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Abstract. We prove existence results for travelling waves in discrete,

damped, dc-driven sine-Gordon equations with periodic boundary con-
ditions.

1. Introduction

The damped, dc-driven discrete sine-Gordon equation, known also as the
driven Frenkel-Kontorova model, with periodic boundary conditions, arises
as a model of many physical systems, including circular arrays of Josephson
junctions, the motions of disclocations in a crystal, the adsorbate layer on
on the surface of a crystal, ionic conductors, glassy materials, charge-density
wave transport, sliding friction, as well as the mechanical interpretation as a
model for a ring of pendula coupled by torsional springs (we refer to [7, 8, 9]
and references therein). This model has thus become a fundamental one for
nonlinear physics, and been the subject of many theoretical, numerical and
experimental studies. The system of equations is

(1) φ′′j + Γφ′j + sin(φj) = F + K[φj+1 − 2φj + φj−1], ∀j ∈ Z

with the parameters Γ > 0,K > 0, F > 0, with the periodic boundary-
condition

(2) φj+n(t) = φj(t) + 2πm ∀j ∈ Z

where m ≥ 1 (we note that in view of the boundary conditions we are re-
ally dealing with an n-dimensional system of ODE’s rather than an infinite-
dimensional one). In numerical simulations, as well as in experimental work
on systems modelled by (1),(2), it is observed that solutions often converge
to a travelling wave: a solution satisfying

(3) φj(t) = f
(
t + j

m

n
T

)
,
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where the waveform f : R → R is a function satisfying

(4) f(t + T ) = f(t) + 2π ∀t ∈ R.

However, as has been pointed out in [8], even the existence of such a solution,
has not been proven, except for the case of small K in which existence of a
travelling wave for some values of F had been proven in [3].

In the ‘super-damped’ case, in which the second-derivative term in (1)
is removed, there are very satisfying results about existence and also global
stability of travelling waves ([1], theorem 2). Such results rely strongly on
monotonicity arguments. Recently Baesens and Mackay [2] have managed to
extend these arguments to the ‘overdamped’ of (1): their result applies when

Γ > 2
√

2K + 1

and says that whenever (1),(2) does not have stationary solutions, there exists
a travelling-wave solution which is globally stable. We do not know whether
in general the non-existence of stationary solutions implies the existence of a
travelling wave.

We note that a function f is a waveform if and only if it satisfies (4) and

(5) f ′′(t) + Γf ′(t) + sin(f(t)) = F + K
[
f
(
t +

m

n
T

)
− 2f(t) + f

(
t− m

n
T

)]
.

Here we obtain two existence results for travelling-waves under conditions
not covered by the existing work, described above.

Theorem 1. For any F > 1 there exists a travelling-wave solution of (1),
(2).

Theorem 2. Assume that n does not divide m. Fixing any F̃ > 0, for K
sufficiently large there exists a travelling-wave solution of (1), (2) for any
F ≥ F̃ .

We note that the assumption that n does not divide m cannot be removed
from theorem 2, since if n divides m the coupling term vanishes and (5),(4)
reduce to the equation of a running solution of a dc-forced pendulum, which
is known to have a solution only when F exceeds a positive critical value [4].

Uniqueness of the travelling wave cannot be expected for all the parameter
values for which existence holds. Indeed the numerical and experimental
evidence ([7, 8]) shows that for some parameter values there is more than one
travelling wave.

Along the way we will prove that

Proposition 3. A lower bound for the period T of any travelling wave is
given by

(6) T >
2πΓ
F

.
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and an upper bound, in the case F > 1, is given by

(7) T <
2πΓ

F − 1
.

Let us note some questions that arise from our results and remain open:
(i) Let us define, for fixed Γ > 0,

F0(Γ,K) = inf{F̃ ≥ 0 | ∀F ≥ F̃ a travelling wave of (1), (2) exists}.
Theorem 1 shows that F0(Γ,K) ≤ 1 for all K. Theorem 2 shows that, when
n does not divide m, limK→∞ F0(Γ,K) = 0. Is it true, though, that for
each fixed Γ,K > 0 we have F0(Γ,K) > 0 (we would expect this due to the
‘pinning’ phenomenon)?
(ii) Clarify the connection, if any, between the travelling waves obtained by
Levi [3] for small values of K > 0 and those obtained by us for large values
of K in theorem 2.
(iii) Investigate the issues of uniqueness vs. multiplicity and of stability of
the travelling waves, especially in the large-K regime for which existence has
been established by theorem 2.

