Quotient maps with structure preserving inverses

by
M. Zippin*

Preprint No. 11 1996/97

Abstract

It is proved that certain quotient maps $q:(\sum_n U_n)_{l_1} \to Y$, where U_n are finite dimensional spaces, have the following property: If E is a subspace of Y with a "good" structure of uniformly complemented finite dimensional subspaces so is the subspace $q^{-1}(E)$ of $(\sum_n U_n)_{l_1}$. In particular, any quotient map $q:l_1 \to L_1$ has this property.

^{*}Participant at Workshop in linear analysis and Probability, NSF DMS-9311902

AMS subject classification: 46B25. Partially supported by the Edmund Landau Center for research in Mathematical Analysis, sponsored by the Minerva Foundation (Germany).

1. Introduction. Let $q:U\to Y$ be a quotient map. In general, very little is known about the connection between a subspace E of Y and the subspace $q^{-1}(E)$ of U. In this note we discuss a quotient map q the inverse of which preserves the π property and the finite dimensional decomposition property. Recall that a space E is said to be a π_{λ} space $(\lambda \geq 1)$ if there exist a sequence $\{E_n\}_{n=1}^{\infty}$ of finite dimensional subspaces of E, with $E_1 \subset E_2 \subset \ldots$ and $\overline{\bigcup_{n=1}^{\infty} E_n} = E$, and a sequence of projections $\{P_n\}_{n=1}^{\infty}$ of E onto E_n with $\sup_n \|P_n\| = \lambda < \infty$. E is said to be a π space (or, to have the π property) if it is a π_{λ} space for some $\lambda \geq 1$. The pair of sequences $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$ will be called a π structure of E. If E has a π structure $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$ and, for every $n, k \geq 1$, $P_nP_k = P_kP_n = P_{\min(k,n)}$ then the sequence $\{(P_n - P_{n-1})(E)\}_{n=1}^{\infty}$ is called a finite dimensional decomposition of E (f.d.d. in short) and E is said to have the f.d.d. property.

Our main result is the following

Theorem Let Y be a π_{λ} space with a π_{λ} structure $(\{Y_n\}_{n=1}^{\infty}, \{Q_n\}_{n=1}^{\infty})$ and let $U = (\sum_{n=1}^{\infty} Y_n)_{l_1}$. For each $n \geq 1$ let U_n denote the subspace $\{(\underbrace{0,\ldots,0},y,0,\ldots) \in U: y \in Y_n\}$ and denote by τ_n the natural isometry of U_n onto Y_n . Let $q:U \to Y$ be the quotient map determined by the relations $q(u) = \tau_n(u)$ if $u \in U_n$ for every $n \geq 1$. Then, for every subspace E of Y with a π structure (with an f.d.d.), $q^{-1}(E)$ has a π structure (an f.d.d., resp.)

We will prove the Theorem in Section 2. Let us discuss now the following two examples.

EXAMPLE 1. J. Lindenstrauss investigated in [?] the properties of the following quotient map $q: l_1 \to L_1[0,1]$. Let $\{u_i\}_{i=0}^{\infty}$ denote the unit vector basis of l_1 and $\chi(A)$ the indicator function of the subset $A \subset [0,1]$. For each $n \geq 0$ and $1 \leq i \leq 2^n$ put $u_i^n = u_{2^n-1+i}$ and define $q: l_1 \to L_1$ by $q(u_i^n) = \chi([\frac{i-1}{2^n}, \frac{i}{2^n}])$. It is clear that q satisfies the assumption of the Theorem and therefore q^{-1} preserves the π and f.d.d. properties. Moreover, because l_1 is quotient homogeneous, (i.e., if $q_1: l_1 \to L_1$ is another quotient map, then there is an automorphism T on l_1 for which $q_1 = qT$, see [?]) any quotient map $q_1: l_1 \to L_1$ has the same property.

Remark: Note that the same holds for every quotient map $q: l_1 \to Y$ if Y is a \mathcal{L}_1 space. Indeed, in this case Y has a π_{λ} structure $(\{Y_n\}_{n=1}^{\infty}, \{Q_n\}_{n=1}^{\infty})$ where each Y_n has a basis $\{y_i^n\}_{i=1}^{d(n)} \ (d(n) = \dim Y_n)$ satisfying the inequality $\lambda^{-1} \sum_{i=1}^{d(n)} |a_i| \le \|\sum_{i=1}^{d(n)} a_i y_i^n\| \le \sum_{i=1}^{d(n)} |a_i|$ for every sequence of scalars $\{a_i\}_{i=1}^{d(n)}$. Clearly, $U = (\sum_n Y_n)_{l_1}$ is isomorphic to l_1 and therefore,

the argument presented in Example 1 proves our claim.

