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Abstract: We prove a formula for the values of the automorphic L -Function
L(r ® x,k), m a cuspidal representation of GL,(A) , as the character x varies. In
the case of the group GLs this formula coincides with a classical formula of A. Weil.
If m has non-trivial cohomology, this formula has an expression in the cohomology
of symmetric spaces and can therefore hopefully be used to prove the algebraicity of
special L -values (cf [ A | for the case GLj3 ) or to construct p -adic L -functions.

1 Introduction

Notations. We denote by A the Adeles of @ and by A(n) := A(GL,(Q)\GL,(A))
resp. Ag(n) := Ao(GL,(Q)\GL,(A)) the space of automorphic forms resp. cusp
forms on GL,(A). By a: Q"\A®" — C* we denote the character, which sends an
idele z to its norm «(z) := |z| and 7 : Q\A — C* denotes the additive standard
character. Finally by Ko(n — 1, f) < GL,_1(Z,) we denote the subgroup of k =
(kij;) € GLp—1(Z,) with k,—1; =0(f),i <n—2 and by B < GL,(Z,) we denote
the Iwahori subgroup consisting of all elements k£ € GL,(Z,) which are congruent to
an upper triangular matrix mod p. Finally let e € GL, be the unit matrix.

Let 7 be a cuspidal automorphic representation of GL,(A). We let p > 2 be a
prime number and assume that the p-component 7, is unramified. Let L(m,s) =
[T L(mg, s) denote the automorphic L -Function attached to .

We are interested in the values L(7m ® x,s) for fixed s (e.g. s € IN a critical
integer), as the character y : Q*\A* — C* runs over all characters of finite order with
conductor f = f, = p® e € IN an arbitrary p-power and fixed infinity component,
i.6. Xoo =SgN O Yoo = id.

Our interest for this comes from proving the algebraicity of special values of L -
functions and from p -adic interpolation of special values of L -functions.

To examine the values of the L -Function, we prove an integral formula for L(7 ®
X,S) (modulo some factors, which are constant in x ) as the character x runs as
above. The idea is as follows:

We let o(x) := Ind(xa*!,a*?,... ak*-1) be the unitarily induced representation.
The theory of Eisenstein series provides an embedding

Eis: o(x) — A(n—1)

(of course one has to convince oneself that the analytic continuation of the Eisenstein
series has no pole at o(x) ). Then, the Rankin-Selberg convolution L(m X o(x), s)
attached to the pair of automorphic representations 7 X o(x) decomposes into the



product
Lrxo(x),s)=L(r@x,s+ki) [I L(m s+k)
1=2,...,n—1
(cf. [J-P-S 1], (9.4)). Since the factors L(m,s+ k;),i=2,...,n—1 are constant in
X Wwe may use the zeta integral of the Rankin-Selberg convolution

1(¢, B, 5) = /

g . .
GLn—1(Q)\GLn-1(A) ¢(< 1>)E(g)‘ detgl*dg ¢ € Ao(m), B € Eis(0(x))

to derive an integral representation for the value L(m® x,s+k1) . Here, by Ay(m) we
understand the space of automorphic forms belonging to 7 . The problem is therefore
to find automorphic forms ¢, € Ay(w) and E, € Eis(o(x)) such that I(¢y, Ey,s)
equals L(m X o(x), s) -

2 A formula for the twisted [ -values

Let ¢ € Ay(m) resp. E, € Eis(o(x)) be automorphic forms with Whittaker functions
w = @uwp € W(m,7) resp. vy, = @y € W(o(x), 7). (W(m, 1) =W (ny,7,) and
W(o(x),T) = QW (o(x)e, 7e) denote the Whittaker modells of 7 and o(x).) Then,
the zeta integral decomposes into the product

I(¢’ Ex’ 5) = H I(wf’ Ux, 05 5)’
l

where

I(we, vy 0, ) = /

9 s—1/2
We vye(g)| det g dg
N1 (@)\GLn-1(@) (< 1>) xe(9)] det gl

denotes the local zeta integral, and we have to choose ¢, E, such that

(*) I(wla Uy ,l5 S) = L(’ﬂ'[ X U(X)Ka S)
holds for all places £ .

We start by choosing E) , i.e. we have to choose a section ¢, = ®t), s € o(x) =
®50'(X)g .
(1) If £+ p,00, then o(x), is unramified and we let 1, , be the spherical function
normalized by v, (e) =1.
(2) If £ =p we define 1, , to be the essential vector in o(x), . This implies by
definition, that we have

Vxp(9K) = Uxp(9)Xp(kn-1,n-1) for g€ GLn—l(Qp)’ ke Kon—1,f).



