
The Radon transform of functions of matrix

argument

Elena Ournycheva

Boris Rubin

Institute of Mathematics, Hebrew University, Jerusalem 91904,
ISRAEL

E-mail address: ournyce@math.huji.ac.il

Institute of Mathematics, Hebrew University, Jerusalem 91904,
ISRAEL

E-mail address: boris@math.huji.ac.il



2000 Mathematics Subject Classification. Primary 44A12;
Secondary 47G10

Key words and phrases. Radon transforms, matrix spaces, fractional integrals,
inversion formulas

The authors were supported in part by the Edmund Landau Center for Research
in Mathematical Analysis and Related Areas, sponsored by the Minerva

Foundation (Germany).

Preprint No. 14
2003/2004

Abstract. The monograph contains a systematic treatment of a circle of
problems in analysis and integral geometry related to inversion of the Radon
transform on the space of real rectangular matrices. This transform assigns to
a function f on the matrix space the integrals of f over the so-called matrix
planes, the linear manifolds determined by the corresponding matrix equations.
Different inversion methods are discussed. They rely on close connection be-
tween the Radon transform, the Fourier transform, the G̊arding-Gindikin frac-
tional integrals, and matrix modifications of the Riesz potentials. A special
emphasis is made on new higher rank phenomena, in particular, on possibly
minimal conditions under which the Radon transform is well defined and can
be explicitly inverted. Apart of the space of Schwartz functions, we also con-
sider Lp- spaces and the space of continuous functions. Many classical results
for the Radon transform on Rn are generalized to the higher rank case.
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Introduction

0.1. Preface

One of the basic problems of integral geometry reads as follows [Gel]. Let X be
some space of points x, and let T be a certain family of manifolds τ ⊂ X. Consider
the mapping f(x) → f̂(τ) =

∫
τ

f which assigns to f its integrals over all τ ∈ T.
This mapping is usually called the Radon transform of f . How do we recover f(x)
from f̂(τ)? This rather general problem goes back to Lorentz, Minkowski, Blaschke,
Funk, Radon etc., and has numerous applications; see [Eh], [GGG], [GGV], [H],
[Na], [Ru3], [RK], [SSW], and references therein.

A typical example is the so-called k-plane transform on Rn which assigns to
f(x), x ∈ Rn, a collection of integrals of f over all k-dimensional planes in Rn. This
well known transformation gets a new flavor if we formally replace the dimension n
by the product nm, n ≥ m, and regard Rnm as the space Mn,m of n×m matrices
x = (xi,j). Once we have accepted this point of view, then f(x) becomes a function
of matrix argument and new “higher rank” phenomena come into play.

Let Vn,n−k be the Stiefel manifold of orthonormal (n − k)-frames in Rn, i.e.,
Vn,n−k = {ξ : ξ ∈ Mn,n−k, ξ′ξ = In−k} where ξ′ denotes the transpose of ξ, In−k

is the identity matrix, and ξ′ξ is understood in the sense of matrix multiplication.
Given ξ ∈ Vn,n−k and t ∈ Mn−k,m, we define the matrix k-plane

(0.1) τ ≡ τ(ξ, t) = {x : x ∈ Mn,m, ξ′x = t}.
Let T be the manifold of all matrix k-planes in Mn,m. Each τ ∈ T is topologically
an ordinary km-dimensional plane in Rnm, but the set T has measure zero in the
manifold of all such planes. The relevant Radon transform has the form

(0.2) f̂(τ) =
∫

x∈τ

f(x), τ ∈ T,

the integration being performed against the corresponding canonical measure. If
m = 1, then T is the manifold of k-dimensional affine planes in Rn, and f̂(τ) is the
usual k-plane transform. The inversion problem for (0.2) reads as follows: How do
we reconstruct a function f from the integrals f̂(τ), τ ∈ T? Our aim is to obtain
explicit inversion formulas for the Radon transform (0.2) for continuous and, more
generally, locally integrable functions f subject to possibly minimal assumptions at
infinity.

A systematic study of Radon transforms on matrix spaces was initiated by
E.E. Petrov [P1] in 1967 and continued in [Č], [Gr1], [P2]–[P4], [Sh1], [Sh2].
Petrov [P1], [P2] considered the case k = n −m and obtained inversion formulas
for functions belonging to the Schwartz space. His method is based on the classical
idea of decomposition of the delta function in plane waves; cf. [GSh1]. Results of
Petrov were extended in part by L.P. Shibasov [Sh2] to all 1 ≤ k ≤ n−m.

1



2 INTRODUCTION

The following four inversion methods are customarily used in the theory of
Radon transforms. These are (a) the Fourier transform method (based on the
projection-slice theorem), (b) the method of mean value operators, (c) the method of
Riesz potentials, and (d) decomposition in plane waves. Of course, this classification
is vague and other names are also attributed in the literature. One could also
mention implementation of wavelet transforms, but this can be viewed as a certain
regularization or computational procedure for divergent integrals arising in (b)–(d).
In Section 0.2, we briefly recall some known facts for the k-plane transform on Rn

which corresponds to the case m = 1 in (0.2). Our task is to extend this theory
to the higher rank case m > 1. The main results are exhibited in Section 0.3.
A considerable part of the monograph (Chapters 1–3) is devoted to developing a
necessary background and analytic tools which one usually gets almost “for free”
in the rank-one case. We are not concerned with such important topics as the
range characterization, the relevant Paley-Wiener theorems [P3], [P4], the support
theorems, the convolution-backprojection method, and numerical implementation.
One should also mention a series of papers devoted to the Radon transform on
Grassmann manifolds; see, e.g., [Go], [GK1], [GK2], [Gr2], [GR], [Ka], [Ru5],
[Str2], and references therein. This topic is conceptually close to ours.

0.2. The k-plane Radon transform on Rn

Many authors contributed to this theory; see, e.g., [GGG], [H], [Ke], [Ru4]
where one can find further references. We recall some main results which will be
extended in the sequel to the higher rank case.

0.2.1. Definitions and the framework of the inversion problem. Let
Gn,k be the manifold of affine k-dimensional planes in Rn, 0 < k < n. The integral
(0.2) with m = 1 can be interpreted in different ways. Namely, if we define a k-
plane τ ∈ Gn,k by (0.1) where ξ ∈ Vn,n−k and t ∈ Rn−k is a column vector, then
the k-plane Radon transform is represented as

(0.3) f̂(τ) ≡ f̂(ξ, t) =
∫

{y: y∈Rn; ξ′y=0}

f(y + ξt) dξy,

where dξy is the induced Lebesgue measure on the plane {y : ξ′y = 0}. For
k = n − 1, this is the classical hyperplane Radon transform [H], [GGV]. Clearly,
the parameterization τ ≡ τ(ξ, t) is not one-to-one. An alternative parameteri-
zation is as follows. Let η belong to the ordinary Grassmann manifold Gn,k of
k-dimensional linear subspaces of Rn, and η⊥ be the orthogonal complement of η.
The parameterization

τ ≡ τ(η, λ), η ∈ Gn,k, λ ∈ η⊥,

is one-to-one and gives

(0.4) f̂(τ) ≡ f̂(η, λ) =
∫

η

f(y + λ)dy.
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The corresponding dual Radon transform of a function ϕ(τ) on Gn,k is defined
as the mean value of ϕ(τ) over all k-dimensional planes τ through x ∈ Rn:

(0.5) ϕ̌(x) =
∫

SO(n)

ϕ(γη0 + x)dγ =
∫

Gn,k

ϕ(η, Prη⊥x)dη.

Here, η0 is an arbitrary fixed k-plane through the origin, and Prη⊥x denotes the
orthogonal projection of x onto η⊥. A duality relation

(0.6)
∫

Rn

f(x)ϕ̌(x)dx =
∫

Gn,k

f̂(τ)ϕ(τ)dτ,

holds provided that either side of this equality is finite for f and ϕ replaced by |f |
and |ϕ|, respectively [H], [So]. Here and on, dτ stands for the canonical measure
on Gn,k; see [Ru4].

The k-plane transform is injective for all 0 < k < n on “standard” function
spaces where it is well defined (see Theorem 0.1 below). If k < n − 1, then the
inversion problem for f̂ is overdetermined because

dimGn,k = (n− k)(k + 1) > n = dimRn,

and the dual Radon transform is non-injective. If k = n − 1, then the dimension
of the affine Grassmanian Gn,n−1 is just n. In this case, the Radon transform and
its dual are injective simultaneously; see also [Ru5] where this fact is extended to
Radon transforms on affine Grassmann manifolds.

The following theorem specifies standard classes of functions for which the k-
plane transform is well defined.

Theorem 0.1.
(i) Let f(x) be a continuous function on Rn satisfying f(x) = O(|x|−a). If a > k

then the Radon transform f̂(τ) is finite for all τ ∈ Gn,k.
(ii) If (1+|x|)αf(x) ∈ L1 for some α ≥ k−n, in particular, if f ∈ Lp, 1 ≤ p < n/k,

then f̂(τ) is finite for almost all τ ∈ Gn,k.

Here, (i) is obvious, and (ii) is due to Solmon [So]. The conditions a > k,
α ≥ k − n, and p < n/k cannot be improved. For instance, if p ≥ n/k and
f(x) = (2 + |x|)−n/p(log(2 + |x|))−1 (∈ Lp), then f̂(τ) ≡ ∞.

More informative statements can be found in [Ru4]. For instance, if |τ | denotes
the euclidean distance from the k-plane τ to the origin, then

(0.7)
∫

Gn,k

f̂(τ)
|τ |λ−n

(1 + |τ |2)λ/2
dτ = c

∫

Rn

f(x)
|x|λ−n

(1 + |x|2)(λ−k)/2
dx,

c =
Γ((λ− k)/2) Γ(n/2)
Γ(λ/2) Γ((n− k)/2)

, Re λ > k

(see Theorem 2.3 in [Ru4]). Choosing λ = n, we obtain

(0.8)
∫

Gn,k

f̂(τ)
(1 + |τ |2)n/2

dτ =
∫

Rn

f(x)
(1 + |x|2)(n−k)/2

dx.

It is instructive to compare (0.8) with [So, Theorem 3.8] where, instead of explicit
equality (0.8), one has an inequality (which is of independent interest!). Different
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modifications of (0.7) and (0.8), which control the Radon transform and its dual at
the origin and near spherical surfaces, can be found in [Ru4].

It is worth noting that “Solmon’s condition” (1 + |x|)k−nf(x) ∈ L1(Rn) is not
necessary for the a.e. existence of f̂(τ) because, the Radon transform essentially has
an exterior (or “right-sided”) nature; see (0.11) below. For any rapidly decreasing
function f ∈ C∞(Rn\{0}) satisfying f(x) ∼ |x|−n as |x| → 0, the Solmon condition
fails, but f̂(ξ, t) < ∞ a.e. (it is finite for all τ 63 0). However, if for f ≥ 0,
one also assumes f̂(τ) ∈ L1

loc (in addition to f̂(τ) < ∞ a.e.), then, necessarily,
(1 + |x|)k−nf(x) ∈ L1 [So, Theorem 3.9].

0.2.2. The k-plane transform and the dual k-plane transform of radial
functions. There is an important connection between the transformations f → f̂
and ϕ → ϕ̌, and the Riemann-Liouville (or Abel) fractional integrals

(0.9) (Iα
+f)(s)=

1
Γ(α)

s∫

0

f(r)
(s−r)1−α

dr, (Iα
−f)(s)=

1
Γ(α)

∞∫

s

f(r)
(r−s)1−α

dr,

Re α > 0. Let σn−1 = 2πn/2/Γ(n/2) be the area of the unit sphere Sn−1 in Rn.
The following statement is known; see, e.g., [Ru4].

