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Abstract

Bernius and Blanchard of Bielefeld University in Germany have
conjectured the following polygon inequality: for any two set of vectors
&,..., &, and n1,...,mp in R™,

() YN =&+ D lm—mill < Y & —msll,

i<y i<j ,j=1

in the 2-norm and that, moreover, equality holds in (x) if and only if

there exists a permutation 7 on {1,2,...,n} such that n; = &), 1 =
1,...,n. We show that the fulfillment of (%) for any two sets of vectors
&,...,&, and m1,...,m, in a Banach space X and in the norm of that

space is equivalent to a condition on X due to Bretagnolle, Castelle,
and Kirvine which, when it holds, is equivalent to the existence of an
isometric embedding of X in a subspace of L1(€, i) for some measure
space (Q,p). Since it is known that for any 1 < p < 2, L,(0,1) is
isometric to L1 (2, u), the Bernius and Blanchard polygon inequality
follows. We continue by characterizing the case of equality in (x) for
X = L1(, ) and subsequently use this characterization to prove the
remaining part of the conjecture about when equality holds in (x) for
the 2-—norm.



1 Introduction

In the study of learning in artificial neural networks the following problem
has arisen, see Bernius [?]:

Given a set of 2n points in {—1,1}™, divide it into two parts of equal
sizes My = {&1,...&x} and Mo = {m1,...,nn} such that My “represents”
M> as good as possible. As an (also computationally convenient) measure of
the degree of representation , Bernius introduced the function

n
Hip = Y |l&—nill =D& =&l =Y llm — njll,
i i<y i<y

where || - || is the Euclidean norm in the real m—-dimensional space R™.

It was numerically observed that Hi2 > 0 and that H; o = 0 if and only
if My = Mo.

Starting from this observations, Bernius and Blanchard formulated in [?]
the following conjecture:

CONJECTURE (Polygon Inequality): Let &y,...,&, and n1,...,Mn
be vectors in R™. Then:

(i)
SE = &llz+ D Mm—mslla < D7 1€ — njlle- (1.1)

i<j i<j 1,j=1
(ii) Equality holds in (??) if and only if there exists a permutation m of
{1,2,...,n} such that n; = &), i = 1,...,n.

Two special cases of the conjecture were proved in [?]: m =1andn € N
and m € N and n = 2.

As usual, for any vector z = (z1 ... z,)7 € R™ and for any positive

number 7, we shall let
m i/r
z]lr = (Z vai|’> :
i=1



and we shall let £ denote the space of all m-vectors x = (z1 ... Ty,)7 of
real numbers with the norm ||z||,.

It turns out that the natural setting for Blanchard’s conjecture is the
space L1(Q, u) instead of a Hilbert space. In this setting, inequality (??) is
a special case of a theorem due to J. Bretagnolle, D. Dacuha Castelle, and
J. Krivine, [?, Theorem 2] which states that:

A Banach space X is isometric to a subspace of L1(Q2, i) if and only if
the function

Pz, y) = llz—yl
defined on X x X 1is of negative type, that is,

for every n > 2, every {#}" ; C X, and every real numbers
{pitie, with 350, pi =0, (1.2)
Yiizllzi — zillpip; < 0.

The connection between (??) and (??) (in the L;—norm) is established
in the following;:

PROPOSITION 1.1 Let X be a Banach space. Then (??) is equivalent
to the statement:

for every n > 2 and any collections {z;}7_; and {y;}7; in X,
(1.3)
Ya<ici<n (T —zill + llyi —y5l) < 3=z — ysll-

Proof: Assume (?7) and let {z;}7_; U {y;}7-; C X. Put z; = z; and
Znvi = Yi, t = 1,...,m. Let p = 1 for 1 <4 < n and let p; = —1 for
n < 1 < 2n. It follows from (?7?) that

2n
Z lzi — zjllpip; < O.
1,j=1

Hence

i1 Z?:l Iz — 2l + ?gnﬂ ?gnﬂ llzi = ]l
- 2u=1 E?Znﬂ |2 — Z]” - 122n+1 Z;'L:1 |2 — Zj” < 0.
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Consequently,

n n n
o Mz =gl + D0 My —wsll < 237 llai -yl

2,j=1 1,j=1 1,j=1

which is just (?7).

