LP-estimates of solutions to the singular Helmholtz equation

in the half-space

Boris RuBIN*

Preprint No. 10
1996/97
Abstract. Solutions to the Dirichlet problem for the singular Helmholtz equation

( ot — 2Vt_ 1% —l—k2>u(m,t) =0

in the half-space ]R’}fl = {(x,t) : z € R*, t > 0} are represented by the oscillatory
integrals of the Poisson type. We obtain some LP-estimates of these integrals by using

known results for the Bochner-Riesz multipliers.

1. INTRODUCTION

Fort >0, x e R*, k>0, let

k- (n+1)/2
Pi(@) = cat (ﬁ) HE, ) o (kr/ 5 TaPP) ()

where ¢, = in(1—m)/29—(n+1)/2 HY

(1) /2(z) is the Hankel function of the first kind.

The convolution

u(z,t) = (Pif)(2) = (pe * f)(2) (1.2)
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represents a methaharmonic continuation of f into the half-space R’f’l, i.e.
Agiu+k*u=0 in R and }1_1)13 u(z,t) = f(x)

for sufficiently good f. The properties of methaharmonic functions were studied in [6].
The Fourier transform of p;(z) has the form
A exp(—ty/[EZ—F if [¢] > k,
pe(§) =

exp (it\/k2 — [£]2) if €] < k.

More detailed information about convolutions (1.2) with arbitrary wave number k& € C

(1.3)

can be found in [3], Sec. 22.1. The case of real k is the most difficult. The following
statement was announced in [3] (p. 300).

Theorem 1.1. For k=1 and t =1 the operator P; is bounded in LP(R™), n > 2, if
and only if |[1/p —1/2| < 1/n.

Below we prove this theorem and obtain LP-estimates for more general analytic family

of convolutions
u,(2,t) = (P ) (@) = (0] * f)(2) (1.4)

with the kernel

v+n/2
jr(1—n)/242v k
(), _ T (1) 2 2
P (@) = i ( t2+\a:|2> H, fnpp (bW A [a]?). (1.5)

The convolutions (1.4) can be associated with the Dirichlet problem for the singular

Helmholtz equation

2v—14d 9 n
(A:I:,t_ . ﬁ—l-k)u(x,t)—o, zeR*, t>0. (1.6)

The case v = 1/2 corresponds to Theorem 1.1. The argument, presented below, is based

on the use of known results for the Bochner-Riesz multiplier
T.f=F (1~ [E"5FSf] (1.7)

(see, e.g., [2, 4] and references therein).
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2. PRELIMINARIES

Let &= (z,t) € RTT', || = (|z|> +t?)'/2. By the formula 7.13.1(1) from [1],

.2y v+n/2
v) it? k. 1 i(kla|—(v4n+1)m/a) (g RN
W) = G (1 o ¢ (1+o(l2™)

= O(|z|7v—(m+1/2), |Z| — o0, (2.1)

and therefore p( )€ L' for Re v > (n —1)/2. In particular, for (1.1) (v = 1/2) we have
(v)

ps € L' for n <2, i.e. for n =1 only. Below we evaluate the Fourier transform of Dy -

Lemma 2.1. Let Rev > —1. Then for [£| # k,

p§”) (&) 4 Jim pgy) (z)e'*edr =

|z| <N

= v z.(7T/2)1/21T'L(/1)(tw) if €] <k, 12 (g2
= (tw) {(2/#)1/21{”(“}) if || > k, = |k €)%,

K, being the McDonald function. For v =1/2 this formula coincides with (1.3).
Proof. By Theorem 3.3 from [5, Chapter 4],

s"2ds,  p=¢].

() 2V prtn/2 H;E:-)n/z (/22 + |2]2)
b (5) n/2 1 n/2 1 m)u+n/2
This integral can be evaluated with the aid of the formula 7.14.2(48) from [1]. O

The function p( )(5) has an exponential decay at infinity. In order to study a local
behaviour of p( )(5) let

wrT —iu7r2—ur _
(2 ETW) oy e (=v)

i v T

(v#0,—1,-2,...).
According to definitions of the functions H, M K, ([1]), for » — 0 we have
() + o(1), Rev >0,
M+ 6(2) 1 0(1), Rev=0, v#0,
PHO () = —logs (1+0(1)), v =0, (2.2)
wooor

7"2”(0,(/2) +0(1)), Rev<0, v#-1,-2,...
[ (DM (1 +0(1), v=-1,-2,..;




(e o(1), Rev >0,
M 4 cPeivmprv 4 o(l), Rev=0, v#Q0,
2 1
K, (r) = — { Elog; (I14+0(1)), v=0, (2.3)
rzyei””(c,(,2) +0(1)), Rev<0, v#-1,-2,...

[ (=D)le} e r2 (1 4+ 0(1)), v=-1,-2,... .

Owing to these relations, ﬁgu) (¢) is a bounded function in the case Re v > 0, v # 0,

and has a singularity on the sphere |£| = k otherwise. Moreover,

}i_I)I(l)ﬁgy)(é-) =icV\/m/2 = % for Rev >0,
and }E)I(l) ﬁﬁ”) (&) does not exist (or it is infinite) for Re v < 0.
Thus we arrive at the following
Proposition 2.2 (cf. Lemma 22.5 from [3]).
(i) For t fized, the operator Pt(u), defined by (1.4), is bounded in L? if and only if
Rev >0, v#0.
(ii) If Re v > 0, then the operator Pt(y) = (71/221/2_”/F(V))Pt(y) is an approximate

identity in L? for t — 0, i.e.

lim |5 f = fll2 = 0.
—0

Remark 2.3. For fixed £, |£| # k, the function ¢ : ¢t — ﬁﬁ") (&) satisfies the differential

equation

d_2 2w—-14d
dt2 t dt

+ k- |§|2> p(t) =0, t>0.

