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ABSTRACT. We prove existence results for travelling waves in discrete,
damped, dc-driven sine-Gordon equations with periodic boundary con-
ditions.

1. INTRODUCTION

The damped, dc-driven discrete sine-Gordon equation, known also as the
driven Frenkel-Kontorova model, with periodic boundary conditions, arises
as a model of many physical systems, including circular arrays of Josephson
junctions, the motions of disclocations in a crystal, the adsorbate layer on
on the surface of a crystal, ionic conductors, glassy materials, charge-density
wave transport, sliding friction, as well as the mechanical interpretation as a
model for a ring of pendula coupled by torsional springs (we refer to [7, 8, 9]
and references therein). This model has thus become a fundamental one for
nonlinear physics, and been the subject of many theoretical, numerical and
experimental studies. The system of equations is

(1) ¢} + ¢ +sin(¢;) = F + Kpj1 — 205 + ¢j—1], Vj€Z

with the parameters I' > 0, K > 0,F > 0, with the periodic boundary-
condition

(2) byan(t) = 65(t) + 2mm Vj € Z

where m > 1 (we note that in view of the boundary conditions we are re-
ally dealing with an n-dimensional system of ODE’s rather than an infinite-
dimensional one). In numerical simulations, as well as in experimental work
on systems modelled by (1),(2), it is observed that solutions often converge
to a travelling wave: a solution satisfying

3) 65() = F(t+37T),
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where the waveform f: R — R is a function satisfying
(4) fE+T)=f(t)+2r VieR.

However, as has been pointed out in [8], even the ezistence of such a solution,
has not been proven, except for the case of small K in which existence of a
travelling wave for some values of F' had been proven in [3].

In the ‘super-damped’ case, in which the second-derivative term in (1)
is removed, there are very satisfying results about existence and also global
stability of travelling waves ([1], theorem 2). Such results rely strongly on
monotonicity arguments. Recently Baesens and Mackay [2] have managed to
extend these arguments to the ‘overdamped’ of (1): their result applies when

I'>2vV2K +1

and says that whenever (1),(2) does not have stationary solutions, there exists
a travelling-wave solution which is globally stable. We do not know whether
in general the non-existence of stationary solutions implies the existence of a
travelling wave.

We note that a function f is a waveform if and only if it satisfies (4) and

(5) f"(t)+Tf'(t) +sin(f(t) = F+K[f(t+ %T) _2f(1) +f(t_ %T)]

Here we obtain two existence results for travelling-waves under conditions
not covered by the existing work, described above.

Theorem 1. For any F > 1 there exists a travelling-wave solution of (1),
(2).
Theorem 2. Assume that n does not divide m. Fizing any F > 0, for K

sufficiently large there exists a travelling-wave solution of (1), (2) for any
F>F.

We note that the assumption that n does not divide m cannot be removed
from theorem 2, since if n divides m the coupling term vanishes and (5),(4)
reduce to the equation of a running solution of a dc-forced pendulum, which
is known to have a solution only when F exceeds a positive critical value [4].

Uniqueness of the travelling wave cannot be expected for all the parameter
values for which existence holds. Indeed the numerical and experimental
evidence ([7, 8]) shows that for some parameter values there is more than one
travelling wave.

Along the way we will prove that

Proposition 3. A lower bound for the period T of any travelling wave is
given by
27

(6) T> "
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and an upper bound, in the case F' > 1, is given by
27
F-1
Let us note some questions that arise from our results and remain open:
(i) Let us define, for fixed I" > 0,

Fo(T, K) = inf{F > 0 | VF > F a travelling wave of (1), (2) exists}.

Theorem 1 shows that Fy(I', K) < 1 for all K. Theorem 2 shows that, when
n does not divide m, limg o Fo(T', K) = 0. Is it true, though, that for
each fixed T', K > 0 we have Fy(T', K) > 0 (we would expect this due to the
‘pinning’ phenomenon)?

(ii) Clarify the connection, if any, between the travelling waves obtained by
Levi [3] for small values of K > 0 and those obtained by us for large values
of K in theorem 2.

(iii) Investigate the issues of uniqueness vs. multiplicity and of stability of
the travelling waves, especially in the large-K regime for which existence has
been established by theorem 2.

(7) T <

2. PROOFS OF THE RESULTS

Our method of proof involves re-formulating the problem as a fixed point
problem in a Banach space, and applying results of nonlinear functional anal-
ysis. Our approach is thus close in spirit to [5], which deals with travelling
waves in globally coupled Josephson junctions.