Denote by w the matrix

Then 1, ,(g) reads as follows:

e Xp(bl,l) Hz ap(bi,i)ki61/2(b) Xp(kn—l,n—l) for g = bwk? be Bn—l(Qp)a ke K()(TL - 17 f)
Ve (9) = 0 else

(3) At infinity we use cohomology to define 1), -

Next we choose ¢, i.e. we choose the Whittaker function w = ®w, € W(w,7) of

o .
(1) If £# p,00 we define w, to be the essential vector in W (my, 7¢) .

;From Théoréme (4.1) in [J-P-S 2] we immediately deduce that with this choice (*)
is fulfilled for all places ¢ # p, 0 .

(2) If ¢ = p the construction of a Whittakerfunction w, € W(m,,7,) such that
(*) is satisfied now relies on the following Lemma.

Lemma. Denote by w; € W(mp,1,) a Whittaker function which is invariant on
the right by the action of the Iwahori subgroup B < GL,(Z,) .. Let €1,...,6n1 € 7,
be p -adic units and set €, := 1. We define the Whittaker function

1 ui,j

wsl,...,sn_l(g) = Z Z H Tp(_gt_lgt—lut—l,t) w; g ,

i>J ;€ f U=t By t=25e05m0 1

where i and j run over i € {1,...,n—1} and j€{2,...,n}. Then, we,, ., ,
satisfies the following properties:
( g to the

(a) Denote by we,,. . , 1)),9 € GL,1(Q,) the restriction of w,,,

subgroup GL,_1(Q,) of GLn(Q,). Then we have

En—1

support e (7)) € Nuet(@) Koo

where

Kgl’___’gnil(f) = {k‘ = (k,"j) - GLn_l(Zp) : ki,i =¢g; (f), ki,j =0 (fi_j_H) forz > ]}

0
T (Y [ | L I A T )
h

=2,...,n



(i.e. wsl,,,_,gn1(<k 1)) is independent of k€ K., . .. ,(f).)

We now define

wp(g) = Z X;:l(gn—l) wEl;---;En—l(g)'
61,...,En_1€(%/f%)*

This implies

support(up(* 1)) € Nos @)U, gy Koo (1) © s Q)G (),

and
k
wp(< 1)) = wp(e)Xp(kn—l,n—l) for ke U Ksl,m’gnil (f)
51,...,67,,,16(%/]'%)*

It is immediate by the properties of 1, , and w,, that

7777 En—1

I(wp, vyp, 8) = vol(K1,..1(f)) vyp(e) w;(e) [

Since we have

L(mpy ® 0(X)p, 8) = L(m, ® Xp, s + k1) HL(Wp, s+ k;)

and L(m, ® xp, s+ k1) =1 since 7, is unramified, we see, that (*) is fullfilled for the
place p too (modulo some factors).

On the other hand plugging in the definition of w,,
becomes

_____ en_. the expression for w,

1 wu/p Ui j

wy(g) = G(xp) f~ Z Xp(€)0(u;) Z Z w117 g o Upa/p

e(z/fm)* g ;e f=Gi—D)
EuiEZ/pZ j>i+l ulaJef %P/%P

where 0(u;) == X e@m/pmy To(Yui/P) , ie. O(us) =p—1 if u; € pZ, and §(u;) = —1
if u; € pZ,. Thus, if we define ¢' € Ay(n) to be the cusp form belonging to the
Whittaker function w = ®zw, ® w' and specialize s = 1/2 we finally get the
formula

Proposition. For all characters x # id as above the value L(m ® x, k1 + 1/2)
reads



L(m ® x, k1 + 1/2) = some factors - Po(1/2) - Y _ > Xp(€)8(u;)
i wijef-G—Dmym,
Up,..ey Uy _o€Hhp [pHhp, c€ (L] fHE)*

1 ui/p Ui,

'y o
/GLn-mQ)\GLn_l(A)d) ( 1) “ Un—2/p E\(9) dg.

e/f
1

p

Here, Py € C[T] is a polynomial, which comes from the choice of the factors of w =
®uwe and v = Ry at infinity (which does not satisfy (*)) and z,, v € GL,(Q,)
denotes the embedding of x into the p -component of GL,(A)

Example. We want to look at the formula of the Proposition in the case of GLs .
Here the crucial identity for the local zeta integral at the prime p, which has to be
satisfied, reads

a *
I(wp, Xp, 8) = / w,,(( 1>)Xp(a) d'a=L(r® xp s) =1.
p
This is fulfilled (modulo certain factors, which are constant in x ) if we set

pr we(

and again plugging in the definition of w, we find

wp(g) = F7G0G) Y x(-Dw (9(1 i/1f>)-

ic(Z/ f2)*

This is now completely analogous to A. Weil’s formula for the twist f ® x :=
Y anx(n) ¢ of a modular form f =3 a,¢", which reads

feox=7r"6x) Y. x'Wf(z+u/f).

uEL/fZ

This formula was used by Mazur, to construct p-adic L -functions for classical cusp
forms on the upper half plane.