To prove the converse, note that we may assume without loss of gener-
ality that the numbers {p;}7_, are rational. Put
J— m;
pi = Fa
where N and m; are integers, and note that since >_;' | p; = 0, we have that
v im;=0.

1=1,...,n,

Continuing, given {z,}7_; C X, for each
n
1 <1< Z |ml|a
i=1

define
h—1 h
w; = zp if Z|m]| < i < Z|mj|
j=1 j=1

and let M =37 |m;|. Next define the sets

h—1 h
A = {1§1j§M| Z|mj|<i§2|mj|andph>0}.

and B={1,2,..., M} \ A. Because ) ;.; m; = 0 we have that

Al = 1B = 5

Put K = M/2. Using (??) with n = K, {z;}K, = {w;}jes and {y:}K, =
{w;}jcB we get that
Do i —will+ 37 llwi —wgll <20 37 flws —wjl. (1.4)
1,jEA 1,j€EB 1€A,jEB

Fixing 1 < h,k < n with pp > 0 and pg > 0 we see that, in the first sum on
the left hand side of (?7?), the equality

lwi; —wj|| = [lzn — 2| (1.5)



occurs mpmy, times. Similarly, fixing 1 < h, k < n with pp < 0 and p; < 0,
we see that in the second sum on the left hand side of (??), (??) occurs
mpmy times. Finally, on the right hand side of (??), if we fix h with pp, > 0
and k with py < 0, then the equality (??) occurs my|myg| times. It thus
follows from (?7?) that

> on 50,0150 120 = 2Zelllmallmu| + 32,5, <0,p,<0 120 — 2&ll[mn|lm

< 23, 50,p<0 120 — 2|l [mun |[mi|.

Dividing both sides by N?, we get the desired inequality that

n
> llzw — zllonor < 0.
hok=1

Theorem 2 of [?] and Proposition ?? yield:

COROLLARY 1.2 A Banach space X is isometric to a subspace of L1(S2, i)
for some measure space (Q, i) if and only if (??) holds.

The following are two examples of families of Banach spaces which can
be isometrically embedded in L;(£2, ) and hence satisty (?7):

EXAMPLE 1.3 It is well known that the space L,(0,1) with 1 < p <2
is isometric to a subspace of Li(0,1) (see Lindenstrauss and Tzafriri [?,
pp-212-213] and the references cited therein). Hence the inequality (?7?) is
satisfied in X = L,(0,1),1<p < 2.

EXAMPLE 1.4 Lindenstrauss proved in [?] that every two dimensional
space X is isometric to a subspace of L;(0,1). Hence (??) holds for every
two dimensional space X.

The next two examples help build intuition concerning the Blanchard
problem.

EXAMPLE 1.5 Let {u;};_; denote the unit vector basis of £, n > 5, let
e=(1,...,1), and put y; = e — 2u; and x; = u; for all 4 = 1,...,n. Then
llyi — z;|| = 2 and for all j # i, |ly; — z;|| = 1. Hence =1 lz: — y4|| =
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n(n—142) =n(n+1). On the other hand, ||z; —z;|| = 1 and ||y; —y;|| = 2
for all 1 <4 < j < n. Thus

Sicicien (lzi =zl +lyi —ysl) = -1 +n(n—-1) = In(n-1)
> n(n+1) = 332 lzi —yll-

EXAMPLE 1.6 Let X = /7 and let {z;}7 ; denote the unit basis of X.
Put y1 = (1,1) and y2 = (0,0). Then |z; — z2|| = 2 = |jy1 — y2|| and
|lz; —yj|| =1 for all 1 < 4,5 < 2. Hence

2
Y Nl =yl = llzs — @2l + llyr — w2l
i,y=1
but the sets{z;}?_; and {y;}2_,; are not identical.

The main purpose of this note is to discuss the second part of the polygon
inequality conjecture, namely, the case of equality in (?7?). First, in Section
7?7, we will describe exactly when equality holds in the space L1 (€2, ) and,
in Section ??, use this to prove this part of the conjecture in £3°.

