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Abstract

It is proved that certain quotient maps q : (3, Un);, — Y, where U, are finite di-
mensional spaces, have the following property: If E is a subspace of Y with a “good”
structure of uniformly complemented finite dimensional subspaces so is the subspace

q Y(E) of (X, Un)i,- In particular, any quotient map ¢ :l; — L1 has this property.
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1. Introduction. Let ¢ : U — Y be a quotient map. In general, very little is known
about the connection between a subspace E of Y and the subspace ¢ !(E) of U. In this
note we discuss a quotient map ¢ the inverse of which preserves the 7 property and the finite
dimensional decomposition property. Recall that a space E is said to be a 7y space (A > 1) if
there exist a sequence {E,}°, of finite dimensional subspaces of E, with E; C Ey C ... and
UX | E, = E, and a sequence of projections {P,}*_, of E onto E,, with sup||P,]| = X < co.
E is said to be a 7 space (or, to have the m property) if it is a spacg for some A > 1.
The pair of sequences ({E,}%,, {P,}22,) will be called a 7 structure of E. If E has a7

n=1

structure ({E,}52,, {Pn}32,) and, for every n,k > 1, P, P, = PP, = Puins,n) then the
sequence {(P, — P,_1)(E)}2, is called a finite dimensional decomposition of E (f.d.d. in
short) and FE is said to have the f.d.d. property.

Our main result is the following

Theorem Let Y be a my space with a m\ structure ({Y,}52,, {@Qn}2,) and let U =
(§ Y,)i,. For each n > 1 let U, denote the subspace {(0,...,0,y,0,...) € U :y € Y,}
n=1 ~——

n—1

and denote by T, the natural isometry of U, onto Y,. Let q : U — Y be the quotient map
determined by the relations q(u) = ,(u) if u € U, for everyn > 1. Then, for every subspace

E of Y with a m structure (with an f.d.d.), ¢ *(E) has a 7w structure (an f.d.d., resp.)
We will prove the Theorem in Section 2. Let us discuss now the following two examples.

ExAMPLE 1. J. Lindenstrauss investigated in [?] the properties of the following quotient
map ¢ : l; = L1]0,1]. Let {u;}32, denote the unit vector basis of /; and x(A) the indicator
function of the subset A C [0,1]. For each n > 0 and 1 < i < 2" put ul = ugn_1; and define
q:li = Ly by q(ul) = x([5+, 5]). It is clear that g satisfies the assumption of the Theorem
and therefore ¢ ! preserves the 7 and f.d.d. properties. Moreover, because l; is quotient
homogeneous, (i.e., if ¢; : [; — L; is another quotient map, then there is an automorphism

T on [ for which ¢; = ¢T, see [?]) any quotient map ¢; : [; — L; has the same property.

REMARK: Note that the same holds for every quotient map ¢ : [; — Y if Y is a £ space.
Indeed, in this case Y has a m structure ({Y,}22,, {@,}2,) where each Y,, has a basis

d(n) d(n) d(n)
{y?}?g) (d(n) = dimY,) satisfying the inequality A ™' ¥ |a;| < || & aw?|| < X |ay] for
i=1 i=1 i=1

every sequence of scalars {ai}fg). Clearly, U = (X Y,),, is isomorphic to [; and therefore,
n



the argument presented in Example 1 proves our claim.

EXAMPLE 2. Let Y = Iy, let {y;}32, be any orthonormal basis of Y and put Y, = [y]",.
Put U = (XY, U, ={(0,...,0,9,0,...) : y € Y} and let 7, : U, — Y,, be the natural
n ———

n—1

isometry. Define ¢ : U — Y by the relations g(u) = 7,(u) if u € Uy, n =1,2,.... Then ¢

satisfies the assumptions of the Theorem hence ¢! preserves the m and f.d.d. properties.