2. proofs of the results

Our method of proof involves re-formulating the problem as a fixed point
problem in a Banach space, and applying results of nonlinear functional anal-
ysis. Our approach is thus close in spirit to [5], which deals with travelling
waves in globally coupled Josephson junctions.

We transform the problem (4),(5) by setting

ω =
2π

T

f(t) = u(ωt) + ωt,

where u satisfies:

(8) u(t + 2π) = u(t) ∀t ∈ R.

(5) can then be written as

ω2u′′(t) + Γωu′(t) + sin(t + u(t))

= F − Γω + K
[
u
(
t + 2π

m

n

)
− 2u(t) + u

(
t− 2π

m

n

)]
(9)

Dividing by ω2 and setting

λ =
1
ω

we re-write (9) in the form

u′′(t) + λΓu′(t) + λ2 sin(t + u(t))

= λ2F − λΓ + λ2K
[
u
(
t + 2π

m

n

)
− 2u(t) + u

(
t− 2π

m

n

)]
.(10)
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We note that if u(t) satisfies (8),(10) then so does ũ(t) = u(t + c) + c, for any
c ∈ R. Thus by adjusting c we may assume that u satisfies

(11)
∫ 2π

0

u(t)dt = 0.

We note now that if u satisfies (8),(10), then by integrating both sides of (10)
over [0, 2π] we obtain

(12) F =
Γ
λ

+
1
2π

∫ 2π

0

sin(s + u(s))ds.

We can thus re-write (10) as

u′′(t) + λΓu′(t) + λ2 sin(t + u(t)) = λ2 1
2π

∫ 2π

0

sin(s + u(s))ds

+ λ2K
[
u
(
t + 2π

m

n

)
− 2u(t) + u

(
t− 2π

m

n

)]
.(13)

Conversely, if u satisfies (12) and (13) then it satisfies (10). We have thus
reformulated our problem as: find solutions (λ, u) of (8),(11),(12),(13). The
idea now is to consider λ as a parameter in (13) and try to find solutions u
satisfying (8),(11),(13) and then substitute λ and u into (12) to obtain the
corresponding value of F . This is the same idea as used in the numerical
method presented in [7], but here it is used as part of existence proofs. We
claim that
Proposition 4. For any value λ, there exists a solution u of (13) satisfying
(8),(11).

To prove this we will use the Schauder fixed-point theorem. We denote by
X, Y the Banach spaces of real-valued functions

X = {u ∈ H2[0, 2π] | u(0) = u(2π), u′(0) = u′(2π),
∫ 2π

0

u(s)ds = 0},

Y = {u ∈ L2[0, 2π] |
∫ 2π

0

u(s)ds = 0},

with the norm

‖u‖Y =
( 1

2π

∫ 2π

0

(u(s))2ds
) 1

2
,

and by Lλ : X → Y the linear mapping

Lλ(u) = u′′ + λΓu′ − λ2K
[
u
(
t + 2π

m

n

)
− 2u(t) + u

(
t− 2π

m

n

)]
.

We want to show that this mapping is invertible and derive an upper bound
for the norm of its inverse. Noting that any u ∈ X can be decomposed in a
Fourier series u(t) =

∑
l 6=0 ale

ilt (with a−l = al), we apply Lλ to the Fourier
elements, obtaining,

Lλ(eilt) = µle
ilt,
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where

µl = −l2 − 2Kλ2
(

cos
(2πml

n

)
− 1

)
+ λlΓi,

so that

(14) |µl| =
[(

l2 + 2Kλ2
(

cos
(2πml

n

)
− 1

))2

+ λ2l2Γ2
] 1

2
,

which does not vanish if Γ > 0. Thus the mapping Lλ has an inverse satisfying
L−1

λ (eilt) = 1
µl

eilt. Since L−1
λ takes Y onto X, and since X is compactly

embedded in Y , we may consider L−1
λ as a mapping from Y to itself, in which

case it is a compact mapping. We also note using (14) that

(15) ‖L−1
λ ‖Y,Y ≤ max

l≥1

1
|µl|

≤ 1
λΓ

.