EXAMPLE 2. Let $Y = l_2$, let $\{y_i\}_{i=1}^{\infty}$ be any orthonormal basis of Y and put $Y_n = [y_i]_{i=1}^n$. Put $U = (\sum_n Y_n)_{l_1}$, $U_n = \{(\underbrace{0, \dots, 0}_{n-1}, y, 0, \dots) : y \in Y_n\}$ and let $\tau_n : U_n \to Y_n$ be the natural isometry. Define $q: U \to Y$ by the relations $q(u) = \tau_n(u)$ if $u \in U_n$, $n = 1, 2, \dots$ Then q satisfies the assumptions of the Theorem hence q^{-1} preserves the π and f.d.d. properties.

Let $u_i^n = (\underbrace{0,\ldots,0}_{n-1},y_i,0,\ldots)$ for every $n \geq 1$ and $1 \leq i \leq n$. Then, clearly, $\ker(q) = [u_i^n - u_i^{n+1}]_{i=1,n=1}^n$ and the Theorem implies that every subspace V of U which contains $\ker(q)$ has an f.d.d. In fact, one can show that every such subspace has a basis because $\ker(q)$ has a natural basis, q(V) has a basis and, as is easily seen, the projections V_n on V constructed in the proof of the Theorem can be chosen so that the spaces $(V_n - V_{n-1})(V)$ have bases with uniformly bounded constants.

2. Proof of the Theorem. Let us begin by taking a close look at the structure of K = kernel(q). Let $K_n = \{u \in \sum_{i=1}^n \oplus U_i : q(u) = 0\}$.

Claim 2.a:
$$K = \overline{\bigcup_{n=1}^{\infty} K_n}$$

Indeed, if $u = \sum_{i=1}^{\infty} u_i \in K$, where $u_i \in U_i$ for $i \geq 1$, and if $\varepsilon > 0$ let N be so large that $\sum_{i=N+1}^{\infty} \|u_i\| < \varepsilon$ and let q_N denote the restriction of q to $\sum_{i=1}^{N} \oplus U_i$. Put $v = \sum_{i=1}^{N} u_i$, then $\|q_N(v)\| = \|q\left(u - \sum_{i=N+1}^{\infty} u_i\right)\| = \|q\left(\sum_{i=N+1}^{\infty} u_i\right)\| < \varepsilon$. But $\ker(q_N) = K_N$ and, by the definition of q, q_N is a quotient map of $\sum_{i=1}^{N} \oplus U_i$ onto Y_N . Hence there is a $w \in K_N$ with $\|v - w\| < \varepsilon$. It follows that $\|u - w\| \leq \|u - v\| + \|v - w\| < 2\varepsilon$, proving claim 2.a. Next, note that, for every $1 \leq i \leq n$ and $u \in U_i$, $u - \tau_n^{-1} \tau_i u \in K_n$ hence we have

(2.1)
$$\sum_{i=1}^{n} \oplus U_i = K_n \oplus U_n \text{ for every } n \ge 1.$$

Moreover, if $p_n: \sum_{i=1}^n \oplus U_i \to U_n$ denotes the projection onto U_n along K_n , then, because $\tau_n = q_n|_{U_n} = q|_{U_n}$ is an isometry, we have that for every $w \in K_n$ and $u \in U_n$, $||w + u|| \ge ||q(w + u)|| = ||q(u)|| = ||u||$ and hence $||p_n|| = 1$. Now consider the mapping $q_{m-1} \oplus q_m = q|_{U_{m-1}} \oplus U_m$ which maps $U_{m-1} \oplus U_m$ onto Y_m . Put $H_{m-1} = \text{kernel } (q_{m-1} \oplus q_m)$ then $\dim(H_{m-1}) = d(m-1) = \dim Y_{m-1}$.

Claim 2.b: $\sum_{m=1}^{n} H_m$ is a Schauder decomposition of K_{n+1} and $\sum_{m=1}^{\infty} H_m$ is a f.d.d. of K.