We transform the problem (4),(5) by setting

_ 2T
T
F(8) = ulwt) + o,

w

where u satisfies:
(8) u(t+2m) =u(t) VteR.
(5) can then be written as
Wi (t) + Twu/(t) +sin(t + u(t))
m m
(9) = F—Fw—t—K[u(t—&—Zﬂ'g) —2u(t)—|—u<t—2ﬂ'gﬂ
Dividing by w? and setting
1
A=—
w
we re-write (9) in the form
u’(t) + AT (t) + AZsin(t + u(t))
— \2F_ 2 my _ _op™
(10) = AF AT+ K[u(szn) 2u(t)+u(t 2%)}.
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We note that if u(t) satisfies (8),(10) then so does u(t) = u(t + ¢) + ¢, for any
c € R. Thus by adjusting ¢ we may assume that u satisfies

(11) /O% w(t)dt = 0.

We note now that if u satisfies (8),(10), then by integrating both sides of (10)
over [0, 2] we obtain

F 1 2m .
(12) F=—+ —/ sin(s + u(s))ds.
)\ 2 0
We can thus re-write (10) as
1 2m
(1) + AT (0) 4 Nsin(t +u(t) = Vo / sin(s + u(s))ds
T Jo
2 my _o
(13) + AAKP«f+2ﬂn) m40+w(t 2wn)}

Conversely, if u satisfies (12) and (13) then it satisfies (10). We have thus
reformulated our problem as: find solutions (A, u) of (8),(11),(12),(13). The
idea now is to consider A as a parameter in (13) and try to find solutions u
satisfying (8),(11),(13) and then substitute A and w into (12) to obtain the
corresponding value of F'. This is the same idea as used in the numerical
method presented in [7], but here it is used as part of existence proofs. We
claim that

Proposition 4. For any value X, there exists a solution u of (13) satisfying
(8),(11).

To prove this we will use the Schauder fixed-point theorem. We denote by
X,Y the Banach spaces of real-valued functions

2m
X = {u € H?[0,27] | u(0) = u(27), u'(0) =/(27), /0 u(s)ds = 0},

27
Y = {u € L?[0,27] | /0 u(s)ds = 0},

il = (55 [ (wtspas)’,

and by Ly : X — Y the linear mapping
Ly(u) =u" + A\l'u — )\QK[u<t + 27rﬁ) —2u(t) + u(t - 27Tm>]
n n

with the norm

We want to show that this mapping is invertible and derive an upper bound
for the norm of its inverse. Noting that any v € X can be decomposed in a
Fourier series u(t) =}, a;e’ (with a_; = @), we apply Ly to the Fourier
elements, obtaining,

L/\(eilt) _ ,LLleilt,
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where
= —1* - 2K/\2(COS (Qmel> - 1) + AT,
so that
(14) |MH::[(F-+21(A2(cos<2t?ﬂ)-—1))2—%A2FIQ}%

which does not vanish if I' > 0. Thus the mapping Ly has an inverse satisfying

Li'(e™) = ie“t. Since L)' takes Y onto X, and since X is compactly

embedded in Y, we may consider L;l as a mapping from Y to itself, in which
case it is a compact mapping. We also note using (14) that

11
15 Li'lyy < — < —.
(15) 1N vy = mas o < S5

We also define the nonlinear operator N : Y — Y by

2T

It is easy to see that IV is continuous, and that the range of N is contained
in a bounded ball in Y, indeed we have

N(u)(t) = —sin(t + u(t)) + = /0 i sin(s + u(s))ds.

1
2

mmu+wmzqz(1é%@m@+u@»ma <1,

2m
and since N (u) is the orthogonal projection of — sin(¢ 4+ u(¢)) into Y, we have
(16) IN@WIy <1 VueY.

We can now rewrite the problem (8),(11),(13) as the fixed-point problem:
(17) u=MNL,"oN(u)

The operator on the right-hand side is compact by the compactness of L;l,
and has a bounded range by (15),(16), so that Schauder’s fixed-point theorem
implies that (17) has a solution, proving proposition 4 (we note that by a
simple bootstrap argument a solution in Y is in fact smooth). Moreover,
defining
Y= {(\u)€0,00) xY |u=NNLy"oN(u)},

Rabinowitz’s continuation theorem [6] implies that the connected component
of ¥ containing (A, u) = (0,0), which we denote by C, is unbounded in [0, co) x
Y. Since for any A\g > 0 we have, from (16), (17), the bound |ju|ly < 3¢ for
solutions (A, u) of (17) with A € [0, \g], the unboundedness of the set C' must
be in the A-direction, that is, there exist (A,u) € C with arbitrarily large
values of \. We can now consider the right-hand side of (12) as a functional
on [0,00) x Y

(18) 0w =

1 2
+ by /0 sin(s + u(s))ds,
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and our aim is to prove solvability of the equation
SN\ u)=F, (\u)eC.
We note that by the boundedness of the sine function we have

(19) B(\, u) = +o0,

lim
A—=0+, (A\u)eC
(20) limsup @A\, u) <1.

A——+o0, (A\u)eC
Since C' is a connected set and ® is continuous, (19) implies that

Proposition 5. For any F satisfying
(21) F>F= inf ®(\u),

Nu)eC
there exists a travelling wave.