2 The case of equality in L;(Q, u)

Our main tool in studying the equality case is the following:

LEMMA 2.1 Let s1 < ... < sy and t1 < ... < t, be any two collections
of real numbers. Then

n n
Dolti—sil < Do lti—sil— D (si—sil+lti—t). (21

i=1 i,j=1 1<i<j<n

Proof: We start our inductive argument with the case n = 2. We must
show that:

[t —s1|+|ta—s2| < |t1—s1|+[t1—sa| 4|t —s1|+[t2 — 82| —[s1— 82| — [t1 — 12|,
which is the same as showing that the inequality

|so — s1| 4+ |ta —t1| < [t1 — s2| + [t2 — s1]



holds. But this follows from s; < s9 and t; < t9 by checking. Let us pass to
the induction step. Suppose that (??) holds for n and let s; < ... < s, <
Spn+1 and t; < ... < t, < tpy1 be given. Assume without loss of generality
that tn41 > sp41- Then

n n
D ltner — sil = nltngr — sng1l + D [sn1 — sil-
=1 =1

It now follows from the triangle inequality that

it [t — sil + 35000 |sn1 — 6] =

\%
—~
[N)
N
p—

Nltny1 — Snp1| + Zznzl |sny1 — 8il + Zznzl |snt1 —ti| >

But then (??) and the induction hypothesis give that
Z?;—:ll si — ] — Xi<icj<nt (Isi — 8] + [t — 24])
= [tnt1 — sn1] + 251 [Sn+1 — i + 2001 [T — sal + 2=1 [si — 8
= it (snt1 = sil + [tn1 — til) — Xi<icjcn ([8i — 851 + [t — 451)

> tnt1 — Sna1] + o0y [t — sil = St — s

and the proof is done. |

We are now ready to characterize the vectors {z;}"; and {y;}I, for
which equality holds in (?7?).

THEOREM 2.2 Let {z;}7; and {y;}]—, be two collections of functions in
Li(Q,u). Then equality holds in (??) if and only if for almost every w € Q,
the numerical sets {z;(w)}7_, and {y;(w)}}, are identical.

Proof: The “if” part is immediate because

n n

Yo lwiw) —yi@)l = Y0 (l7i(w) — 2()] + lyilw) — g @)]) = 0

i,j=1 1<i<<j=1

for almost every w (with respect to ) and by integrating over Q with respect
to u. Let us then consider the “only if” part. Suppose that equality holds



in
1

(??) and, for each w € Q, let m(w,?) and o(w,?) be permutations of
,2,...,n) for which

Lr(w,1) ((U) <...< Lr(w,n) (w)

and

Yow,) (@) < ..o < Yoo (@)
We will need the increasing order of these numbers in order to effectively
use Lemma ??7. We must prove that

for every 1 <4 <n, ZTr(wi)(w) = Yo, (w) a-e. (2.3)

If (?77?) is false, then there exist § > 0, ¢ > 0, and a subset A C Q with
p(A) > 4 such that

for every w € A, Z ‘:L'ﬂ-(w,i) (W) = Yo(w,) (w)‘ > e (2.4)
i=1

Note that, for every w € €, the expressions

Y lwiw) —yi(w)] and Y (|zi(w) — z(w)] + [yi(w) — y5(w)])
i,j=1 1<i<j<n

are invariant under permutations of {z;}?; and {y;}~;. Therefore (?7),
Lemma 77, and the equality

n
o llzi—yil = D2 (lzi —ggll+ v —ysl) = 0

ij=1 1<i<j<n
yield the inequality

0 = Xii—1 llzi — ysll = Xicicj<n (lzs — 2501 + lys — ;i)
= Jo { T 17:(0) = 3(@)] = Ticicjen (7:(w) — 25()] + [1i(w) = ;@) } du
= Ja {ZZJ-:1 177 (0,6) (W) = Yor(w,5) (W)
— Cicicicn (12r) @) = Ta)©)] + o) (@) = Yo(ug@)]) } du