Theorem 0.2. For x ∈ Rn and τ ≡ (η, λ) ∈ Gn,k, let

(0.10) r = |x| = dist(o, x), s = |λ| = dist(o, τ)

denote the corresponding euclidean distances from the origin. If f(x) and ϕ(τ)
are radial functions, i.e., f(x) ≡ f0(r) and ϕ(τ) ≡ ϕ0(s), then f̂(τ) and ϕ̌(x) are
represented by the Abel type integrals

(0.11) f̂(τ) = σk−1

∞∫

s

f0(r)(r2 − s2)k/2−1rdr,

(0.12) ϕ̌(x) =
σk−1 σn−k−1

σn−1 rn−2

r∫

0

ϕ0(s)(r2 − s2)k/2−1sn−k−1ds,

provided that these integrals exist in the Lebesgue sense.

Obvious transformations reduce (0.11) and (0.12) to the corresponding frac-
tional integrals (0.9).

0.2.3. Inversion of the k-plane transform. Abel type representations (0.11)
and (0.12) enable us to invert the k-plane transform and its dual for radial func-
tions. To this end, we utilize diverse methods of fractional calculus described, e.g.,
in [Ru1] and [SKM]. In the general case, the following approaches can be applied.

The method of mean value operators. The idea of the method amounts to
original papers by Funk and Radon and employs the fact that the k-plane transform
commutes with isometries of Rn. Thanks to this property, the inversion problem
reduces to the case of radial functions if one applies to f̂(τ) the so-called shifted
dual k-plane transform (this terminology is due to F. Rouvière [Rou]). The latter
is defined on functions ϕ(τ), τ ∈ Gn,k, by the formula

(0.13) ϕ̌r(x) =
∫

SO(n)

ϕ(γτr + x) dγ,
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where τr is an arbitrary fixed k-plane at distance r from the origin. The integral
(0.13) is the mean value of ϕ(τ) over all τ at distance r from x. For r = 0, it
coincides with the dual k-plane transform ϕ̌(x). Modifications of (0.13) for Radon
transforms on the n-dimensional unit sphere and the real hyperbolic space were
introduced by Helgason; see [H] and references therein.

The core of the method is the following.

Lemma 0.3. Let ϕ = f̂ , f ∈ Lp, 1 ≤ p < n/k, and let

(0.14) (Mrf)(x) =
1

σn−1

∫

Sn−1

f(x + rθ) dθ, r > 0,

be the spherical mean of f . If gx(s) = (M√
sf)(x) and ψx(s) = π−k/2ϕ̌√s(x), then

(0.15) (Ik/2
− gx)(s) = ψx(s).

If k is even, (0.15) yields

(0.16) f(x) = π−k/2
(
− 1

2r

d

dr

)k/2

ϕ̌r(x)
∣∣∣
r=0

,

where, for non-smooth f , the equality is understood in the almost everywhere sense.
This inversion formula is of local nature because it assumes that ϕ̌r(x) is known
only for arbitrary small r. The case of odd k is more delicate. If f is continuous
and decays sufficiently fast at infinity, then (0.15) is inverted by the formula

(0.17) f(x) =
(
− d

ds

)m

(Im−k/2
− ψx)(s)

∣∣∣
s=0

, ∀m ∈ N, m > k/2,

which is essentially non-local. For f belonging to Lp, the integral (Im−k/2
− ψx)(s)

can be divergent if n/2m ≤ p < n/k. It means that the inversion method should
not increase the order of the fractional integral. This obstacle can be circumvented
by making use of Marchaud’s fractional derivatives; see [Ru4, Section 5] for details.

The method of Riesz potentials and the method of plane waves. It is instructive
to describe these methods simultaneously because both employ the Riesz potentials

(0.18) (Iαf)(x) =
1

γn(α)

∫

Rn

f(x− y)|y|α−n dy, x ∈ Rn,

(0.19) γn(α) =
2απn/2Γ(α/2)
Γ((n− α)/2)

, Re α > 0, α 6= n, n + 2, . . . .

The Fourier transform of the corresponding Riesz distribution |x|α−n/γn(α) is |y|−α

in a suitable sense. It means that Iα can be regarded as (−α/2)th power of −∆,
where ∆ = ∂2/∂x2

1 + · · · + ∂2/∂x2
n is the Laplace operator . For f ∈ Lp(Rn), the

integral (0.18) absolutely converges if and only if 1 ≤ p < n/Re α. For Re α ≤ 0 and
sufficiently smooth f , the Riesz potential Iαf is defined by analytic continuation so
that I0f = f . Numerous inversion formulas for Iαf are known in diverse function
spaces, see [Ru1], [Ru4], [Sa], [SKM], and references therein.

The method of plane waves is based on decomposition of the Riesz distribution
in plane waves; see [GSh1] for the case k = n−1. Technically, this method realizes
as follows. In order to recover f at a point x from the data f̂(τ) ≡ f̂(ξ, t), one first
applies the Riesz potential operator of the negative order −k (this is a differential or
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pseudo-differential operator) in the t-variable, and then integrates over all k-planes
through x, i.e., applies the dual Radon transform. This method requires f to be
smooth enough. Another method, referred to as the method of Riesz potentials, is
applicable to “rough” functions as well. Now we utilize the same operators but in
the reverse order: first we apply the dual Radon transform to f̂(τ), and then the
Riesz potential operator of order −k in the x-variable. This method allows us to
reconstruct any function f ∈ Lp, 1 ≤ p < n/k, for almost all x ∈ Rn [Ru4].

Both methods can be realized in the framework of analytic families of inter-
twining fractional integrals

(0.20) (Pαf)(τ) =
1

γn−k(α)

∫

Rn

f(x)|x− τ |α+k−n dx,

(0.21) (
∗
P

αϕ)(x) =
1

γn−k(α)

∫

Gn,k

ϕ(τ)|x− τ |α+k−n dτ,

Re α > 0, α + k − n 6= 0, 2, 4, . . . ,

where |x− τ | denotes the euclidian distance between the point x and the k-plane τ .
These operators were introduced by Semyanistyi 1 [Se] for k = n − 1. They were
generalized in [Ru2] and subsequent publications of B. Rubin to all 0 < k < n and
totally geodesic Radon transform on spaces of constant curvature; see also [Ru4].
Semyanistyi’s fractional integrals have a deep philosophical meaning. One can write

(0.22) Pαf = Ĩαf̂ ,
∗
P

αϕ = (Ĩαϕ)∨,

where for ϕ(τ) ≡ ϕ(ξ, t), Ĩαϕ denotes the Riesz potential on Rn−k in the t-variable.
If f and ϕ are smooth enough, then the equalities (0.22) extend definitions (0.20)
and (0.21) to all complex α 6= n− k, n− k + 2, . . . . In particular, for α = 0, we get
the k-plane transform and the dual k-plane transform, respectively.

The following statement generalizes the well known formula of Fuglede

(0.23) (f̂)∨ = ck,nIkf, ck,n = (2π)kσn−k−1/σn−1;

see [Fu], [So, Theorem 3.6], [H, p. 29].

Theorem 0.4. Let f ∈ Lp, 1 ≤ p < n/(Re α + k), Re α ≥ 0. Then

(0.24)
∗
P

αf̂ = ck,nIα+kf.

The equality (0.24) gives a family of inversion formulas (at least on a formal
level):

(0.25) ck,nf = I−α−k
∗
P

αf̂ .

In the case α = 0, the last equality reads

(0.26) ck,nf = Dkϕ̌, ϕ = f̂ .

Here, Dk = I−k = (−∆)k/2 denotes the Riesz fractional derivative that can be
realized in different ways depending on a class of functions f and the evenness of

1Vladimir Il’ich Semyanistyi (1925–1984), a talented mathematician whose papers have
played an important role in integral geometry and related areas of analysis.
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k. For example, if f is good enough, the k-plane transform f̂ = ϕ can be inverted
by repeated application of the operator −∆. Namely, for k even,

(0.27) ck,nf(x) = (−∆)k/2ϕ̌(x).

If k is odd and 1 ≤ k ≤ n− 2, then

(0.28) ck,nf(x) = (−∆)(k+1)/2(I1ϕ̌)(x).

Inversion formulas (0.26)–(0.28) are typical for the method of Riesz potentials.
Furthermore, if α = −k, then (0.25) gives

(0.29) ck,nf =
∗
P
−kϕ, ϕ(ξ, t) = f̂(ξ, t).

The last formula can be regarded as a decomposition of f in plane waves. Different
realizations of operators Dk and

∗
P −k can be found in [Ru1] and [Ru4]; see also

[Ru6].

0.3. Main results

This section is organized so that the reader could compare our new results with
those in the rank-one case. That was the reason why subsections below are entitled
as the similar ones in Section 0.2. The general organization of the material is clear
from the Contents.

0.3.1. Definitions and the framework of the inversion problem. In
order to give precise meaning to the integral (0.2), we use the parameterization
τ = τ(ξ, t), ξ ∈ Vn,n−k, t ∈ Mn−k,m, of the matrix k-plane (0.1) and arrive at the
formula

(0.30) f̂(ξ, t) =
∫

{y: y∈Mn,m ; ξ′y=0}

f(y + ξt) dξy,

where dξy is the induced measure on the subspace {y : y ∈ Mn,m ; ξ′y = 0}. This
agrees with the formula (0.3) for the k-plane transform and can be also written in
a different way, see (4.10). Another parameterization

τ = τ(η, λ), η ∈ Gn,k, λ = [λ1 . . . λm] ∈ Mn,m, λi ∈ η⊥,

which is one-to-one (unlike that in (0.30)), gives

(0.31) f̂(τ) =
∫

η

dy1 . . .

∫

η

f([y1 + λ1 . . . ym + λm]) dym,

cf. (0.4).
We first specify the set of all triples (n,m, k) for which the Radon transform is

injective. It is natural to assume that the transformed function should depend on
at least as many variables as the original one, i.e.,

dim T ≥ dim Mn,m.

By taking into account that dim Vn,m = m(2n−m− 1)/2 [Mu, p. 67], we have

dim T = dim(Vn,n−k ×Mn−k,m)/O(n− k)
= (n− k)(n + k − 1)/2 + m(n− k)− (n− k)(n− k − 1)/2
= (n− k)(k + m).
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The inequality (n−k)(k +m) ≥ nm implies the natural framework of the inversion
problem, namely,

(0.32) 1 ≤ k ≤ n−m, m ≥ 1.

We show (Theorem 4.9) that the Radon transform f → f̂ is injective on the
Schwartz space S(Mn,m) if and only if the triple (n,m, k) satisfies (0.32). The
proof of this statement relies on the matrix generalization of the projection-slice
theorem (Theorem 4.7) which establishes connection between the matrix Fourier
transform and the Radon transform. For the case m = 1, we refer to [Na, p. 11]
(k = n− 1) and [Ke, p. 283] (any 0 < k < n); see also [Sh1], [Sh2], and [OR] for
the higher rank case.

We also specify classes of functions for which the Radon transform is well
defined. Let Im be the identity m × m matrix and let |a| denote the absolute
value of the determinant of a square matrix a. The following statement agrees with
Theorem 0.1.

Theorem 0.5.
(i) Let f(x) be a continuous function on Mn,m, satisfying f(x) = O(|Im+x′x|−a/2).
If a > k + m− 1, then the Radon transform f̂(τ) is finite for all τ ∈ T.
(ii) If |Im + x′x|α/2f(x) ∈ L1(Mn,m) for some α ≥ k − n, in particular, if f ∈
Lp(Mn,m), 1 ≤ p < p0, p0 = (n+m− 1)/(k +m− 1), then f̂(τ) is finite for almost
all τ ∈ T.

As in Theorem 0.1, the conditions a > k +m−1, α ≥ k−n, and p < p0 cannot
be improved. For instance, if p ≥ p0 and f(x) = |2Im +x′x|−(n+m−1)/2p(log |2Im +
x′x|)−1 (∈ Lp(Mn,m)), then f̂(τ) ≡ ∞.

In fact, we have proved the following generalization of (0.7) which implies (ii)
above:

(0.33)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, t)
|t′t|(λ−n)/2

|Im + t′t|λ/2
dt

= c

∫

Mn,m

f(x)
|x′x|(λ−n)/2

|Im + x′x|(λ−k)/2
dx, Re λ > k + m− 1,

1 ≤ k ≤ n−m, where the constant c is explicitly evaluated; see (4.48), (4.42).
We introduce the dual Radon transform which assigns to a function ϕ(τ) on T

the integral over all matrix k-planes through x ∈ Mn,m:

(0.34) ϕ̌(x) =
∫

τ3x

ϕ(τ).