We also define the nonlinear operator N : Y → Y by

N(u)(t) = − sin(t + u(t)) +
1
2π

∫ 2π

0

sin(s + u(s))ds.

It is easy to see that N is continuous, and that the range of N is contained
in a bounded ball in Y , indeed we have

‖ sin(t + u(t))‖L2 =
( 1

2π

∫ 2π

0

(sin(s + u(s)))2ds
) 1

2 ≤ 1,

and since N(u) is the orthogonal projection of − sin(t+u(t)) into Y , we have

(16) ‖N(u)‖Y ≤ 1 ∀u ∈ Y.

We can now rewrite the problem (8),(11),(13) as the fixed-point problem:

(17) u = λ2L−1
λ ◦N(u)

The operator on the right-hand side is compact by the compactness of L−1
λ ,

and has a bounded range by (15),(16), so that Schauder’s fixed-point theorem
implies that (17) has a solution, proving proposition 4 (we note that by a
simple bootstrap argument a solution in Y is in fact smooth). Moreover,
defining

Σ = {(λ, u) ∈ [0,∞)× Y | u = λ2L−1
λ ◦N(u)},

Rabinowitz’s continuation theorem [6] implies that the connected component
of Σ containing (λ, u) = (0, 0), which we denote by C, is unbounded in [0,∞)×
Y . Since for any λ0 > 0 we have, from (16), (17), the bound ‖u‖Y ≤ λ0

Γ for
solutions (λ, u) of (17) with λ ∈ [0, λ0], the unboundedness of the set C must
be in the λ-direction, that is, there exist (λ, u) ∈ C with arbitrarily large
values of λ. We can now consider the right-hand side of (12) as a functional
on [0,∞)× Y :

(18) Φ(λ, u) =
Γ
λ

+
1
2π

∫ 2π

0

sin(s + u(s))ds,
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and our aim is to prove solvability of the equation

Φ(λ, u) = F, (λ, u) ∈ C.

We note that by the boundedness of the sine function we have

(19) lim
λ→0+, (λ,u)∈C

Φ(λ, u) = +∞,

(20) lim sup
λ→+∞, (λ,u)∈C

Φ(λ, u) ≤ 1.

Since C is a connected set and Φ is continuous, (19) implies that

Proposition 5. For any F satisfying

(21) F > F ≡ inf
(λ,u)∈C

Φ(λ, u),

there exists a travelling wave.

Since (20) implies that F ≤ 1, this proves theorem 1.

We now prove the lower and upper bounds for the period T of travelling-
waves given in proposition 3. These follow from (12) and from

Proposition 6. For any (λ, u) ∈ Σ with λ > 0 we have

0 <
Γ
λ

< Φ(λ, u) <
Γ
λ

+ 1.

The upper bound follows immediately from the definition (18) of Φ(λ, u)
since 1

2π

∫ 2π

0
sin(s + u(s))ds < 1. The lower bound follows from the claim

that

(λ, u) ∈ Σ ⇒
∫ 2π

0

sin(s + u(s))ds > 0.

To prove this claim we multiply (13) by 1 + u′(t) and integrate over [0, 2π],
noting that∫ 2π

0

u
(
s + 2π

m

n

)
u′(s)ds =

∫ 2π

0

u(s)u′
(
s− 2π

m

n

)
ds = −

∫ 2π

0

u′(s)u
(
s− 2π

m

n

)
ds,

so that we obtain

Γ
1
2π

∫ 2π

0

(u′(s))2ds = λ
1
2π

∫ 2π

0

sin(s + u(s))ds.

This proves the claim since the right-hand side is non-negative and cannot
vanish unless u ≡ 0, but (λ, 0) 6∈ Σ for λ > 0.

We now turn to the proof of theorem 2.
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Proposition 7. Assume n does not divide l and Γ > 0. Given any λ0 > 0
and ε > 0, there exists K0 such that for K ≥ K0 we have that

(22)
∣∣∣ 1
2π

∫ 2π

0

sin(s + u(s))ds
∣∣∣ < ε if (λ0, u) ∈ Σ.

To see that proposition 7 implies theorem 2, we fix some F̃ > 0 and
we choose λ0 > Γ

F̃
. We then set ε = F̃ − Γ

λ0
and choose K0 according to

proposition 7, so that (22) holds, which implies that when K ≥ K0 we have
Φ(λ0, u) < F̃ for any u with (λ0, u) ∈ C. Thus F < F̃ , where F is defined
by (21), so proposition 5 implies the existence of a travelling wave for any
F ≥ F̃ .