Let u? = (0,...,0,9;,0,...) for every n > 1 and 1 < ¢ < n. Then, clearly,
———

n—1

kernel(q) = [ul — u?™! =1 ne1

and the Theorem implies that every subspace V' of U which
contains kernel(q) has an f.d.d. In fact, one can show that every such subspace has a basis
because kernel(g) has a natural basis, ¢(V') has a basis and, as is easily seen, the projec-
tions V,, on V constructed in the proof of the Theorem can be chosen so that the spaces

(Vo = V1) (V) have bases with uniformly bounded constants.

2. Proof of the Theorem. Let us begin by taking a close look at the structure of
K = kernel(q). Let K,, = {u € Enj ®U; :q(u) =0}.
i=1

Claim 2.a: K=U2 K,

Indeed, if u = § u; € K, where u; € U; for i+ > 1, and if ¢ > 0 let N be so large that
i=1

o] N N
> |luil] < € and let gy denote the restriction of ¢ to ¥ @ U;. Put v = 3 w;, then
i=N+1 i=1 i=1

lav()|l = llg(w — X w)ll = llg( X w)l| < e. But kernel(qy) = Ky and, by the
i=N+1 i=N+1

N

definition of ¢, gy is a quotient map of > @ U; onto Yy. Hence there is a w € Ky with
i=1

|lv — w|| <e. It follows that |u — w|| < ||u —v|| + ||v — w|| < 2¢, proving claim 2.a. Next,

note that, for every 1 <i < n and u € U;, u — 7,, '1;u € K,, hence we have

(2.1) i@ U;=K,® U, forevery n>1.

i=1
Moreover, if p, : znj @ U; — U, denotes the projection onto U, along K,, then, because
T = q"|Un: q| Unzzlls an isometry, we have that for every w € K,, and u € Uy, ||w + u| >
llg(w + w)|| = |l¢(w)|| = ||lu|| and hence ||p,|| = 1. Now consider the mapping ¢, 1 &
Gm = q|Um71 oU, which maps U,,_1 & U, onto Y,,. Put H,,_; = kernel (¢,,_1 ® ¢n) then
dim (Hp—1) =d(m—1) =dim Y, 1.



Claim 2.b: i H,, is a Schauder decomposition of K,1 and %o: H,, isafdd of K.
m=1 m=1

Indeed, let R; denote the natural projection of U onto U;, let h,, € H,, for 1 < m < n
and suppose that h, = v + v where v = R,h, € U, and v = R,1h, € U,11;. Then
q(u+v) = q(h,) = 0 and, since the maps ¢, 1 and g, restricted to U, and U, respectively,
are isometries, we get that ||u|| = ||v|| and the maps R, = R”|Hn and R, 1 = Rn+1|Hn are

isomorphisms satisfying

_ 1 __
(2.2) 1Bnbnll = 5 lhall = [[ RarFonl-

It follows that || nz11 hml < || %1 hml|| and, since dim H,, = dim Y,,_;, this implies that
e e

i1 @ H,, = K11, hence, in view of Claim 2.a, %::1 @ H,, is an f.d.d. of K. Moreover, the

m= m

natural projections W, : K — nz_jl H,, = K, have norm ||W,|| = 1. This proves Claim 2.b.

Note that an|(Un71 ®Uy) is z;n Zhotient map of U,_1 ® U, onto Y, the kernel of which is

Un_1; hence U, is isomorphic to H,, ; via (2.2).

Assume that E is a subspace of Y with a m, structure ({E,}52,, {P,}>,). A standard
small perturbation argument allows us to assume w.l.g. that US>, E, C U ,Y, because
UX,Y, = Y (see e.g. [?] Lemma 2.1). Also, because each E, is contained in Y,, for a
sufficiently large m, allowing finite numbers of repetitions of E,,’s in the sequence, we may
assume that E,, CY,, for every n > 1.