In terms of the parameterization τ = τ(ξ, t), ξ ∈ Vn,n−k, t ∈ Mn−k,m, this integral
reads as follows:

(0.35) ϕ̌(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x) dξ,

where σn,n−k is the volume of the Stiefel manifold Vn,n−k; see (1.37). The integral
(0.35) is well defined for any locally integrable function ϕ. We do not study the
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inversion problem for the dual Radon transform here. However, it is natural to
conjecture that the dual Radon transform is injective if and only if k ≥ n − m,
and the relevant inversion formula can be derived from that for the Radon trans-
form. The respective results were obtained in [Ru5] for Radon transforms on affine
Grassmann manifolds. We plan to study this topic in forthcoming publications.

0.3.2. The Radon transform and the dual Radon transform of radial
functions. We call functions f on Mn,m and ϕ on T radial if they are O(n) left-
invariant. Each radial function f(x) on Mn,m (ϕ(ξ, t) on T, resp.) has the form
f(x) = f0(x′x) (ϕ(ξ, t) = ϕ0(t′t), resp.). We establish connection between the
Radon transforms of radial functions and the G̊arding-Gindikin fractional integrals

(Iα
+f)(s) =

1
Γm(α)

s∫

0

f(r)|s− r|α−ddr,(0.36)

(Iα
−f)(s) =

1
Γm(α)

∞∫

s

f(r)|r − s|α−ddr(0.37)

associated to the cone Pm of positive definite symmetric m × m matrices. Here,
d = (m + 1)/2 and Γm(α) is the generalized gamma function (1.6) which is also
known as the Siegel gamma function [Si]. In (0.36), s belongs to Pm, and integration
is performed over the “interval” (0, s) = {r : r ∈ Pm, s − r ∈ Pm}. In (0.37), s
belongs to the closure Pm, and one integrates over the shifted cone s + Pm = {r :
r ∈ Pm, r − s ∈ Pm}. For m = 1, the integrals (0.36) and (0.37) coincide with the
Riemann-Liouville fractional integrals (0.9). Section 2.1 contains historical notes
related to integrals Iα

±f in the higher rank case.
For sufficiently good f , the integrals Iα

±f converge absolutely if Reα > d − 1
and extend to all α ∈ C as entire functions of α. If α is real and belongs to the
Wallach-like set

Wm =
{

0,
1
2
, 1,

3
2
, . . . ,

m− 1
2

}
∪

{
α : Reα >

m− 1
2

}
,

then Iα
±f are convolutions with positive measures; see (2.12), (2.22). The converse

is also true; cf. [FK, p. 137]. Owing to this property, if α ∈ Wm, then one can
define the G̊arding-Gindikin fractional integrals for all locally integrable functions
which in the case of Iα

− obey some extra conditions at infinity. Different explicit
formulas for Iα

±f , α ∈ Wm, are obtained in Section 2.2.
A natural analog of Theorem 0.2 for the higher rank case employs fractional

integrals (0.36)–(0.37) and reads as follows.

Theorem 0.6. For x ∈ Mn,m and t ∈ Mn−k,m, let r = x′x, s = t′t.
(i) If f(x) is radial, i.e., f(x) = f0(x′x), then

(0.38) f̂(ξ, t) = πkm/2(Ik/2
− f0)(s).

(ii) Let ϕ(τ) be radial, i.e., ϕ(ξ, t)=ϕ0(t′t). We denote

Φ0(s) = |s|δϕ0(s), δ = (n− k)/2− d, d = (m + 1)/2.

If 1 ≤ k ≤ n−m, then for any matrix x ∈ Mn,m of rank m,

(0.39) ϕ̌(x) = c |r|d−n/2(Ik/2
+ Φ0)(r), c = πkm/2σn−k,m/σn,m,
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σn,m being the volume of the Stiefel manifold Vn,m. Equalities (0.38) and (0.39)
hold for any locally integrable functions provided that either side exists in the
Lebesgue sense.

0.3.3. Inversion of the Radon transform. Theorem 0.6 reduces inversion
of the Radon transform and the dual Radon transform of radial functions to the
similar problem for the G̊arding-Gindikin fractional integrals. If f belongs to the
space D(Pm) of infinitely differentiable functions compactly supported away from
the boundary ∂Pm, we proceed as follows. For r = (ri,j) ∈ Pm, we consider the
differential operators D± defined by

D+ = det
(

ηi,j
∂

∂ri,j

)
, ηi,j =

{
1 if i = j
1/2 if i 6= j

, D− = (−1)mD+.

If α ∈ C and j ∈ N, then

Dj
±Iα
±f = Iα

±Dj
±f = Iα−j

± f, f ∈ D(Pm).

Hence Iα
±f can be inverted by the formula

(0.40) f = Dj
±Ij−α
± g, g = Iα

±f,

where j ≥ α if α = 1/2, 1, . . . , and j > Reα + d − 1 otherwise. For “rough”
functions f , we interpret (0.40) in the sense of distributions; see Lemmas 2.23 and
2.24. A challenging open problem is to obtain “pointwise” inversion formulas for
the G̊arding-Gindikin fractional integrals similar to those for the classical Riemann-
Liouville integrals [Ru1], [SKM]. It is desirable these formulas would not contain
neither operations in the sense of distributions nor the Laplace (or the Fourier)
transform, i.e., the problem would be resolved in the same language as it has been
stated.

In the general case, we develop the following inversion methods for the Radon
transform which extend the classical ones to the higher rank case.

The method of mean value operators. The Radon transform f̂(τ) commutes
with the group M(n,m) of matrix motions sending x ∈ Mn,m to γxβ + b, where
γ ∈ O(n) and β ∈ O(m) are orthogonal matrices, and b ∈ Mn,m. This property
allows us to apply a certain mean value operator to f̂(τ) and thus reduce the
inversion problem to the case of radial functions.

Let us make the following definitions. We supply the matrix space Mn,m and
the manifold T of matrix k-planes with an entity that serves as a substitute for
the euclidean distance. Specifically, given two points x and y in Mn,m, the matrix
distance d(x, y) is defined by

d(x, y) = [(x− y)′(x− y)]1/2.

Accordingly, the “distance” between x ∈ Mn,m and a matrix k-plane τ = τ(ξ, t) ∈ T
is defined by

d(x, τ) = [(ξ′x− t)′(ξ′x− t)]1/2.

Unlike the rank-one case, these quantities are not scalar-valued and represented
by positive semi-definite matrices. Radial functions f(x) on Mn,m and ϕ(τ) on T
virtually depend on the matrix distance to the 0-matrix from x and τ , respectively.

For functions ϕ(τ), τ ∈ T, we define the shifted dual Radon transform

(0.41) ϕ̌s(x) =
∫

d(x,τ)=s1/2
ϕ(τ), s ∈ Pm.
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This is the mean value of ϕ(τ) over all matrix planes at distance s1/2 from x. For
s = 0, it coincides with the dual Radon transform ϕ̌(x). A matrix generalization
of the classical spherical mean is

(Mrf)(x) =
1

σn,m

∫

Vn,m

f(x + vr1/2)dv, r ∈ Pm.

The following statement generalizes Lemma 0.3 to the case m > 1.

Lemma 0.7. For fixed x ∈ Mn,m, let Fx(r) = (Mrf)(x). If f ∈ Lp(Mn,m),
1 ≤ p < (n + m− 1)/(k + m− 1), then

(0.42) (f̂)∨s (x) = πkm/2(Ik/2
− Fx)(s), s ∈ Pm.

Owing to (0.42) and the inversion formula for the G̊arding-Gindikin fractional
integrals, one can recover f(x) from the Radon transform f̂(τ) as follows.

Theorem 0.8. Let f ∈ Lp(Mn,m),

1 ≤ k ≤ n−m, 1 ≤ p <
n + m− 1
k + m− 1

.

If ϕ(τ) = f̂(τ), then

(0.43) f(x) = π−km/2
(Lp)

lim
r→0

(Dk/2
− Φx)(r), Φx(s) = ϕ̌s(x),

where D
k/2
− = I

−k/2
− is understood in the sense of D′-distributions.

The method of Riesz potentials and the method of plane waves. We extend the
method of Riesz potentials to the higher rank case and give a new account of the
method of plane waves. The second method was developed by E.E. Petrov [P1] for
the case k = n −m, and outlined by L.P. Shibasov [Sh2] for all 1 ≤ k ≤ n −m.
Both methods employ the following matrix analog of the Riesz potential (0.18):

(0.44) (Iαf)(x) =
1

γn,m(α)

∫

Mn,m

f(x− y) |y|α−n
m dy, Re α > m− 1,

where |y|m = det(y′y)1/2,

(0.45) γn,m(α) =
2αm πnm/2 Γm(α/2)

Γm((n− α)/2)
, α 6= n−m + 1, n−m + 2, . . . .

We consider the Cayley-Laplace operator

(∆f)(x) = (det(∂′∂)f)(x), x = (xi,j) ∈ Mn,m,

where ∂ is the n × m matrix whose entries are partial derivatives ∂/∂xi,j . The
name “Cayley-Laplace” was attributed to this operator by S.P. Khekalo [Kh] and
suits it admirably. On the Fourier transform side, the action of ∆ represents a
multiplication by (−1)m|y|2m. Since the Fourier transform of the Riesz distribution
|x|α−n

m /γn,m(α) is |y|−α
m in a suitable sense, then Iα can be regarded as (−α/2)th

power of the operator (−1)m∆. For Reα ≤ m− 1, α 6= n−m + 1, n−m + 2, . . .
and sufficiently smooth f , the Riesz potential is defined as analytic continuation of
the integral (0.44). If α is real and belongs to the corresponding Wallach-like set

Wn,m = {0, 1, 2, . . . , k0} ∪ {α : Re α>m−1; α 6= n−m + 1, n−m + 2, . . .},
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k0 = min(m− 1, n−m),
then Iαf is a convolution with a positive measure; see (3.54)–(3.56). This result
allows us to extend the original definition of the Riesz potential to locally integrable
functions provided α ∈ Wn,m. It was shown in [Ru7], that if

(0.46) f ∈ Lp(Mn,m), 1 ≤ p <
n

Re α + m− 1
, α ∈ Wn,m,

then (Iαf)(x) is finite for almost all x ∈ Mn,m. On the other hand, if

p ≥ n + m− 1
k + m− 1

then there is a function f ∈ Lp(Mn,m) such that (Ikf)(x) ≡ ∞ (see (6.16), Theorem
4.27, and Appendix B). It is still not clear what happens if

(0.47)
n

Re α + m− 1
≤ p <

n + m− 1
Re α + m− 1

.

This gap represents an open problem.
As in the rank-one case, the method of Riesz potentials and the method of

plane waves employ intertwining operators

(0.48) Pαf = Ĩαf̂ ,
∗
P

αϕ = (Ĩαϕ)∨,

α ∈ C, α 6= n− k −m + 1, n− k −m + 2, . . . .

Here, 1 ≤ k ≤ n − m and Ĩα is the Riesz potential on Mn−k,m acting in the
t-variable. If

Re α > m− 1, α 6= n− k −m + 1, n− k −m + 2, . . . ,

then

(Pαf)(ξ, t) =
1

γn−k,m(α)

∫

Mn,m

f(x) |ξ′x− t|α+k−n
m dx,(0.49)

(
∗
P

αϕ)(x) =
1

γn−k,m(α)

∫

Vn,n−k

d∗ξ
∫

Mn−k,m

ϕ(ξ, t) |ξ′x− t|α+k−n
m dt,(0.50)

where d∗ξ = σ−1
n,n−k dξ is the normalized measure on Vn,n−k and γn−k,m(α) is the

normalizing constant in the definition of the Riesz potential on Mn−k,m; cf. (0.45).