Indeed, let R_i denote the natural projection of U onto U_i , let $h_m \in H_m$ for $1 \leq m \leq n$ and suppose that $h_n = u + v$ where $u = R_n h_n \in U_n$ and $v = R_{n+1} h_n \in U_{n+1}$. Then $q(u+v) = q(h_n) = 0$ and, since the maps q_{n+1} and q_n restricted to U_{n+1} and U_n , respectively, are isometries, we get that ||u|| = ||v|| and the maps $\widetilde{R_n} = R_n|_{H_n}$ and $\widetilde{R_{n+1}} = R_{n+1}|_{H_n}$ are isomorphisms satisfying

(2.2)
$$\|\widetilde{R_n}h_n\| = \frac{1}{2}\|h_n\| = \|\widetilde{R_{n+1}}h_n\|.$$

It follows that $\|\sum_{m=1}^{n-1} h_m\| \leq \|\sum_{m=1}^n h_m\|$ and, since dim $H_m = \dim Y_{m-1}$, this implies that $\sum_{m=1}^n \oplus H_m = K_{n+1}$, hence, in view of Claim 2.a, $\sum_{m=1}^\infty \oplus H_m$ is an f.d.d. of K. Moreover, the natural projections $W_n : K \to \sum_{m=1}^{n-1} H_m = K_n$ have norm $\|W_n\| = 1$. This proves Claim 2.b. Note that $qR_n|_{U_{n-1}} \oplus U_n$ is a quotient map of $U_{n-1} \oplus U_n$ onto Y_n the kernel of which is U_{n-1} ; hence U_{n-1} is isomorphic to H_{n-1} via (2.2).

Assume that E is a subspace of Y with a π_{λ} structure $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$. A standard small perturbation argument allows us to assume w.l.g. that $\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} Y_n$ because $\overline{\bigcup_{n=1}^{\infty} Y_n} = Y$ (see e.g. [?] Lemma 2.1). Also, because each E_n is contained in Y_m for a sufficiently large m, allowing finite numbers of repetitions of E_n 's in the sequence, we may assume that $E_n \subseteq Y_n$ for every $n \ge 1$.

Let us construct now a π structure in $q^{-1}(E)$. We start with the definition of the finite dimensional subspaces F_n of $q^{-1}(E)$ which will determine the π structure. For every $n \geq 1$, let $G_n = q_n^{-1}(E_n)$ and put $F_n = G_n + K_n$; then, (2.1) ensures that this is a direct sum and, for each f = g + h with $g = q_n^{-1}(e)$, $e \in E_n$ and $h \in K_n$ we have that

$$||f|| \ge ||g|| = ||e||$$

because $q|_{G_n}$ is an isometry. We must show that $F_n \subset F_{n+1}$. Indeed, let $g_1 = \tau_{n+1}^{-1}\tau_n g$ then $g_1 \in U_{m+1}$ and, putting $h_0 = g_1 - g$, we have that $q(g_1) = q(g) = e$ and hence $h_0 \in H_n \subset K_{n+1}$. Consequently, $f = g + h = g_1 - h_0 + h$ where $g_1 = q_{n+1}^{-1}(e) \in q_{n+1}^{-1}(E_{n+1}) = G_{n+1}$ and $h - h_0 \in K_{n+1}$. This establishes the inclusion $F_n \subset F_{n+1}$. Since $\overline{\bigcup_{n=1}^{\infty} K_n} = q^{-1}(0)$ and, for each $n \geq 1$, $q|_{G_n}$ is an isometry, we get that $q^{-1}(E) = \overline{\bigcup_{n=1}^{\infty} F_n}$. We proceed to construct projections V_n of $q^{-1}(E)$ onto F_n which will eventually determine the π structure of $q^{-1}(E)$.