Hence in the case Re v > 0 the function u(x,t) = (ﬁt(") f)(z) is a solution to the Dirichlet
problem for the equation (1.6) with the boundary condition }51(1) u(z,t) = f(x). By Propo-
sition 2.2 one can assume f € L? and interprete this limit relation in the L?-norm (here
we are not concerned with the uniqueness problem related to the Sommerfeld condition at
infinity).

Problems. For f € LP it would be interesting to characterize the set of all p, v, n, for
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which the following statements hold:

L BT fllp < e fllp, ¢ is fixed.

m 1P®) f _ —
2. th_I)%HPt f=fllp=0

3. lsupesol Bl < const ||/l
4. lim(ﬁt(y)f)(az) = f(z) a.e. on R".
t—0

What is the behaviour of ||[P{) ||, as t — 0o?

A number of relevant open problems arises in studying oscillatory potentials

eiklm_y| 9
fy)dy, ze€QCR,

|z —y|
and their fractional and multidimensional modifications (see [3], Sec. 22 for further details).

3. LP-ESTIMATES FOR P").

Let for simplicity £ = 1. Then

W, () } inCemzge : :
@) = e (E) o) = —gmmp— [El=VE+RP, >0,

We take a function ¢;(r) € C*°(Ry) such that ¢4(r) = 1 for » > 2t and ¢4(r) = 0 for
r < t. Then p§”) () = ug(z) + v¢(z) where

up(z) = Pe(|z)) p (&), vele) = (1= e(|2])) pi () € L. (3.1)
By using the asymptotic relation ([1])

pgu)(x) —c (t)\/2/7 e—i(2u+n+1)7r/4‘53|—u—(n+1)/2ei|5:| x
M-1

X (1/ + g m) (=2i|Z))™™ + ¢, () O(|F|~M—v=(+D/2
m=0
we have
M—1
u(z) = Z cmkt,m(7) + Rt () (3.2)
m=0



where ¢, are certain coefficients, ¢y # 0,

cil|

kt,m(x) = ¢t(|$|) |£|y+(n+1)/2+ma (33)

Rari(z) =t (|z|) O(|7|~M—v—(+1)/2) (¢ L' if M is sufficiently large).

The function (3.3) can be transformed as follows. Put
A=t/la? (<1),  B=v+m+(n+1)/2
By the Taylor formula,

ktym (@) = [z 7P (14 A) P2V Ay (Ja) =

L—1 L—1
= |z| Pl (1z)) [ a4+ O(AL)] =Y Gkim(z) + R pm(@)
1=0 1=0
where ¢y = 1, 1o
e'L X
ke gm () =ty (|2]) o
o1 Ye(|7]) 1 1 )
\R¢,1,m(x)| < const t 2L (1 + = +...+ wi-1)
Hence
M—-1L-1 6Z|w|
_ 2142v
Ut(J?) - ZO ; Cl,mt ¢t(|x|) |x|u+(n+1)/2+m+2l
m= =
(up to negligible terms), and therefore Pt(y) admits the following representation
J-1 _
Pt(u) = ij (t)U:—H + Ry (3.4)
7=0

Here p;(t) are polynomials of degree < j, po(t) = const # 0, U/ is a convolution operator
with the kernel
cilol
Pe(|z]) i/’ (3.5)
and Ry, is a certain operator which is bounded in LP for all p € [1,00], Rev >0, t > 0.
Operators U} were investigated for fixed t (e.g. ¢ = 1) by many authors in connection

with the Bochner-Riesz multiplier T}, (see (1.7)). We recall, that up to a constant multiple,

T, is represented by the convolution with the kernel

om 2 cos(|lz| — v+n+1)r/4) (m
|z /2Ju+n/2(|37|) = \/; |x|y—|—('n,+1)/2 + O(|z| ( +3)/2)a |z — oo,
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The asymptotics of this kernel is close to that of the expression (3.5) (but the character of
the oscillation is different !). If v > (n — 1)/2, then T, is bounded in LP for all p € [1, o0].
In the case 0 < v < (n — 1)/2 the following results are known (see, e.g. [2]).

Theorem 3.1. Let 1<p<oo, n>2, A,=|1/p—1/2|, p,=v/n+1/2n.

(i) If Ap > pu, then T, is not bounded in LP.

(ii) In the cases

(a) n=2
and

b)) n>3, v>(mn-1)/2(n+1),

T, is bounded in LP if and only if A, < p,.

If n > 3, then the boundedness of T}, in LP for 0 < v < (n —1)/2(n+1), A, <p,
represents an open problem (see references in [4] concerning some progress in this case).

We observe, that although the statements (i), (ii) are usually formulated for T, in
fact, they were proved for the operators U}/ (with ¢ = 1). Note also, that in the case
v = 0, the operator T, is bounded in L? whereas UY is unbounded (owing to (3.4) and
unboundedness of P*)).

Conclusion. By (3.4), Theorem 3.1 remains true if T, is replaced by Pt(u) (witht >0
fixed). Theorem 1.1 for the methaharmonic continuation (the case v = 1/2) lies within
the scope of the statement (ii) above.

An analog of the statement (i) for Pt(”) can be proved directly by considering the
action of Pt(y) on the characteristic function of a sufficiently small ball.

These observations bring a small light to the problems mentioned in Section 2. It is
natural to expect that the behaviour of the norm ||Pt(y) fllp for large t can be determined

from (3.4) provided the behaviour of ||U} f||, for ¢ — oo is known.
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