We call Pαf and
∗
P αϕ the generalized Semyanistyi fractional integrals. For α = 0,

operators (0.48) include the Radon transform and its dual, respectively. In the case
m = 1, the integrals (0.49) and (0.50) coincide with those in (0.20) and (0.21).

Theorem 0.9. Let 1 ≤ k ≤ n−m, α ∈ Wn,m. Suppose that

f ∈ Lp, 1 ≤ p <
n

Reα + k + m− 1
.

Then

(0.51) (
∗
P

αf̂)(x) = cn,k,m(Iα+kf)(x),

cn,k,m = 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)
.

In particular,

(0.52) (f̂)∨(x)=cn,k,m(Ikf)(x)
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(the generalized Fuglede formula).

Theorem 0.9 is a higher rank copy of Theorem 0.4. Thus, as in the case m = 1,
inversion of the Radon transform reduces to inversion of the Riesz potential. Unlike
the rank-one case, we have not succeeded to obtain a pointwise inversion formula
for the higher rank Riesz potential so far, and use the theory of distributions. The
properly defined space Φ(Mn,m) of test functions is invariant under the action of
Riesz potentials, and

(0.53) (I−αφ)(x) = (F−1 |y|αm Fφ)(x), φ ∈ Φ, α ∈ C,

in terms of the Fourier transform.

Theorem 0.10. Let f ∈ Lp(Mn,m), 1 ≤ p < n/(k + m− 1), so that the Radon
transform ϕ(τ) = f̂(τ) is finite for almost all matrix k-planes τ . The function f
can be recovered from ϕ in the sense of Φ′-distributions by the formula

(0.54) cn,k,m(f, φ) = (ϕ̌, I−kφ), φ ∈ Φ,

where I−k is the operator (0.53). In particular, for k even,

(0.55) cn,k,m(f, φ) = (−1)mk/2(ϕ̌,∆k/2φ), φ ∈ Φ.

This theorem reflects the essence of the method of Riesz potentials. The case
α = −k in (0.51) provides the following inversion result in the framework of the
method of plane waves.

Theorem 0.11. Let 1 ≤ k ≤ n − m. If f belongs to the Schwartz space
S(Mn,m), then the Radon transform ϕ = f̂ can be inverted by the formula

(0.56) cn,k,mf(x) = (
∗
P
−kϕ)(x).

Explicit expressions for
∗
P −kϕ are given by (6.21)-(6.23).

0.4. Acknowledgements

We are indebted to our numerous friends and colleagues who sent us their pa-
pers, discussed different related topics, and helped to achieve better understanding
of the matter. Their remarks and encouragement are invaluable. Among these
people are professors M. Agranovsky, J.J. Duistermaat, J. Faraut, H. Furstenberg,
S. Gindikin, F. Gonzalez, S. Helgason, S.P. Khekalo, A. Mudrov, G. Ólafsson, E.E.
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CHAPTER 1

Preliminaries

In this chapter, we establish our notation and recall some basic facts important
for the sequel. The main references are [FZ], [Herz], [Mu], [T].

1.1. Matrix spaces. Notation

Let Mn,m be the space of real matrices having n rows and m columns; M(k)
n,m ⊂

Mn,m is the subset of all matrices of rank k. We identify Mn,m with the real Eu-
clidean space Rnm. The latin letters x, y, r, s, etc. stand for both the matrices
and the points since it is always clear from the context which is meant. We use a
standard notation O(n) and SO(n) for the group of real orthogonal n × n matri-
ces and its connected component of the identity, respectively. The corresponding
invariant measures on O(n) and SO(n) are normalized to be of total mass 1. We
denote by M(n,m) the group of transformations sending x ∈ Mn,m to γxβ + b,
where γ ∈ O(n), β ∈ O(m), and b ∈ Mn,m. We call M(n,m) the group of matrix
motions.

If x = (xi,j) ∈ Mn,m, we write dx =
∏n

i=1

∏m
j=1 dxi,j for the elementary volume

in Mn,m. In the following, x′ denotes the transpose of x, Im is the identity m×m
matrix, and 0 stands for zero entries. Given a square matrix a, we denote by det(a)
the determinant of a, and by |a| the absolute value of det(a); tr(a) stands for the
trace of a.

Let Sm be the space of m×m real symmetric matrices s = (si,j), si,j = sj,i. It is
a measure space isomorphic to Rm(m+1)/2 with the volume element ds =

∏
i≤j dsi,j .

We denote by Pm the cone of positive definite matrices in Sm; Pm is the closure
of Pm, that is the set of all positive semi-definite m×m matrices. If m = 1, then
Pm is the open half-line (0,∞) and Pm = [0,∞). For r ∈ Pm (r ∈ Pm) we write
r > 0 (r ≥ 0). Given s1 and s2 in Sm, the inequality s1 > s2 means s1 − s2 ∈ Pm.
If a ∈ Pm and b ∈ Pm, then the symbol

∫ b

a
f(s)ds denotes the integral over the set

{s : s ∈ Pm, a < s < b} = {s : s− a ∈ Pm, b− s ∈ Pm}.
For s ∈ Sm, we denote by sλ

+ the function which equals |s|λ for s ∈ Pm and zero
otherwise; sλ

− equals (−s)λ
+.

The group G = GL(m,R) of real non-singular m×m matrices g acts transitively
on Pm by the rule r → g′rg. The corresponding G-invariant measure on Pm is

(1.1) d∗r = |r|−ddr, |r| = det(r), d = (m + 1)/2

[T, p. 18]. The cone Pm is a G-orbit in Sm of the identity matrix Im. The boundary
∂Pm of Pm is a union of G-orbits of m×m matrices

ek =
[

Ik 0
0 0

]
, k = 0, 1, . . . ,m− 1.

15
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More information about the boundary structure of Pm can be found in [FK, p. 72]
and [Bar, p. 78].

Let Tm be the subgroup of GL(m,R) consisting of upper triangular matrices

(1.2) t =




t1,1

. t∗
.

0 .
tm,m




, ti,i > 0,

t∗ = {ti,j : i < j} ∈ Rm(m−1)/2.

Each r ∈ Pm has a unique representation r = t′t, t ∈ Tm, so that
∫

Pm

f(r)dr =

∞∫

0

tm1,1 dt1,1

∞∫

0

tm−1
2,2 dt2,2 . . .

×
∞∫

0

tm,mf̃(t1,1, . . . , tm,m) dtm,m,(1.3)

f̃(t1,1, . . . , tm,m) = 2m

∫

Rm(m−1)/2

f(t′t) dt∗, dt∗ =
∏

i<j

dti,j ,

[T, p. 22] , [Mu, p. 592]. In the last integration, the diagonal entries of the matrix
t are given by the arguments of f̃ , and the strictly upper triangular entries of t are
variables of integration.

We recall some useful formulas for Jacobians; see, e.g., [Mu, pp. 57–59].

Lemma 1.1.
(i) If x = ayb where y ∈ Mn,m, a ∈ GL(n,R), and b ∈ GL(m,R), then dx =
|a|m|b|ndy.
(ii) If r = q′sq where s ∈ Sm, and q ∈ GL(m,R), then dr = |q|m+1ds.
(iii) If r = s−1 where s ∈ Pm, then r ∈ Pm, and dr = |s|−m−1ds.

Some more notation are in order: N denotes the set of all positive integers;
R+ = (0,∞); δij is the usual Kronecker delta. The space C(Mn,m) of continuous
functions, the Lebesgue space Lp(Mn,m), and the Schwartz space S(Mn,m) of C∞

rapidly decreasing functions are identified with the corresponding spaces on Rnm.
We denote by Cc(Mn,m) the space of compactly supported continuous functions
on Mn,m. The spaces C∞(Pm), Ck(Pm) and S(Pm) consist of restrictions onto
Pm of the corresponding functions on Sm ∼ RN , N = m(m + 1)/2. We denote
by D(Pm) the space of functions f ∈ C∞(Pm) with suppf ⊂ Pm; L1

loc(Pm) is the
space of locally integrable functions on Pm. The Fourier transform of a function
f ∈ L1(Mn,m) is defined by

(1.4) (Ff)(y) =
∫

Mn,m

exp(tr(iy′x))f(x)dx, y ∈ Mn,m .

This is the usual Fourier transform on Rnm so that the relevant Parseval formula
reads

(1.5) (Ff,Fϕ) = (2π)nm (f, ϕ),
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where

(f, ϕ) =
∫

Mn,m

f(x)ϕ(x) dx.

We write c, c1, c2, . . . for different constants the meaning of which is clear from the
context.

1.2. Gamma and beta functions of the cone of positive definite matrices

The generalized gamma function associated to the cone Pm of positive definite
symmetric matrices is defined by

(1.6) Γm(α) =
∫

Pm

exp(−tr(r))|r|α−ddr, d = (m + 1)/2.

This is also known as the Siegel integral [Si] (1935) arising in number theory. Actu-
ally it came up earlier in statistics. Substantial generalizations of (1.6) and historical
comments can be found in [Gi1], [FK, Chapter VII], [T, p. 41], [GrRi, p. 800].

Using (1.3), it is easy to check [Mu, p. 62] that the integral (1.6) converges
absolutely if and only if Re α > d − 1. Moreover, Γm(α) is a product of ordinary
gamma functions:

(1.7) Γm(α) = πm(m−1)/4
m−1∏

j=0

Γ(α− j/2) .

This implies a number of useful formulas:

(1.8)
Γm(d− α + 1)

Γm(d− α)
= (−1)m Γm(α)

Γm(α− 1)
, d = (m + 1)/2,

(1.9) (−1)m Γm(1− α/2)
Γm(−α/2)

= 2−m Γ(α + m)
Γ(α)

= 2−m(α, m),

where (α, m) = α(α + 1) · · · (α + m− 1) is the Pochhammer symbol. Furthermore,
for 1 ≤ k < m, k ∈ N, the equality (1.7) yields

(1.10)
Γm(α)

Γm(α + k/2)
=

Γk(α + (k −m)/2)
Γk(α + k/2)

,

(1.11) Γm(α) = πk(m−k)/2Γk(α)Γm−k(α− k/2).

In particular, for k = m− 1,

(1.12) Γm(α) = π(m−1)/2Γm−1(α)Γ(α− (m− 1)/2).

The beta function of the cone Pm is defined by

(1.13) Bm(α, β) =

Im∫

0

|r|α−d|Im − r|β−ddr,

where, as above, d = (m + 1)/2. This integral converges absolutely if and only if
Re α, Re β > d− 1. The following classical relation holds

(1.14) Bm(α, β) =
Γm(α)Γm(β)
Γm(α + β)
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[FK, p. 130]. In Appendix A, we present a table of some integrals that can be
easily evaluated in terms of the generalized gamma and beta functions. Most of
these integrals are known but scattered all over the different sources. This table will
be repeatedly referred to in the sequel. For the sake of completeness, we mention
the paper [Ner] containing many other formulas of this type in the very general
set-up.

1.3. The Laplace transform

Let Tm = Pm + iSm be the generalized half-plane in the space SCm = Sm + iSm,
the complexification of Sm. The domain Tm consists of all complex symmetric
matrices z = σ + iω such that σ = Re z ∈ Pm, and ω = Im z ∈ Sm. Let f be
a locally integrable function on Sm, f(r) = 0 if r /∈ Pm, and exp(−tr(σ0r))f(r) ∈
L1(Sm) for some σ0 ∈ Pm. Then the integral

(1.15) (Lf)(z) =
∫

Pm

exp(−tr(zr))f(r)dr

is absolutely convergent in the (generalized) half-plane Re z > σ0 and represents a
complex analytic function there. Lf is called the Laplace transform of f . If

(1.16) (Fg)(ω) =
∫

Sm

exp(tr(iωs))g(s)ds, ω ∈ Sm,

is the Fourier transform of a function g on Sm, then

(Lf)(z) = (Fgσ)(−ω),

where gσ(r) = exp(−tr(σr))f(r) ∈ L1(Sm) for σ > σ0. Thus, all properties of the
Laplace transform are obtained from the general Fourier transform theory for Eu-
clidean spaces [Herz], [Vl, p. 126]. In particular, we have the following statement.