> fQ Eznzl |x7r(w,i)(w)_ya(w,i)(w”dﬂ > EM(A) = 66,

a contradiction, and our proof is done. |



REMARK 2.3 Suppose that the measure space (€, 1) is a compact metric
space and y is a Borel measure. Assume also that {z;}"; and {y;}" ; are
continuous functions. Then the proof of Theorem ?? shows that the equality

n

Yo llzi—yill = D2 (lwi =yl + llyi —5l) = 0

ij=1 1<i<<j=1
implies that {z;(w)}? ; and {y;(w)}; are identical for every w € Q.

Lemma 7?7 now yields the following result for monotonically increasing
sequences of functions:

COROLLARY 2.4 Let {z;} ¢ U{yi}i.y C L1(Q,u) and assume that
z1(w) < ... <zp(w) and y1 (w) < ... < yp(w) a.e. Then

n

n n
Sllwi—will < D llwi—will— > (lwi — 5l + llyi — yll) -
im1

i,j=1 1<i<j<n

3 Equality in (??) in the case /3

Let us now consider the second part of the polygon inequality conjecture.
Suppose that X = £5* and {z;}? ; U{y;}I; C X are such that (??) holds.
Let

Q=8 :={ueX||ul|=1}

Furthermore, let u denote the normalized rotation—invariant measure on (2
(i.e., u(©2) =1). Then the integral [, |(v,y)|du(y) depends only on ||v|| and
not on v itself. Put

e = [ lwp)duw), ueo.
Q

Then the map
T: e’gn - Ll(Qau)a

defined by
(Tz)(w) = ¢ Haz,w),

is an isometric embedding of ¢5 into L1 (2, u) (see Lindenstrauss and Pel-
czynski [?, p.312, Prop. 7.5]). Moreover, 2 is a compact metric space and,
for every z € (7', Tz is a continuous function. It follows by Theorem ?7?
and Remark ?? that, for every w € Q, the numerical sets {T'z;(w)}7; and



{Ty;(w)}i-, are identical for every w € S™.

Continuing, since the expression

Yo llzi—yil = X2 (lzi =gl + g —ysl)

ij=1 1<i<j<n

does not depend on the ordering of the z;’s and y;’s we may assume that
both sequences are arranged by decreasing order in the norms,viz.,

[zl > .- flznll and |lyill > .. flyall-

Suppose now that [jyi|| > ||z1]| and let w = ||y1|| y1 € S™. As men-
tioned earlier, by Theorem ?? and Remark ??, the sets {Tz;(w)};-; and
{Tyi(w)}?~, are identical, and so for some 1 < j < n, we must have that

cHajw) = (Tzj)(w) = Ty)w) = iyl i) = < Hwl-

It follows that

lyll > Nl > Nyl zgmm) = Nyl ™y mn) = lwall-

This implies that z; = y;. Clearly we can assume without loss of generality
that j = 1. Since

n n n n
dollmr =il + 3 My =zl = YNy — w5l + D Ml — 4]
=2 j=2

Jj=2 Jj=2

we obtain that

n
Yo llzi—yill = > (lzi =il + llyi — w5l -

i,j=2 2<i<j<n

Repeating the above procedure we get that there is a 7, 2 < j < n, such
that z; = yo. Continuing in this manner we arrive at the equality

n

E: Hxi_'y”| = |[Zn-1 — zull + lYn—1 — ynll

3,j=n—1

which implies, by the triangle inequality, that either z, = y, and z, 1 =
Yn—1 OF Tp, = Yp—1 and T,_1 = y,. We have therefore proved part (ii) of the
polygon inequality conjecture.
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