We now prove proposition 7. Let λ0 > 0 and ε > 0 be given. Assume
(λ0, u) ∈ Σ, so that (17) holds with λ = λ0. Let (m,n) denote the greatest
common divisor of m,n and let

p =
m

(m,n)
, q =

n

(m,n)
.

Since we assume n does not divide m we have q ≥ 2. Let Y0 be the subspace of
Y consisting of 2π

q -periodic functions, and let Y1 be its orthogonal complement
in Y . We denote by P the orthogonal projection of Y to Y0. Setting

u0 = P (u), u1 = (I − P )(u),

we have u = u0 + u1 with u0 ∈ Y0, u1 ∈ Y1. Applying P and I − P to (17),
and noting that Lλ commutes with P , we have

(23) u0 = λ2
0L

−1
λ0
◦ P ◦N(u0 + u1)

(24) u1 = λ2
0L

−1
λ0
◦ (I − P ) ◦N(u0 + u1)

We will now use (14) to derive a bound for ‖L−1
λ0
|Y1‖Y1,Y1 which goes to 0 as

K →∞. We note that

(25) ‖L−1
λ0
|Y1‖Y1,Y1 ≤ max

l≥1, q 6 | l

1
|µl|

,

so we need to find lower bounds for the |µl|’s for which q does not divide l.
We define

ρ = max
l≥1, q 6 | l

cos
(2πpl

q

)
and note that since p, q are coprime we have ρ < 1.

We define
α = 2Kλ2

0(1− ρ)−
√

K,

and we shall henceforth assume that K is sufficiently large so that α > 0. For
each l ≥ 1 we have either l2 < α or l2 ≥ α, and we treat each of these cases
seperately.
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(1) In case l2 < α, we have

l2 + 2Kλ2
0(ρ− 1) < −

√
K,

and by the definition of ρ

cos
(2πml

n

)
= cos

(2πpl

q

)
≤ ρ,

so that

l2 + 2Kλ2
0

(
cos

(2πml

n

)
− 1

)
< −

√
K,

which by (14) implies

(26) |µl| >
√

K.

(2) In case l2 ≥ α, we have, since (14) implies |µl| > λ0Γl:

(27) |µl| ≥ λ0Γ
√

α = λ0Γ
[
2Kλ2

0(1− ρ)−
√

K
] 1

2
.

From (26),(27) we obtain that limK→∞ |µl| = +∞ uniformly with respect to
l ≥ 1 which are not multiples of q, hence by (25)

lim
K→∞

‖L−1
λ0
|Y1‖Y1,Y1 = 0.

In particular we may choose K0 such that for K ≥ K0 we will have

‖L−1
λ0
|Y1‖Y1,Y1 <

ε

λ2
0

.

By (24) and (16) this implies

(28) ‖u1‖Y ≤ ε.

Thus∣∣∣ 1
2π

∫ 2π

0

sin(s + u(s))ds
∣∣∣ ≤

∣∣∣ 1
2π

∫ 2π

0

sin(s + u0(s))ds
∣∣∣

+
∣∣∣ 1
2π

∫ 2π

0

[sin(s + u(s))− sin(s + u0(s))]ds
∣∣∣

≤
∣∣∣ 1
2π

∫ 2π

0

sin(s + u0(s))ds
∣∣∣ +

1
2π

∫ 2π

0

|u1(s)|ds(29)

From (28) and the Cauchy-Schwartz inequality we have

(30)
1
2π

∫ 2π

0

|u1(s)|ds ≤ 1√
2π

( ∫ 2π

0

(u1(s))2ds
) 1

2 ≤ ε.

From trigonometry we have∫ 2π

0

sin(s + u0(s))ds =
∫ 2π

0

sin(s) cos(u0(s))ds +
∫ 2π

0

cos(s) sin(u0(s))ds,



10 GUY KATRIEL

but the functions cos(u0(s)), sin(u0(s)) are 2π
q -periodic with q ≥ 2, which

implies that they are orthogonal to cos(s), sin(s), so that we have∫ 2π

0

sin(s + u0(s))ds = 0,

which together with (29) and (30) implies (22), concluding the proof of propo-
sition 7.
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