Theorem 1.2. Let exp(−tr(σ0r))f(r) ∈ L1(Pm), σ0 ∈ Pm, and let
∫

Sm

|(Lf)(σ + iω)|dω < ∞

for some σ > σ0. Then the Cauchy inversion formula holds:

(1.17)
1

(2πi)N

∫

Re z=σ

exp(tr(sz)(Lf)(z)dz =





f(s) if s ∈ Pm,

0 if s /∈ Pm,

N = m(m + 1)/2. The integration in (1.17) is performed over all z = σ + iω with
fixed σ > σ0 and ω ranging over Sm.

The following uniqueness result for the Laplace transform immediately follows
from injectivity of the Fourier transform of tempered distributions.

Lemma 1.3. If f1(r) and f2(r) satisfy

(1.18) exp(−tr(σ0r))fj(r) ∈ L1(Pm), j = 1, 2,

for some σ0 ∈ Pm, and (Lf1)(z) = (Lf2)(z) whenever Re z > σ0, then f1(r) =
f2(r) almost everywhere on Sm.
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The convolution theorem for the Laplace transform reads as follows: If f1 and
f2 obey (1.18), and

(f1 ∗ f2)(r) =

r∫

0

f1(r − s)f2(s)ds

is the Laplace convolution, then

(1.19) L(f1 ∗ f2)(z) = (Lf1)(z)(Lf2)(z), Re z > σ0.

Lemma 1.4. Let z ∈ Tm = Pm + iSm, d = (m + 1)/2. Then

(1.20)
∫

Pm

exp(−tr(zr))|r|α−ddr = Γm(α)det(z)−α, Re α > d− 1.

Here and throughout the paper, we set det(z)−α = exp(−α log det(z)) where
the branch of log det(z) is chosen so that det(z) = |σ| for real z = σ ∈ Pm.

The equality (1.20) is well known, see, e.g., [Herz, p. 479]. For real z = σ ∈
Pm, it can be easily obtained by changing variable r → z−1/2rz−1/2. For complex
z, it follows by analytic continuation.

1.4. Differential operators D±

Let r = (ri,j) ∈ Pm. We define the following differential operators acting in
the r-variable:

(1.21) D+ ≡ D+, r = det
(

ηi,j
∂

∂ri,j

)
, ηi,j =

{
1 if i = j
1/2 if i 6= j,

(1.22) D− ≡ D−, r = (−1)mD+, r.

Lemma 1.5. If f ∈ D(Pm), and the derivatives D∓g exist in a neighborhood of
the support of f , then

(1.23)
∫

Pm

(D±f)(r)g(r)dr =
∫

Pm

f(r)(D∓g)(r)dr.

Proof. Since supp f ⊂ Pm, one can replace integrals over Pm by those over
the whole space Sm ∼ Rm(m+1)/2. The function g can be multiplied by a smooth
cut-off function (in necessary) which ≡ 1 on the support of f . Then the ordinary
integration by parts yields (1.23). ¤

Lemma 1.6.
(i) For s ∈ Pm and z ∈ SCm,

(1.24) D+, s[exp(−tr(sz))] = (−1)mdet(z) exp(−tr(sz)).

(ii) For s ∈ Pm and α ∈ C,

(1.25) D+(|s|α−d/Γm(α)) = |s|α−1−d/Γm(α− 1), d = (m + 1)/2.

Proof. These statements are well known; see, e.g., [G̊a, p. 813], [Herz, p.
481], [FK, p. 125]. We recall the proof for convenience of the reader. The equality
(1.24) is verified by direct calculation. Furthermore, by (1.20),

(1.26) Γm(β)|s|−β =
∫

Pm

exp(−tr(rs))|r|β−ddr, Re β > d− 1.
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Applying D+ to (1.26) and using (1.24), we get

D+(|s|−βΓm(β)) = (−1)m|s|−β−1Γm(β + 1), Re β > d− 1.

Now we set β = d− α. Since

Γm(d− α + 1)/Γm(d− α) = (−1)mΓm(α)/Γm(α− 1),

(1.25) follows for Re α < 1. By analyticity, it holds generally. ¤

Remark 1.7. By changing notation and using (1.9), one can write (1.25) as

(1.27) D+|s|α = b(α)|s|α−1,

where

(1.28) b(α) = α(α + 1/2) · · · (α + d− 1), d = (m + 1)/2,

is the so-called Bernstein polynomial of the determinant [FK]. It is worth noting
that b(α) can be written in different forms, namely,

(1.29) b(α) = (−1)mb(1− d− α) = 2−mΓ(2α + m)/Γ(2α) = 2−m(2α,m)

or

(1.30) b(α) = (−1)mΓm(1− α)/Γm(−α) = Γm(α + d)/Γm(α + d− 1).

Lemma 1.8. For f ∈ D(Pm) and z ∈ SCm,

(1.31) (LD+f)(z) = det(z)(Lf)(z).

Proof. By (1.23), (1.22) and (1.24),

(LD+f)(z) =
∫

Pm

D−, r[exp(−tr(rz))]f(r)dr = det(z)(Lf)(z),

as desired. ¤

1.5. Bessel functions of matrix argument

We recall some facts from [Herz] and [FK]. The J -Bessel function Jν(r),
r ∈ Pm, can be defined in terms of the Laplace transform by the property

(1.32)
∫

Pm

exp(−tr(zr))Jν(r)|r|ν−ddr = Γm(ν) exp(−tr(z−1))det(z)−ν ,

d = (m + 1)/2, z ∈ Tm = Pm + iSm.

This gives

(1.33)
1

Γm(ν)
Jν(r) =

1
(2πi)N

∫

Re z=σ0

exp(tr(z − rz−1))det(z)−νdz, σ0 ∈ Pm,

N = m(m + 1)/2. This integral is absolutely convergent for Re ν > m and ex-
tends analytically to all ν ∈ C. Moreover, the formula (1.33) allows us to extend
Jν(r) in the r-variable as an entire function J̃ν(z), z = (zi,j)m×m ∈ Cm2

, so that
J̃ν(z)

∣∣
z=r

= Jν(r) and

(1.34) J̃ν(γzγ′) = J̃ν(z) for all γ ∈ O(m).
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Functions satisfying (1.34) are called symmetric. If λ1, . . . , λm are eigenvalues of z,
and

σ1 = λ1 + . . . + λm, σ2 = λ1λ2 + . . . + λm−1λm, . . . , σm = λ1 . . . λm

are the corresponding elementary symmetric functions (which are polynomials of
zi,j), then each analytic symmetric function of z ∈ Cm2

is an analytic function of
m variables σ1, . . . , σm. Since for any r ∈ Pm and s ∈ Pm, the matrices

rs, sr, s1/2rs1/2, r1/2sr1/2

have the same eigenvalues, then

J̃ν(rs) = J̃ν(sr) = J̃ν(s1/2rs1/2) = J̃ν(r1/2sr1/2).

In the following, we keep the usual notation Jν(z) for the extended function J̃ν(z).
For m = 1, the classical Bessel function Jν(r) expresses through Jν(r) by the

formula

Jν(r) =
1

Γ(ν + 1)

(r

2

)ν

Jν+1

(
r2

4

)
.

There is an intimate connection between the Fourier transform and J -Bessel
functions.

Theorem 1.9. [Herz, p. 492], [FK, p. 355] If f(x) is an integrable function
of the form f(x) = f0(x′x) where f0 is a function on Pm, then

(1.35) (Ff)(y) ≡
∫

Mn,m

exp(tr(iy′x))f0(x′x)dx =
πnm/2

Γm(n/2)
f̃0

(
y′y
4

)
,

where

(1.36) f̃0(s) =
∫

Pm

Jn/2(rs)|r|n/2−df0(r)dr, d = (m + 1)/2

(the Hankel transform of f0).

This statement represents a matrix generalization of the classical result of
Bochner, see, e.g., [SW, Chapter IV, Theorem 3.3] for the case m = 1. Since the
product rs in (1.36) may not be a positive definite matrix, the expression Jn/2(rs)
is understood in the sense of analytic continuation explained above.

Note that one can meet a different notation for the J -Bessel function of matrix
argument in the literature. We follow the notation from [FK]. It relates to the
notation Aδ(r) in [Herz] by the formula Jν(r) = Γm(ν)Aδ(r), δ = ν − d. More
information about J -Bessel functions and their generalizations can be found in
[Dib], [FK], [FT], [GK1], [GK2].

1.6. Stiefel manifolds

For n ≥ m, let Vn,m = {v ∈ Mn,m : v′v = Im} be the Stiefel manifold of
orthonormal m-frames in Rn. If n = m, then Vn,n = O(n) is the orthogonal group
in Rn. It is known that dim Vn,m = m(2n−m−1)/2 [Mu, p. 67]. The group O(n)
acts on Vn,m transitively by the rule g : v → gv, g ∈ O(n), in the sense of matrix
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multiplication. The same is true for the special orthogonal group SO(n) provided
n > m. We fix the corresponding invariant measure dv on Vn,m normalized by

(1.37) σn,m ≡
∫

Vn,m

dv =
2mπnm/2

Γm(n/2)
,

[Mu, p. 70], [J, p. 57], [FK, p. 351]. This measure is also O(m) right-invariant.

Lemma 1.10. [FK, p. 354], [Herz, p. 495]. The Fourier transform of the
invariant measure dv on Vn,m represents the J -Bessel function:

(1.38)
∫

Vn,m

exp(tr(iy′v))dv = σn,mJn/2

(
y′y
4

)
.

Lemma 1.11. (polar decomposition). Let x ∈ Mn,m, n ≥ m. If rank(x) = m,
then

x = vr1/2, v ∈ Vn,m, r = x′x ∈ Pm,

and dx = 2−m|r|(n−m−1)/2drdv.

This statement can be found in many sources, see, e.g., [Herz, p. 482], [GK1,
p. 93], [Mu, pp. 66, 591], [FT, p. 130]. A modification of Lemma 1.11 in terms of
upper triangular matrices t ∈ Tm (see (1.2)) reads as follows.

Lemma 1.12. Let x ∈ Mn,m, n ≥ m. If rank(x) = m, then

x = vt, v ∈ Vn,m, t ∈ Tm,

so that

dx =
m∏

j=1

tn−j
j,j dtj,j dt∗ dv, dt∗ =

∏

i<j

dti,j .

This statement is also well known and has different proofs. For instance, it can
be easily derived from Lemma 1.11 and (1.3); see Lemma 2.7 in [Ru7].

Lemma 1.13. (bi-Stiefel decomposition). Let k, m, and n be positive integers
satisfying

1 ≤ k ≤ n− 1, 1 ≤ m ≤ n− 1, k + m ≤ n.

(i) Almost all matrices v ∈ Vn,m can be represented in the form

(1.39) v =
[

a
u(Im − a′a)1/2

]
, a ∈ Mk,m, u ∈ Vn−k,m,

so that

(1.40)
∫

Vn,m

f(v)dv =
∫

0<a′a<Im

dµ(a)
∫

Vn−k,m

f

([
a

u(Im − a′a)1/2

])
du,

dµ(a) = |Im − a′a|δda, δ = (n− k)/2− d, d = (m + 1)/2.

(ii) If, moreover, k ≥ m, then

(1.41)
∫

Vn,m

f(v)dv =

Im∫

0

dν(r)
∫

Vk,m

dw

∫

Vn−k,m

f

([
wr1/2

u(Im − r)1/2

])
du,

dν(r) = 2−m|r|γ |Im − r|δdr, γ = k/2− d.
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Proof. For m=1, this is a well known bispherical decomposition [VK, pp. 12,
22]. For k = m, this statement is due to [Herz, p. 495]. The proof of Herz was
extended in [GR] to all k + m ≤ n. For convenience of the reader, we reproduce
this proof in our notations which differ from those in [GR].