Let us construct now a 7 structure in ¢ *(F). We start with the definition of the finite
dimensional subspaces F), of ¢ !(F) which will determine the 7 structure. For every n > 1,
let G, = ¢;*(E,) and put F,, = G, + K,; then, (2.1) ensures that this is a direct sum and,

for each f = g+ h with g = ¢, '(e), e € E,, and h € K,, we have that

(2:3) 111> llgll = llel

because q\Gn is an isometry. We must show that F,, C F,, ;. Indeed, let g; = n_leng then
g1 € Upy1 and, putting hg = g1 — g, we have that ¢(¢g1) = ¢(g) = e and hence hy € H, C
K, 11. Consequently, f =g+ h =g, — hg +h where g = q,,},(€) € ¢,11(Eny1) = Gpy1 and
h — hy € K,;1. This establishes the inclusion F,, C F,;. Since UK, = ¢1(0) and, for
each n > 1, q| G, is an isometry, we get that ¢ 1(F) = U3, F,,. We proceed to construct

projections V,, of ¢"'(E) onto F, which will eventually determine the 7 structure of ¢ *(FE).



Recall that W, denotes the natural projection of K onto K, and define the operator V,, on
Us2, F as follows: if £ > n and f =g+ h with g € Gy and h € K}, then

(2.4) Vof = ¢, Pugi(9) + Wa(h) .

This definition obviously depends on the representation f = g + h in Fj. However, suppose
that g = ¢, *(e) and f = g; + hy where g; € Gy11 and hy € K, then, the above argument
for the inclusion F,, C F,.; shows that there is an hy € H, for which g, = g + hy and
hy = h — hq. Hence qx11(91) = ¢(91) = q(g9) = e and W, (hy) = 0. Therefore

@, Pogis1(91) + Wi(h1) = ¢, Pre + Wy (h — ho)
= ¢, ' Poge(g9) + Wa(h) = Vu(f).

This shows that the definition of V,, does not depend on the choice of £ and V,, is well
defined. Let us show that V2 = V,. If f = g+ h with g € G}, h € K; and k > n then
the representation of V,,f in F), is clearly V,,f = ¢, 'P,qr(9) + W,(h). Hence, by (2.4),
V2f = g Pagnay Paar(9) + W2(R) = ¢, Pagi(g) + Wi(h) = Vi f. Suppose that the given
sequence of projections mutually commute and let m < n. Because W,,W,, = W,,, we get
that Vi Vo f = ' Prnny ' Padi(9) + WiuWa(h) = ¢,' Prngi(9) + Win(h) = Vin f and hence

(2'5) ViV = Vi = ViV
Before proceeding to estimate the norm of V,, let us prove the following

Lemma. Let X be a Banach space, let X > 1 and let g, h,u and v be elements of X satisfying
the following four inequalities: ||g|| < |lg+ hl|, |lull < [lu+ ||, [[ull < Allgl| and [lv]| < AllA]|.
Then ||u + v|| < 3X||lg + A||.

Proof: If ||v|| < 2||u|| then ||u + v|| < ||u|| + ||v|| < 3||u|| < 3A||g|] < 3Al|lg + h||. Suppose
that ||v|| > 2||ul| then, since ||h|| < [|g|| + g + Rl| < 2||lg + h|| and |[R]| > A7 ||| > 227 |u]|
we get that [[u + v < [lul] + [Jv]| < (3/2)|lv]] < (3/2)A|R]] < 3A[lg + A]|. 0

Let us complete the proof of the Theorem by showing that ||V,,|| < 3\. For any k£ > n and
f=g+he€Gy® Ky, put u=gq,"'P,q(g) and v = W, (h). Then, by (2.3), ||g|| < |lg+ A and
lul| < JJu+v||. Moreover, |[ul| < [|P.|lllgll < Algll and [|o]| < [|WallllAll < ||kl < A||A|. It
follows from the Lemma that ||V, f|| = ||¢, Pugrg + Wa(R)|| = [lu+v|| < 3\||g+h|| = 3| f]|-

5



Extending V,, to all of g, '(E) by continuity we complete the construction of the 7 structure

of ¢"'(F). Equality (2.5) takes care of the f.d.d. case.

REMARK: Our proof shows that, under the assumptions of the Theorem, ¢ ! preserves

Grothendieck’s bounded approximation property and the commuting b.a.p.
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