Remark on the Lemma. (a) The existence of a Whittaker function satisfying
the above properties follows from Proposition 2 resp. Theorem F in [Gel-Kaz] and we
used the idea of their proof to construct we, ..,
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(b) The proof of the Lemma is by induction. In fact the Lemma follows from the
following Lemma’, which can be proven by induction on & € {2,...,n —1}.

Lemma’. Denote by w; € W(mp,1p) a Whittaker function which is invariant on
the right by the action of the ITwahori subgroup B < GL,(Z,) . Let €y,...,e51 € %,
be p-adic units (k <n—1 ). We define the Whittaker function

1 U@j

Wer,.e-1(9) 1= Z Z H Tp(_sglst—lutq,t) w' | g
©>5 e f ULy Ly =250
1n7kxn7k

where i and j run over i € {1,...,k —1} and j € {2,...,k}. Then, we,,. . _,
satisfies the following properties:

9

(a) Denote by we,... 0, ( ) 9 € GLi_1(Q,) the restriction of w,,,...,_, to the

1
subgroup GLx_1(Q,) of GL,(Q,) . Then we have

Support wEl,...,é‘k_1(<g 1)) C Nk)—l(Qp) ) KEl,...,Ek_l(f)

where

Keyoos()i={k= (ki) € GLy 1(Zp) : kiy =& (f) ki =0 (f779T) fori > j}.

(b)
wgl,...,sk1(<k 1) = I M D2we) forke K., . (f)

h=2,...k

3 The relation to the cohomology of symmetric
spaces

We now explain, why this formula has an interpretation in the cohomology of symmetric
space of GL,(IR). To this end we have to assume, that 7, and o(X)s have non-
trivial cohomology; for o(x) this is a condition on the numbers k; . For n € IN there
is only one generic representation p, of GL,(IR) with non-trivial cohomology (cf.
[Sp]) and from [Sp, Thm. 4.2.2] or [Cl, Lemme 3.14] we deduce

H'™(gl,, SO, (R) Z;(R), p,) # 0 for i(n) = { (n—1) /(QRJ{Z(); —1)2/4 ff((); Zeovcfcril



Let wy, € HX (S, C)(rs) resp. w, € H® (S, 1,C)(o(x)s) be the differential

cusp
forms attached to w', and 1, via the embeddings

W(Tff, Tf) — Hz(n)(gn’ (D)

and . 3
o(x)r — Hin=1) (Sp-1,C).

where S, = limS,(K) and S,(K) := GL,(Q)\GL,(A)/SO,(R) ZX(R)K, K <
GL,(Z) . Since i(n) + i(n — 1) = dim GL,_1(IR)/SO,,_1(IR) the integral occuring
in the Proposition can be expressed using Poincaré-duality as a sum of terms of the
form

et ) wre. ven)

The algebraicity of the L -values would now follow from the fact that the 7 resp.
o(x)s isotypical components of the cohomology groups are defined even over a number
field E/Q. Indeed, by [Cl, Théoreme 3.13] we know that the representation =, is
defined over a number field E/Q we get an embedding

/GLn_l (Q)\GL,—1(A

W (s, 75) — H™(S,, Q)

which is defined over @ . For non-cuspidal representations of GLy(A) it is proven
in [Ha 1, Theorem 2] (cf also [Ha 5] for a discussion for general n ) that the above
injection is defined over @

(+) o) = H" 7V (S,-1, Q).
(cf. [ A] for the details in the case GLj3 and the definition of the @ -subspaces.)

Thus assuming (+) and Q(7) := P (1/2) - some factors # 0, the formula of the
Proposition would imply:

There ezists a period Q(m) € C* such that

Lir®x, ki +1/2) -
Q(r) € Q.

1s an algebraic number for all characters as above.

Remark. (a) For cuspidal representations of GL3(A) with non-trivial cohomol-
ogy this is proven in [ A], Cor. 3.3 using the method of comparison of intertwining
operators, which goes back to G. Harder (cf. [Ha 2]) and which does not need an
explicit formula as above for the values of the L -Functions. Moreover, the proof given
in [ A ] generalizes in a straight forward manner also to the groups GL, (even witout
assuming 7, unramified).