Let us check (1.39). If v =
[

a
b

]
∈ Vn,m, a ∈ Mk,m, b ∈ Mn−k,m, then

Im = v′v = a′a + b′b, i.e., b′b = Im − a′a. By Lemma 1.11, for almost all b
(specifically, for all b of rank m), we have b = u(Im − a′a)1/2 where u ∈ Vn−k,m.
This gives (1.39). In order to prove (1.40), we show the coincidence of the two
measures, dv and d̃v = |Im − a′a|δdadu. Following [Herz], we consider the Fourier
transforms

F1(y) =
∫

Vn,m

exp(tr(iy′v))dv and F2(y) =
∫

Vn,m

exp(tr(iy′v))d̃v,

y ∈ Mn,m, and show that F1 = F2. Let

y =
[

y1

y2

]
, v =

[
a

u(Im − a′a)1/2

]
,

where
y1 ∈ Mk,m, y2 ∈ Mn−k,m; a ∈ Mk,m.

Then y′v = y′1a + y′2u(Im − a′a)1/2, and we have

F2(y) =
∫

a′a<Im

exp(tr(iy′1a))|Im − a′a|δda

×
∫

Vn−k,m

exp(tr(iy′2u(Im − a′a)1/2))du.

By (1.38), the inner integral is evaluated as

σn−k,mJ(n−k)/2(
1
4
y′2y2(Im − a′a)).

Thus

F2(y) =
∫

a′a<Im

exp(tr(iy′1a))ϕ(a′a)da,

ϕ(r) = σn−k,m|Im − r|(n−k)/2−dJ(n−k)/2(
1
4
y′2y2(Im − r)).

The function F2(y) can be transformed by the generalized Bochner formula (1.35)
as follows

F2(y) =
πkm/2σn−k,m

Γm(k/2)

Im∫

0

Jk/2(
1
4
y′1y1r)|r|k/2−d

× J(n−k)/2(
1
4
y′2y2(Im − r))|Im − r|(n−k)/2−ddr.

The last integral can be evaluated by the formula

(1.42)

s∫

0

Jα(pr)|r|α−dJβ(q(s−r))|s−r|β−ddr = Bm(α, β)Jα+β((p+q)s)|s|α+β−d,
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Reα, Re β > d− 1, d = (m + 1)/2, p, q ∈ Pm, s ∈ Pm,

cf. [Herz, formula (2.6)]. Applying this formula with α = k/2, β = (n− k)/2, and
s = Im, we obtain

F2(y) =
πkm/2σn−k,m

Γm(k/2)
Bm

(
k

2
,
n− k

2

)
Jn/2(

1
4
(y′1y1 + y′2y2))

= σn,mJn/2(
1
4
y′y).

By (1.38), this coincides with F1(y), and (1.40) follows. The equality (1.41) is a
consequence of (1.40) by Lemma 1.11. ¤

1.7. Radial functions and the Cayley-Laplace operator

The notion of a radial function usually alludes to invariance under rotations.
In the classical analysis on Rn the radial function f(x) is virtually a function of a
non-negative number r = |x|. In the matrix case the situation is similar but now r
is a positive semi-definite matrix.

Definition 1.14. A function f(x) on Mn,m is called radial, if it is O(n) left-
invariant, i.e.,

(1.43) f(γx) = f(x), ∀γ ∈ O(n).

If f is continuous, this equality is understood “for all x”. For generic measurable
functions it is interpreted in the almost everywhere sense.

Lemma 1.15. Let x ∈ Mn,m. Each function of the form f(x) = f0(x′x) is
radial. Conversely, if n ≥ m, and f(x) is a radial function, then there exists f0(r)
on Pm such that f(x) = f0(x′x) for all (or almost all) x.

Proof. The first statement follows immediately from Definition 1.14. To prove
the second one, we note that for n ≥ m, any matrix x ∈ Mn,m admits representation
x = vr1/2, v ∈ Vn,m, r = x′x ∈ Pm; see Appendix C, 11. Fix any frame v0 ∈ Vn,m

and choose γ ∈ O(n) so that γv0 = v. Owing to (1.43),

f(x) = f(vr1/2) = f(γv0r
1/2) = f(v0r

1/2) def= f0(r),

as desired. Clearly, the result is independent of the choice of v0 ∈ Vn,m. ¤
The Cayley-Laplace operator ∆ on the space of matrices x = (xi,j) ∈ Mn,m is

defined by

(1.44) ∆ = det(∂′∂).

Here, ∂ is an n×m matrix whose entries are partial derivatives ∂/∂xi,j . In terms of
the Fourier transform, the action of ∆ represents a multiplication by the polynomial
(−1)mP (y), y ∈ Mn,m, where

P (y) = |y′y| = det




y1 · y1 . . y1 · ym

. . . .

. . . .
ym · y1 . . ym · ym


 ,

y1, . . . , ym are column-vectors of y, and “ · ” stands for the usual inner product in
Rn. Clearly, P (y) is a homogeneous polynomial of degree 2m of nm variables yi,j ,
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and ∆ is a homogeneous differential operator of order 2m. For m = 1, it coincides
with the Laplace operator on Rn.

Operators (1.44) and their generalizations were studied by S.P. Khekalo [Kh].
For m > 1, the operator ∆ is not elliptic because P (y) = 0 for all non-zero matrices
y of rank < m. Moreover, ∆ is not hyperbolic, [Ho, p. 132], although, for some
n,m and `, its power ∆` enjoys the strengthened Huygens’ principle; see [Kh] for
details.

The following statement gives explicit representation of the radial part of the
Cayley-Laplace operator.

Theorem 1.16. [Ru7]. Let f0(r) ∈ C2m(Pm), f(x) = f0(x′x), d = (m+1)/2.
Then for each matrix x ∈ Mn,m of rank m,

(1.45) (∆f)(x) = (Lf0)(x′x),

where

(1.46) L = 4m|r|d−n/2D+|r|n/2−d+1D+,

D+ being the operator (1.21).

Example 1.17. Let f(x) = |x|λm, |x|m = det(x′x)1/2. By Theorem 1.16, we
have (∆f)(x) = ϕ(x′x), where ϕ(r) = 4m|r|d−n/2D+|r|n/2−d+1D+|r|λ/2. This
expression can be evaluated using (1.27):

ϕ(r) = 4mb(λ/2)|r|d−n/2D+|r|(n+λ)/2−d

= 4mb(λ/2)b((n + λ)/2− d)|r|λ/2−1.

Thus, we have arrived at the following identity of the Bernstein type

(1.47) ∆|x|λm = B(λ)|x|λ−2
m ,

(cf. [FK, p. 125]) where, owing to (1.28), the polynomial B(λ) has the form

(1.48) B(λ) = (−1)m
m−1∏

i=0

(λ + i)(2− n− λ + i).

An obvious consequence of (1.47) in a slightly different notation reads

(1.49) ∆k|x|α+2k−n
m = Bk(α)|x|α−n

m ,

where

Bk(α) =
m−1∏

i=0

k−1∏

j=0

(α− i + 2j)(α− n + 2 + 2j + i)(1.50)

= Bk(n− α− 2k).





CHAPTER 2

The G̊arding-Gindikin fractional integrals

2.1. Definitions and comments

In this section, we begin detailed investigation of fractional integrals associated
to the cone Pm of positive definite m×m matrices. These integrals were introduced
by L. G̊arding [G̊a] and substantially generalized by S. Gindikin [Gi1].

Let f(r) be a smooth function on Pm which is rapidly decreasing at infinity and
bounded with all its derivatives when r approaches the boundary ∂Pm. Consider
the integral

(2.1) If (α) =
∫

Pm

f(r)|r|α−ddr, d = (m + 1)/2.

If f(r) = exp(−tr(r)) then

If (α) = Γm(α) = πm(m−1)/4
m−1∏

j=0

Γ(α− j/2) ;

see (1.6), (1.7). In the general case, by passing to upper triangular matrices and
using (1.3), we have

If (α) =

∞∫

0

t2α−1
1,1 dt1,1

∞∫

0

t2α−2
2,2 dt2,2 . . .

∞∫

0

t2α−m
m,m f̃(t1,1, . . . , tm,m) dtm,m

= 2−m

∞∫

0

yα−1
1 dy1

∞∫

0

y
α−3/2
2 dy2 . . .

∞∫

0

yα−(m+1)/2
m f̃(y1/2

1 , . . . , y1/2
m ) dym,

f̃(t1,1, . . . , tm,m) = 2m

∫

Rm(m−1)/2

f(t′t) dt∗, dt∗ =
∏

i<j

dti,j .

The function f̃ extends to the whole space Rm as an even function in each argument,
and the function

f0(y1, . . . , ym) ≡ 2−mf̃(y1/2
1 , . . . , y1/2

m )
belongs to the Schwartz space S(Rm). Hence If (α) can be regarded as a direct
product of one-dimensional distributions

(2.2) If (α) =




m∏

j=1

(yj)
α−(j+1)/2
+ , f0(y1, . . . , ym)


 .

It follows [GSh1, Chapter 1, Section 3.5] that the integral (2.1) absolutely converges
if and only if Re α > (m− 1)/2 and extends as a meromorphic function of α with

27
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the only poles (m − 1)/2, (m − 2)/2, . . . . These poles and their orders coincide
with those of the gamma function Γm(α) so that I(α)/Γm(α) is an entire function
of α.

These preliminaries motivate the following definitions. We first consider “good”
functions f ∈ D(Pm) which are infinitely differentiable and compactly supported
away form the boundary ∂Pm. Then we proceed to the case of arbitrary locally
integrable functions.

Definition 2.1. Let f ∈ D(Pm), α ∈ C, d = (m + 1)/2. The left-sided
G̊arding-Gindikin fractional integral is defined by

(2.3) (Iα
+f)(s) =





1
Γm(α)

s∫

0

f(r)|s− r|α−ddr if Reα > d− 1,

(Iα+`
+ D`

+f)(s) if d− 1− ` < Reα ≤ d− `;
` = 1, 2, . . . .

Here, s ∈ Pm, D+ is the differential operator (1.21), and we integrate over the
“interval” (0, s) = {r : r ∈ Pm, s− r ∈ Pm}.

Definition 2.2. For f ∈ D(Pm) and α ∈ C, the right-sided G̊arding-Gindikin
fractional integral is defined by

(2.4) (Iα
−f)(s) =





1
Γm(α)

∞∫

s

f(r)|r − s|α−ddr if Re α > d− 1,

(Iα+`
− D`

−f)(s) if d− 1− ` < Re α ≤ d− `;
` = 1, 2, . . . .

Here, s is a positive semi-definite matrix in Pm, D− is defined by (1.22), and
∫∞

s
denotes integration over the shifted cone s+Pm = {r : r ∈ Pm : r− s ∈ Pm}. The
vertex s of this cone may be an inner point of Pm or its boundary point.

In the rank-one case m = 1, when Pm is a positive half-line, (2.3) and (2.4) are
ordinary Riemann-Liouville (or Abel) fractional integrals [Ru1], [SKM].

Remark 2.3. Analogous definitions can be given for functions on the ambient
space Sm ⊃ Pm, for instance, for f ∈ S(Sm). We do not do this for two reasons.
Firstly, because our purposes are exclusively connected with analysis on the cone
Pm, and the space D(Pm) fits our needs completely. Secondly, dealing with the
space D(Pm), we can still reveal basic features of our objects and give much simpler
proofs then for other classes of functions.

According to Definitions 2.1 and 2.2, it is convenient to regard the complex
plane as a union C = ∪∞`=0Ω`, where

(2.5) Ω` =





{α : Reα > d− 1} if ` = 0,

{α : d− 1− ` < Re α ≤ d− `} if ` = 1, 2, . . ..

Lemma 2.4. For f ∈ D(Pm), the integrals (Iα
±f)(s) are entire functions of α.
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Proof. Let us consider the integrals (Iα
+f)(s). Given an integer j > 0, we set

Fj(α) = Iα+j
+ Dj

+f . This function is analytic in the half-plane Reα > d − 1 − j.
Owing to uniqueness property of analytic functions, it suffices to show that Fj(α) =
Iα
+f on each strip Ω` provided that j = j(`) is large enough. For α ∈ Ω`, we have

α + j − d > j − `− 1, and therefore, by (1.23) and (1.25),

Fj(α) =
1

Γm(α + j)

∫

Sm

(s− r)α+j−d
+ (Dj

+f)(r)dr

=
1

Γm(α + j)

∫

Sm

Dj−`
−, r(s− r)α+j−d

+ (D`
+f)(r)dr

=
1

Γm(α + `)

s∫

0

|s− r|α+`−d(D`
+f)(r)dr

= (Iα+`
+ D`

+f)(s).

