) on H;(X¢) we proceed as follows. First,
calculate the map F, : Hi(X¢) — H;(X{,) defined by the diagram

e Bz
¢2 o ¢2
52 9 g

where we are thinking of @ as an automorphism of S? which fixes the set {z1,z2,%3,74}, and the map

induced by Q on 71 (S? — {1, %2, 73,74}) is defined in terms of the generators @; by
Qi(w;) = wiyq
Qi(wit1) = wi i wiwit
Qi(Wj) = w;j for ] 75 Z,Z + 1.

The signature of the Riemann surface X, is calculated using the action of B4(S?) on the set of signatures

described on page 11 above.
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Next, since @ stabilizes the cover ¥c — S? up to equivalence, the signatures of ¢ and X, are
conjugate by an element v of the symmetric group Ss. This permutation «y gives us an identification of these
two branched covers, and hence a map H;(2;) = Hq(X¢). Composing this map with F} gives the action
of Q.

We now carry this out for the generator Q = Q1Q5 2Q,. Applying Q to the signature C gives the
signature ((132),(23), (31),(132)) for £7,. Since @ is in the stabilizer of C, these two signatures must be
conjugate by an element of S3. The conjugating permutation is v = (123), which induces an equivalence
between X and X(,. It is natural to use this equivalence to transport the computations we have made on
Y¢ directly to ;. Applying v to the second subscript of each symbol and adding bars everywhere yields,

for ¥}, the maximal tree {Wi2, W13}, the basis Gag = 11‘)1_311623 and 33 = 1171_31117331171_21 for H1(X{,), and the

expressions
11 =0
Uy = —U23
91 =0
U3z = 0
U3y = —1U33

for the other natural generators. Using the formulae given just above, we calculate the effect of @ on

7T1(S2 — {$1,$2,$3,$4}) to be:

Q(w1) = Q1Q3°Q1(w1) = Q1Q5*(w2) = Q1Q5 " (wawswy ") =

-1, -1 -1 -1 1 -1 1
Q1(wawzwawz w3 ) = Wy WiWaW3Wy  WiWoW; Wy Wi Wa.

Similarly, we obtain

-1 1 1 -1, -1, 1 -1 -1 -1 1
Q(w2) = w3 W Wow3w5 W] WoW3 Wy Wi WaWiWaWsWy WiWaWs Wy Wi Wo

and
Qwsz) = w;lwlwgwgwglwflwg.

We calculate the effect of @ on use and uss, the basis elements of H; (X). Using the images of these in

m1(S? — {z1,2 — 2, 73,74} We compute:

Q(u22) = Qwy 'wy) = wy 'wiwawswy 'wi  wawy wy M wi M ws-

-1 -1, . —1 -1, -1, —1 -1 -1, -1, -1
Wy WW2W3Wy W; WoWg Wy Wy WaW1WoW3Wy W1WoW3 Wy Wy W2

-1 -1 -2 -1, -1 -1 -1 -1, -1 -1
=Wy WWW3Wy Wy WaW3 Wy Wy WWIW2W3W,y; WIW2W3 Wy Wy W2.

To compute F;(u22), we need to lift this element up to X{,, which involves inserting a second subscript
into each generator using the signature obtained by applying @ to C. The resulting lift is:
e T T I L [ I J J,
Wy W11W23W32We3 Wiy Wiy W22W31 Wy Wiy W22W13W22W33We ) W11 W23W3y Wog Wiy W21-
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To express this in terms of the generators 23 and u33, we first drop the edges w2 and w3 which lie in
the maximal tree, then replace each w;; by the corresponding generator #;;, and finally apply the relations
expressing each of these in terms of the two basis elements. The result is that Fl(uss) = @y 123, where the
order of the factors doesn’t matter since H; is abelian. We identify this element with an element of H; (X¢)
(using the equivalence between the branched covers Lo and X,) by replacing each second subscript using
the inverse of the permutation «y. The result of this computation is that under our representation, () takes
s t0 Uy uZ,. We make similar computations to calculate the action of ) on uss, and then to calculate the
action of @, for @) equal to the other two generators of m; (H), on the two basis elements of H; (X¢). The
results are as follows:

Q1Q5°Q1 — (_23 _11>
o= (73

@00 e - (1 1)

Note that the first of these is hyperbolic (hence of infinite order), the second is parabolic (hence of
infinite order) and the third is elliptic, of order 6. The fact that these elements generate an infinite subgroup
of SL(2,Z) is of interest for the following reason. Let M; denote the moduli space of Riemann surfaces of
genus 1. Following Fried [F2], there is a map ¥ : H — M, defined by taking the branched cover (X — S?)
to the point [X]. Fried points out that this is an algebraic map, and considers the problem of computing
the dimension of its image, which is a subvariety of M,. Part of Theorem 3.6 of [F2] states that, for g =1
or 2, the image of the monodromy representation of X — S? is a finite subgroup of Aut(H; (X)) if and only
if the map ¥ is constant. In the case we have been considering, this theorem tells us that ¥ is not constant,

and, since dim(M,) = 1, we conclude that the image of ¥ is a Zariski open subset.

Note: The current authors are preparing a joint paper with Mike Fried in which similar techniques will be
used to show that a generic genus 1 Riemann surface admits an analytic map to S? with monodromy group
Ay, for any n > 4. This will answer a question of Guralnick and Neubauer in [GN], p. 328.
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