Recall that W_n denotes the natural projection of K onto K_n and define the operator V_n on $\bigcup_{j=1}^{\infty} F_j$ as follows: if $k \geq n$ and f = g + h with $g \in G_k$ and $h \in K_k$ then

$$(2.4) V_n f = q_n^{-1} P_n q_k(g) + W_n(h).$$

This definition obviously depends on the representation f = g + h in F_k . However, suppose that $g = q_k^{-1}(e)$ and $f = g_1 + h_1$ where $g_1 \in G_{k+1}$ and $h_1 \in K_{k+1}$, then, the above argument for the inclusion $F_n \subset F_{n+1}$ shows that there is an $h_0 \in H_n$ for which $g_1 = g + h_0$ and $h_1 = h - h_0$. Hence $q_{k+1}(g_1) = q(g_1) = q(g) = e$ and $W_n(h_0) = 0$. Therefore

$$q_n^{-1}P_nq_{k+1}(g_1) + W_n(h_1) = q_n^{-1}P_ne + W_n(h - h_0)$$

= $q_n^{-1}P_nq_k(g) + W_n(h) = V_n(f)$.

This shows that the definition of V_n does not depend on the choice of k and V_n is well defined. Let us show that $V_n^2 = V_n$. If f = g + h with $g \in G_k$, $h \in K_k$ and $k \ge n$ then the representation of $V_n f$ in F_n is clearly $V_n f = q_n^{-1} P_n q_k(g) + W_n(h)$. Hence, by (2.4), $V_n^2 f = q_n^{-1} P_n q_n q_n^{-1} P_n q_k(g) + W_n(h) = q_n^{-1} P_n q_k(g) + W_n(h) = V_n f$. Suppose that the given sequence of projections mutually commute and let m < n. Because $W_m W_n = W_m$ we get that $V_m V_n f = q_m^{-1} P_m q_n q_n^{-1} P_n q_k(g) + W_m W_n(h) = q_m^{-1} P_m q_k(g) + W_m(h) = V_m f$ and hence

$$(2.5) V_m V_n = V_m = V_n V_m$$

Before proceeding to estimate the norm of V_n let us prove the following

Lemma. Let X be a Banach space, let $\lambda \geq 1$ and let g, h, u and v be elements of X satisfying the following four inequalities: $||g|| \leq ||g+h||$, $||u|| \leq ||u+v||$, $||u|| \leq \lambda ||g||$ and $||v|| \leq \lambda ||h||$. Then $||u+v|| \leq 3\lambda ||g+h||$.

Proof: If $||v|| \le 2||u||$ then $||u+v|| \le ||u|| + ||v|| \le 3||u|| \le 3\lambda ||g|| \le 3\lambda ||g+h||$. Suppose that ||v|| > 2||u|| then, since $||h|| \le ||g|| + ||g+h|| \le 2||g+h||$ and $||h|| \ge \lambda^{-1} ||v|| > 2\lambda^{-1} ||u||$ we get that $||u+v|| \le ||u|| + ||v|| \le (3/2) ||v|| \le (3/2) \lambda ||h|| \le 3\lambda ||g+h||$.

Let us complete the proof of the Theorem by showing that $||V_n|| \leq 3\lambda$. For any $k \geq n$ and $f = g + h \in G_k \oplus K_k$ put $u = q_n^{-1} P_n q_k(g)$ and $v = W_n(h)$. Then, by (2.3), $||g|| \leq ||g + h||$ and $||u|| \leq ||u + v||$. Moreover, $||u|| \leq ||P_n|| ||g|| \leq \lambda ||g||$ and $||v|| \leq ||W_n|| ||h|| \leq ||h|| \leq \lambda ||h||$. It follows from the Lemma that $||V_n f|| = ||q_n^{-1} P_n q_k g + W_n(h)|| = ||u + v|| \leq 3\lambda ||g + h|| = 3\lambda ||f||$.

Extending V_n to all of $q_n^{-1}(E)$ by continuity we complete the construction of the π structure of $q^{-1}(E)$. Equality (2.5) takes care of the f.d.d. case.

Remark: Our proof shows that, under the assumptions of the Theorem, q^{-1} preserves Grothendieck's bounded approximation property and the commuting b.a.p.

References

- [L] J. Lindenstrauss, On a certain subspace of l_1 , Bull. Acad. Polon. Sci. 12 (1964), 539-542.
- [L-R] J. Lindenstrauss and H.P. Rosenthal, Automorphisms in c_0 , l_1 , and m, Israel J. Math. 7(1969) 227-239.
- [Z] M. Zippin, Applications of Michael's continuous selection theorem to operator extension problems, to appear in Proc. A.M.S.

The Hebrew University of Jerusalem, Jerusalem, Israel and

The University of Connecticut, Storrs, Connecticut, U.S.A.

E-mail address: zippin@math.huji.ac.il