(b) However, it seems likely, that using (an improvement of) the formula in the
proposition one should be able to construct p-adic L -Functions interpolating the
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automorphic L -Functions on GL,(A) (in the case GLy(A) Weil’s formula has been
used by Mazur to contruct p-adic L -Functions; see below for the case GL3(A) ).

We finish by suggesting the choice of o(x), distinguished by the cases n is even
or odd. By D; we understand the discrete series representation of GLy(IR) of lowest
weight i+ 1. We have D; C Ind(a/2, /%) .

o0

3.a m a cuspidal representation of GL, with n even. In this case we
assume that 7 has infinity part

Teo = Ind(D1, D3, ...,Dy_1),
i.e. 7 has non-trivial cohomology (cf. [Sp] or [Cl]). We fix the infinity part of x to
be X0 =id.
We choose o(x) to be
o(x) = Ind(x, o', a7, Idots, anTJ, a’nT).

Then o(x)s contains the representation

Ind(id, Dy, Ds, . . ., D_2) C 0(X)oos
which has non trivial cohomology. The Rankin-Selberg convolution then factors as
L(r®o(x),1/2) = L(r®x,1/2)L(r,3/2)L(m,—1/2)-...-L(m, (n—1)/2)L(m, (3—n)/2)
and the Proposition would yield the algebraicity of the value

L(mr®x,1/2)

am <@

as x runs over all characters with infinity component y.,, =id .

Remark. (a) s=1/2 is critical for 7 ® sgn in the sense, that neither L(7,s)
nor L(me,1 —s) have a poleat s =1/2.

3.b 7 a cuspidal representation of GL, with n odd. Let n: Q"\A* — C*
denote an idele class character with conductor f, = p and infinity component 7, =
sgn , i.e. 1 corresponds to an odd Dirichlet character of 7Z/pZZ .

In this case we assume that 7 has infinity part
Teo = Ind(id, Dy, Dy, ..., Dy, 1),

i.e. 7 has non-trivial cohomology (cf. [Sp] or [Cl]). We fix the infinity part of x to
be X0 =1id.
We choose o(x) to be

o(x) =n@Ind(xa/?, a2 ... a7 ;a7 "7).
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Then o(x)s contains the representation
Ind(Dla D3a R Dn72) C U(X)ooa

(note that sgn ® D; & D; ) which has non trivial cohomology. The Rankin-Selberg
convolution then factors as

L(r®0c(x),1/2) = L(w@nx, 1) L(7@n, 0) L(7®n, 2)-. . .-L(7®n, (n—1)/2) L(7®n, (3—n)/2)
and the Proposition would yield the algebraicity of the value

Lim®nx,0) -
om <

as x runs over all characters with infinity component y.,, =id .

Remark. (a) s=0 and s =1 are critical for 7 ®@sgn in the sense, that neither
L(mo @ sgn, s) nor L(7s ®sgn,1 —s) have a pole at s = 1/2. They are related to
each other by the functional equation s+ 1—s.

Finally we want to give an application to p-adic interpolation on GL3(A) . Let 7
ba a cuspidal representation of GL3(A) with infinity component 7., = Ind(id, D;) ,
where | € 27 . Let n: Q"\A® — C* be the trivial character if /2 is even and the
above defined character n if 1/2 is odd. We set

2 p_1 e—ay
E.pe(9) = v, (e)p~ I E, 9( ) '
v (9) =g o Q\; , (€) ( )

ay<e,voo=id

Here, f, = p® denotes the conductor of v . We define

e 1 p/f O
e+ fZ ;:/ 1 e E, . dg.
Hrle 4 T = Jon oo * ( 1) {f e &

p

Then p takes values in a fixed number field and satisfies the distribution relation

ple + f2Zy) = ap™ 3" (e +xf +pfZ,y).

z=0,...,p—1

(a € Q depends on 7, ) and the (critical) value L(7 ® xn,1—1/2) has the following
expression as an integral, which is an improvement on the above proposition.

L(m ® xn,1 —1/2) = some factors - / X, dps.
%p
To prove the boundedness of the distribution, we have to assume that 7 is p-ordinary,

which implies that « is a p-adic unit. Only under this assumption it is possible that
the following can hold.
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The values p, (e + fZy) := p*T2 u(e + fZ,) are contained in a finitely generated
77 -submodule of C .

This would imply the existence of the p-adic L -Function, which interpolates the
automorphic L -Function L(m @ xn,1—1/2).
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