Since (20) implies that F < 1, this proves theorem 1.

We now prove the lower and upper bounds for the period T of travelling-
waves given in proposition 3. These follow from (12) and from

Proposition 6. For any (A, u) € ¥ with A > 0 we have
T r
0< —<P(A —+1.
< i\ <O\ u) < 3 +

The upper bound follows immediately from the definition (18) of ®(\, u)

since 5= fo% sin(s +u(s))ds < 1. The lower bound follows from the claim
that

Nu) e = /27r sin(s +u(s))ds > 0.
0

To prove this claim we multiply (13) by 1 4 «/(¢) and integrate over [0, 27],
noting that

/027T u(s + 27‘(%)“’(8)618 _ /027T ()l (S - 2#%)(15 . /0277 u/(s)u(s om

so that we obtain
1 27 27

(u/(s))%ds = )\i sin(s + u(s))ds.

% 0 21 0

This proves the claim since the right-hand side is non-negative and cannot
vanish unless u = 0, but (A\,0) € ¥ for A > 0.

We now turn to the proof of theorem 2.

)ds,
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Proposition 7. Assume n does not divide [ and I' > 0. Given any Ao > 0
and € > 0, there exists Ko such that for K > Ky we have that

(22) ’; /27r sin(s + u(s))ds| < e if (Ao,u) € X.
T Jo

To see that proposition 7 implies theorem 2, we fix some F > 0 and
we choose \g > % We then set ¢ = F — )\LO and choose Ky according to
proposition 7, so that (22) holds, which implies that when K > K, we have
®(No,u) < F for any u with (A\g,u) € C. Thus F < F, where F is defined
by (21), so proposition 5 implies the existence of a travelling wave for any
F>F.

We now prove proposition 7. Let A\g > 0 and ¢ > 0 be given. Assume
(Ao, u) € 3, so that (17) holds with A = Ag. Let (m,n) denote the greatest
common divisor of m,n and let

m n

P= )y 17 (mon)

Since we assume n does not divide m we have ¢ > 2. Let Y be the subspace of
Y consisting of 2Z-periodic functions, and let Y; be its orthogonal complement
in Y. We denote by P the orthogonal projection of Y to Y. Setting

ug = P(u), ur = (I — P)(u),

we have u = ug + uy with ug € Yy, u; € Y3. Applying P and I — P to (17),
and noting that L) commutes with P, we have

(23) g = XéL;(} oPo N(ug+up)

(24) uy = ALy o (I = P)o N(ug + uy)

We will now use (14) to derive a bound for HL;01|Y1 Iy, ¥, which goes to 0 as
K — oo. We note that

1
25 Lt < max —
( ) ” Ao |Y1HY1,Y1 = >0 q)ffl "ullv

so we need to find lower bounds for the |y;|’s for which ¢ does not divide .
We define

27pl
p = 1max cos (—)
I>1, qf1 q
and note that since p, ¢ are coprime we have p < 1.

We define
a=2KN\(1-p) - VK,
and we shall henceforth assume that K is sufficiently large so that a > 0. For
each { > 1 we have either I2 < o or [2 > «, and we treat each of these cases
seperately.
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(1) In case I? < a, we have
2+2KX(p—1) < —VK,
and by the definition of p

2mml 27pl
cos ( ) = cos (—) < p,
n q

so that

2mml
I? +2K>\3<cos ( Zn ) — 1) < VK,
which by (14) implies
(26) | > VK.
(2) In case [? > «, we have, since (14) implies |p| > ATl
1

2

(27) | = ATV = oI’ |2K A (1 — p) — VK

From (26),(27) we obtain that limg_, || = +00 uniformly with respect to
[ > 1 which are not multiples of ¢, hence by (25)

Klgnoo ||L>T01|Y1 HY17Y1 =0.
In particular we may choose K such that for K > Ky we will have
_ €
||L)\01|Y1||Y17Y1 < N2
0
By (24) and (16) this implies

(28) [ully <e
Thus
’%/0 ! sin(s + u(s))ds‘ < % ; ' sin(s + uo(s))ds‘

2m

+ % [sin(s + u(s)) — sin(s + uo(s))]ds‘
0

2m ) 1 27

(29) < o /. sm(s—!—uo(s))ds‘ + ﬂ/o |ui(s)|ds

From (28) and the Cauchy-Schwartz inequality we have

(30) % /OQW lun (s)]ds < \/12?(/0% (ul(s))2d3>% <e

From trigonometry we have

/0 Sin(s+u0(s))ds:/0 sin(s) cos(uo(s))ds—l—/o cos(s) sin(ug(s))ds,
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but the functions cos(ug(s)), sin(ug(s)) are 2f—periodic with ¢ > 2, which

implies that they are orthogonal to cos(s), sin(s), so that we have

2m
/ sin(s + ug(s))ds =0,
0

which together with (29) and (30) implies (22), concluding the proof of propo-
sition 7.
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