By Definition 2.1, this means that Fj(α) = Iα
+f for α ∈ Ω`, and we are done. For

operators Iα
− the proof is similar. ¤

Lemma 2.5. Let f ∈ D(Pm). Then

(2.6) Dj
±Iα
±f = Iα

±Dj
±f = Iα−j

± f,

for any α ∈ C and j ∈ N.

Proof. Fix j ∈ N. For Re α > j + d − 1, the equality Iα
±Dj

±f = Iα−j
± f can

be obtained using integration by parts (see the proof of Lemma 2.4). For all α ∈ C
it then follows by analytic continuation. Let us show that Dj

±Iα
±f = Iα−j

± f . Let
Re α− j ∈ Ω` ; see (2.5). If ` = 0, then

Iα−j
+ f =

1
Γm(α− j)

s∫

0

|s− r|α−j−df(r)dr

=
1

Γm(α)

∫

Sm

Dj
+, s(s− r)α−d

+ f(r)dr

= (Dj
+Iα

+f)(s).

If ` ≥ 1, then, by Definition 2.1, Iα−j
+ f = Iα−j+`

+ D`
+f . By the previous case, this

coincides with Dj
+Iα+`

+ D`
+f = Dj

+Iα
+f (here we used Definition 2.1 again). For the

right-sided integrals the argument follows the same lines. ¤

Some historical notes and comments are in order. Fractional integrals similar
to (2.3)–(2.4) and associated to the light cone were introduced by M. Riesz [Ri1],
[Ri2] in 1936. The investigation was continued by N.E. Fremberg [Fr1], [Fr2], and
by Riesz himself in [Ri3], [Ri4]; see also B.B. Baker and E.T. Copson [BC], and
E.T. Copson [Co]. A key motivation of this research was to find a simple form
of the solution to the Cauchy problem for the wave equation. M. Riesz’ argument
was essentially simplified by J.J. Duistermaat [Dui]; see also J. A.C. Kolk and V.S.
Varadarajan [KV].

The results of Riesz were extended by L. G̊arding [G̊a] (1947), who replaced
the light cone (of rank 2) by the higher rank cone Pm of positive definite symmetric
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matrices, and studied the corresponding hyperbolic equations.1 The Riesz-G̊arding
fractional integrals are very close to those in (2.3) but do not coincide with them
completely. The difference is as follows. In the above-mentioned papers, mainly
devoted to PDE, the upper limit s in (2.3) varies in the whole space RN , N =
m(m + 1)/2 (not only in Pm), and the domain of integration is bounded by the
retrograde cone s−Pm and a smooth surface on which the Cauchy data are given.
For s ∈ Pm, this means that the part of the domain of integration in (2.3) containing
the origin is cut off smoothly.

Further progress is connected with fundamental results of S.G. Gindikin [Gi1]
(1964), who developed a general theory of Riemann-Liouville integrals associated
to homogeneous cones. The light cone of Riesz and the cone Pm of G̊arding fall
into the scope of his theory. In the case of Pm, Gindikin’s fractional integrals are
convolutions of the form

(2.7) Jα
±f =

sα−d
±

Γm(α)
∗ f, f ∈ S(RN ), N =

m(m + 1)
2

,

where the function sα−d
+ equals |s|α−d for s ∈ Pm, zero otherwise, and sα−d

− equals
(−s)α−d

+ . Operators (2.7) are defined on the whole space RN , and can be treated
using the Fourier transform technique and the theory of distributions; see [Gi1],
[VG], [Rab], [Wa], [FK]. See also [Rich] concerning application of such operators
in multivariate statistics.

Definitions 2.1 and 2.2 are motivated by consideration of Radon transforms of
functions of matrix argument in the next chapters. It is important that the variable
of integration r and the exterior variable s do not range in the whole space and
are restricted to Pm. In the following, the class of functions f will be essentially
enlarged. We shall define and investigate fractional integrals Iα

±f of arbitrary locally
integrable functions f with possibly minimal decay at infinity. The main emphasis
is made upon α belonging to the Wallach-like set Wm =

{
0, 1

2 , 1, 3
2 , . . . , m−1

2

} ∪{
α : Re α > m−1

2

}
, cf. [FK, p. 137].

Thus, one can see that most of the facts for fractional integrals from [G̊a] and
[Gi1] cannot be automatically transferred to our case, and a careful consideration
is required. The case α = k/2, k ∈ N, is of primary importance because it arises in
our treatment of the Radon transform.

2.2. Fractional integrals of half-integral order

An important feature of the higher rank fractional integrals Iα
±f is that for

α = k/2, k = 0, 1, . . . , m− 1, they are convolutions with the corresponding positive
measures supported on the boundary ∂Pm. In the rank-one case m = 1, this
phenomenon becomes trivial (we have only one value α = 0 corresponding to the
delta function). For m > 1, when dimension of the boundary ∂Pm is positive we deal
with many “delta functions” supported by manifolds of different dimensions. This
phenomenon was drawn considerable attention in analysis on symmetric domains;
see [FK, Chapter VII], [Gi2], [Ishi], and references therein.

Our nearest goal is to find precise form of I
k/2
± f for k = 1, . . . , m− 1. We start

with the following simple observation. For k ≥ m, by Lemma 1.11 and (1.37), one

1Prof. Lars G̊arding kindly informed the second-named author that his construction of
fractional integrals was inspired by close developments in statistics.
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can write

(Ik/2
+ f)(s) =

1
Γm(k/2)

s∫

0

f(s− r)|r|k/2−ddr

= π−km/2

∫

{ω∈Mk,m: ω′ω<s}

f(s− ω′ω)dω,(2.8)

(Ik/2
− f)(s) =

1
Γm(k/2)

∫

Pm

f(s + r)|r|k/2−ddr

= π−km/2

∫

Mk,m

f(s + ω′ω)dω.(2.9)

The expressions (2.8) and (2.9) are meaningful for all k ∈ N, and it is natural
to conjecture that for k = 1, . . . , m− 1, the integrals I

k/2
± f are represented by (2.8)

and (2.9) too. Let us prove this conjecture. We start with the left-sided integrals
I

k/2
+ f and make use of the Laplace transform.

Lemma 2.6. For f ∈ D(Pm) and α ∈ C,

(2.10) (LIα
+f)(z) = det(z)−α(Lf)(z), Re z > 0.

Proof. Let α ∈ Ω` ; see (2.5). For ` = 0, (2.10) is an immediate consequence
of (1.19) and (1.20). The desired result for ` > 1 follows by Definition 2.1 and
(1.31):

(LIα
+f)(z) = (LIα+`

+ D`
+f)(z) = det(z)−α−`(LD`

+f)(z) = det(z)−α(Lf)(z).

¤

Corollary 2.7. For f ∈ D(Pm),

(2.11) (D`
+f)(s) = (I−`

+ f)(s), ` = 0, 1, 2, . . . .

Proof. By (1.31) and (2.10), (LD`
+f)(z) = (LI−`

+ f)(z), Re z > 0. Since,
by Definition 2.1, I−`

+ f = Id
+D`+d

+ f if d = (m + 1)/2 is an integer, and I−`
+ f =

I
d−1/2
+ D

`+d−1/2
+ f otherwise, the result follows owing to the uniqueness property of

the Laplace transform (see Lemma 1.3).
¤

Theorem 2.8. If f ∈ D(Pm), then for all k ∈ N,

(2.12) (Ik/2
+ f)(s) = π−km/2

∫

{ω∈Mk,m: ω′ω<s}

f(s− ω′ω)dω.

Moreover,

(2.13) (I0
+f)(s) = f(s).
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Proof. Denote by ϕ(s) the right-hand side of (2.12). By changing the order
of integration, we have

(Lϕ)(z) = π−km/2

∫

Pm

exp(−tr(zs))ds

∫

{y∈Mk,m: y′y<s}

f(s− y′y)dy

= π−km/2(Lf)(z)
∫

Mk,m

exp(−tr(zy′y))dy.(2.14)

The integral in (2.14) is easily evaluated: if z = r ∈ Pm, we replace y by yr−1/2

and get
∫

Mk,m

exp(−tr(ry′y))dy = |r|−k/2

∫

Mk,m

exp(−tr(y′y))dy

= |r|−k/2

∫

Rkm

exp(−y2
1,1 − . . .− y2

k,m)dy

= πkm/2|r|−k/2.

By analytic continuation,
∫

Mk,m

exp(−tr(zy′y))dy = πkm/2det(z)−k/2, Re z > 0.

Thus, (Lϕ)(z) = det(z)−k/2(Lf)(z), and (2.10) yields (Lϕ)(z) = (LI
k/2
+ f)(z),

Re z > 0. Since for each σ0 ∈ Pm, the integrals
∫

Pm

exp(−tr(σ0s)|ϕ(s)|ds,

∫

Pm

exp(−tr(σ0s)|(Ik/2
+ f)(s)|ds

are finite (both are dominated by |σ0|−k/2(L|f |)(σ0)), by Lemma 1.3 we get ϕ(s) =
(Ik/2

+ f)(s), as desired.
¤

Remark 2.9. For 0 < k < m, the integral (2.12) can be written as

(2.15) (Ik/2
+ f)(s)=ck,m|s|k/2

∫

Vm,k

dv

Ik∫

0

f(s−s1/2vqv′s1/2)|q|(m−k−1)/2dq,

ck,m = π−km/22−k.

Indeed, if we transform (2.12) by setting ω = hs1/2, where h ∈ Mk,m, h′h < Im,
and pass to polar coordinates, we obtain (2.15).

The integral (2.12) can also be written as the Laplace convolution

(2.16) (Ik/2
+ f)(s) =

s∫

0

f(s− r)dµk(r),
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where µk is a positive measure defined by

(2.17) (µk, ψ) = π−km/2

∫

Mk,m

ψ(ω′ω)dω, ψ ∈ Cc(Sm).

Here, Cc(Sm) denotes the space of compactly supported continuous functions on
Sm. For k ≥ m, Lemma 1.11 yields

(µk, ψ) =
1

Γm(k/2)

∫

Pm

ψ(r)|r|k/2−ddr, d = (m + 1)/2.

In order to clarify geometric structure of µk for k < m, we denote

(2.18) Λk = {s : s ∈ Pm, rank(s) = k}, k = 0, 1, . . . , m− 1,

G = GL(m,R), ek =
[

Ik 0
0 0

]
∈ ∂Pm.

The manifold Λk is an orbit of ek under G in Sm, i.e., Λk = Gek. Indeed,
rank(g′ekg) = k for all g ∈ G, and conversely, each matrix s of rank k is rep-
resentable as s = g′ekg for some g ∈ G; see, e.g., [Mu, A6 (V) and Theorem
A9.4(ii)] . The closure Λk is a union of Λ1, . . . , Λk. Since rank(ω′ω) ≤ k < m, then
(µk, ψ) = 0 for all ψ supported away from Λk = Gek, and therefore supp µk = Λk.
Note also that µk(Λk−1) = 0 because∫

Λk−1

ψ(s)dµk(s) =
∫

Ak−1

ψ(ω′ω)dω = 0,

Ak−1 = {ω ∈ Mk,m : rank(ω) ≤ k − 1} (the set Ak−1 has measure 0 in Mk,m).
Thus the following statement holds.

Theorem 2.10. For 0 < k < m, I
k/2
+ f is the Laplace convolution (2.16) with

a positive measure µk defined by (2.17) and such that (a) suppµk = Gek, and (b)
µk(Gek−1) = 0.

Let us consider the right-sided integrals Iα
−f . They can be expressed through

the left-sided ones as follows.

Lemma 2.11. For f ∈ D(Pm) and α ∈ C,

(2.19) (Iα
−f)(s) = |s|α−d(Iα

+g)(s−1), g(r) = |r|−α−df(r−1).

In particular,

(2.20) (I0
−f)(s) = f(s).

Proof. Since the integrals (Iα
+f)(s) and (Iα

−f)(s) are entire functions of α (see
Lemma 2.4), it suffices to prove (2.19) for Re α > d − 1. This can be easily done
by changing variables according to Lemma 1.1 (iii). ¤

Corollary 2.12. For f ∈ D(Pm) and ` ∈ N,

(2.21) (D`
−f)(s) = |s|−`−d(D`

+g)(s−1), g(r) = |r|`−df(r−1).

Proof. The formula (2.21) follows from (2.11) and (2.19).
¤

Now we can justify (2.9) for all k ∈ N.
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Theorem 2.13. If f ∈ D(Pm), k ∈ N, then

(2.22) (Ik/2
− f)(s) = π−km/2

∫

Mk,m

f(s + ω′ω)dω.

Proof. According to (2.19),

(2.23) (Ik/2
− f)(s) = |s|k/2−d(Ik/2

+ g)(s−1), g(r) = |r|−k/2−df(r−1).

By (2.15), (Ik/2
+ g)(s−1) is represented as

ck,m|s|−k/2

∫

Vm,k

dv

Ik∫

0

g(s−1 − s−1/2vqv′s−1/2)|q|(m−k−1)/2 dq

= ck,m|s|d
∫

Vm,k

dv

Ik∫

0

f((s−1 − s−1/2vqv′s−1/2)−1)
|q|(m−k−1)/2 dq

|Im − vqv′|k/2+d
.

Using the property

(2.24) |Im − vqv′| = |Ik − q|, q ∈ Pk, v ∈ Vm,k,

(see [Mu, p. 575] or Appendix C, 1 ), this can be written as

ck,m|s|d
∫

Vm,k

dv

Ik∫

0

f(s1/2(Im − vqv′)−1s1/2)
|q|(m−k−1)/2 dq

|Ik − q|k/2+d

or

ck,mσm,k|s|d
∫

O(m)

dγ

Ik∫

0

f(s1/2γ(Im − v0qv
′
0)
−1γ′s1/2)

|q|(m−k−1)/2 dq

|Ik − q|k/2+d
,

v0 =
[

0
Ik

]
∈ Vm,k.

One can readily check that

(Im − v0qv
′
0)
−1 =

[
Im−k 0
0 Ik − q

]−1

=
[

Im−k 0
0 (Ik − q)−1

]
.

After changing variable (Ik − q)−1 → q, the integral (Ik/2
+ g)(s−1) becomes

ck,mσm,k|s|d
∫

O(m)

dγ

∞∫

Ik

f

(
s1/2γ

[
Im−k 0
0 q

]
γ′s1/2

)
|Ik − q|(m−k−1)/2dq,
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and therefore (replace q by Ik + q),

(Ik/2
+ g)(s−1) = ck,m|s|d

∫

Vm,k

dv

∫

Pk

f(s1/2(Im + vqv′)s1/2)|q|(m−k−1)/2dq

= ck,m2k|s|d
∫

Mm,k

f(s + s1/2yy′s1/2) dy (y=s−1/2z)

= ck,m2k|s|d−k/2

∫

Mm,k

f(s + zz′) dz

= π−km/2|s|d−k/2

∫

Mk,m

f(s + ω′ω)dω.

Owing to (2.23), this gives the desired equality. ¤

Remark 2.14. For 0 < k < m, the integral (2.22) can be written in polar
coordinates as

(2.25) (Ik/2
− f)(s) = ck,m

∫

Vm,k

dv

∫

Pk

f(vqv′ + s)|q|(m−k−1)/2dq,

ck,m = π−km/22−k.

Furthermore,

(Ik/2
− f)(s) =

∫

Pm

f(s + r)dµk(r),

µk being a positive measure defined by (2.17).

2.3. The G̊arding-Gindikin distributions

It is instructive to give an alternative proof of the formula (2.22). This proof
follows the argument from [FK, p. 134] and is of independent interest. It can be
useful in different occurrences. Consider the G̊arding-Gindikin distribution

(2.26) Gα(f) =
1

Γm(α)

∫

Pm

f(r)|r|α−ddr, d = (m + 1)/2,

where f belongs to the Schwartz space S(Sm). The integral (2.26) converges abso-
lutely for Re α > d− 1 and admits analytic continuation as an entire function of α
so that

(2.27) G0(f) = f(0),

see [FK, pp. 132–133]. The following statement implies (2.22) and extends it for
f ∈ S(Sm).

Lemma 2.15. For f ∈ S(Sm) and 0 < k < m,

(2.28) Gk/2(f) = π−km/2

∫

Mk,m

f(ω′ω)dω.
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Proof. Let us transform Gα(f) to upper triangular matrices. By (1.3),

Gα(f) =
2m

Γm(α)

∫

Tm

f(t′t)
m∏

i=1

t2α−i
i,i

∏

i≤j

dti,j Reα > d− 1.

We write t = a + b, where a = (ai,j) and b = (bi,j) are upper triangular matrices
so that the lower n − k rows of a and the upper k rows of b consist of zeros. We
denote by A and B the sets of all matrices of the form a and b, respectively. Since
t′t = a′a + b′b, then

(2.29) Gα(f) =
2kΓm−k(α− k/2)

Γm(α)

∫

A

gα(a′a)
k∏

i=1

a2α−i
i,i

∏

i≤j

dai,j ,

where

gα(a′a) =
2m−k

Γm−k(α− k/2)

∫

B

f(a′a + b′b)
m−k∏

i=1

b
2(α−k/2)−i
k+i,k+i

∏

i≤j

dbk+i,k+j .

Note that gα(a′a) = Gα−k/2

(
f

([ ∗ ∗
∗ •

]))
is the G̊arding-Gindikin distribution

acting on the (•) matrix variable belonging to Sm−k. By (2.29), Gα(f) is a direct
product of two distributions which are analytic in α. By taking into account (2.27),
we get gk/2(a′a) = f(a′a), and therefore,

(2.30) Gk/2(f) = c

∫

A

f(a′a)
k∏

i=1

ak−i
i,i

∏

i≤j

dai,j .

Here, by (1.7),

c = 2k lim
α→k/2

2kΓm−k(α− k/2)
Γm(α)

=
2kπk(k−m)/2

Γk(k/2)
.

This representation was established in [FK, p. 134]. Let us show that it coincides
with (2.28). We replace ω in (2.28) by [η, ζ], where η ∈ Mk,k, ζ ∈ Mk,m−k. Then

π−km/2

∫

Mk,m

f(ω′ω)dω = π−km/2

∫

Mk,k

dη

∫

Mk,m−k

f

([
η′η η′ζ
ζ ′η ζ ′ζ

])
dζ =

( set η = γq, γ ∈ O(k), q ∈ Tk and use Lemma 1.12)

= π−km/2σk,k

∫

Tk

k∏

i=1

qk−i
i,i

∏

i≤j

dti,j

∫

Mk,m−k

f

([
q′q q′y
y′q y′y

])
dy

(1.37)
=

2kπk(k−m)/2

Γk(k/2)

∫

A

f(a′a)
k∏

i=1

ak−i
i,i

∏

i≤j

dai,j

where a =
[

q y
0 0

]
. This proves the statement.

¤
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2.4. Fractional integrals of locally integrable functions

In the previous sections, we studied fractional integrals Iα
±f assuming f is very

nice, namely, f ∈ D(Pm). Below we explore these integrals for arbitrary locally
integrable functions f provided that α belongs to the Wallach-like set

(2.31) Wm =
{

0,
1
2
, 1,

3
2
, . . . ,

m− 1
2

}
∪

{
α : Reα >

m− 1
2

}
.

The key question is for which f the integrals Iα
±f do exist. We start with the

left-sided integrals.

Definition 2.16. For a locally integrable function f on Pm and α ∈ Wm, we
define

(2.32) (Iα
+f)(s) =





1
Γm(α)

s∫

0

f(r)|s− r|α−ddr if Reα > d− 1,

π−km/2

∫

{ω∈Mk,m: ω′ω<s}

f(s− ω′ω)dω if α = k/2.

Here, s ∈ Pm, d = (m + 1)/2, and k = 1, 2, . . . ,m − 1. For α = 0, we set
(I0

+f)(s) = f(s).

This definition agrees with consideration in Sections 2.1 and 2.2. We recall that
the second line in (2.32) coincides with the first one if k ≥ m, α = k/2.

Theorem 2.17. If f ∈ L1
loc(Pm) and α ∈ Wm, then (Iα

+f)(s) converges abso-
lutely for almost all s ∈ Pm.

Proof. It suffices to show that the integral
∫ a

0
(Iα

+f)(s)ds is finite for any
a ∈ Pm provided that α ∈ Wm and f ∈ L1

loc(Pm) is nonnegative. For α > d − 1,
changing the order of integration, and evaluating the inner integral according to
(A.1), we have

a∫

0

(Iα
+f)(s)ds =

1
Γm(α)

a∫

0

f(r)dr

a∫

r

|s− r|α−dds

=
Γm(d)

Γm(α + d)

a∫

0

f(r)|a− r|αdr

≤ Γm(d)|a|α
Γm(α + d)

a∫

0

f(r)dr < ∞
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(note that |a− r| < |a|; see, e.g., [Mu, p. 586] ). For the second line of (2.32), by
changing the order of integration, we obtain

∫ a

0

(Ik/2
+ f)(s)ds = π−km/2

∫

ω′ω<a

dω

a∫

ω′ω

f(s− ω′ω)ds

= π−km/2

∫

ω′ω<a

dω

a−ω′ω∫

0

f(r)dr

≤ π−km/2ca

a∫

0

f(r)dr,

where

ca =
∫

ω′ω<a

dω
(A.7)
=

πkm/2 Γm(d)
Γm(k/2 + d)

|a|k/2 < ∞,

as required. ¤
The following equality can be easily obtained by changing the order of integra-

tion and using (A.4)–(A.6):

(2.33)
∫

Pm

(Iα
+f)(s) ds

|εIm + s|γ =
Γm(γ − α)

Γm(γ)

∫

Pm

f(r) dr

|εIm + r|γ−α
,

α ∈ Wm, Re (γ − α) > (m− 1)/2, ε = 0, 1.

Let us consider the right-sided integrals Iα
−f . An idea of the following definition

is the same as above.

Definition 2.18. For a locally integrable function f on Pm and α ∈ Wm, we
define fractional integrals (Iα

−f)(s), s ∈ Pm, by

(2.34) (Iα
−f)(s) =





1
Γm(α)

∞∫

s

f(r)|r − s|α−ddr if Re α > d− 1,

π−km/2

∫

Mk,m

f(s + ω′ω)dω if α = k/2.

For α = 0, we set (I0
−f)(s) = f(s). As before, here we assume d = (m + 1)/2 and

k = 1, 2, . . . , m− 1.

Note that unlike Definition 2.16, here s may be a boundary point of Pm. The
following statement extends Lemma 2.11 (on interrelation between Iα

+ and Iα
−) to

locally integrable functions.

Theorem 2.19. Let α ∈ Wm, d = (m + 1)/2. Suppose that f is a measurable
function on Pm satisfying

(2.35)

∞∫

R

|r|Re α−d|f(r)| dr < ∞, ∀R ∈ Pm,
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or, equivalently,

(2.36) g(r) ≡ |r|−α−df(r−1) ∈ L1
loc(Pm).

Then the integral (Iα
−f)(s) defined by (2.34) converges absolutely for almost all

s ∈ Pm and

(2.37) (Iα
−f)(s) = |s|α−d(Iα

+g)(s−1).

Proof. Equivalence of (2.35) and (2.36) is obvious in view of Lemma 1.1
(iii). In fact, we have already proved (2.37) provided that either side of it exists
in the Lebesgue sense. This was done in Lemma 2.11 for Re α > d − 1, and
in Theorem 2.13 for α = k/2, 0 < k < m. By Theorem 2.17, the condition
g(r) ≡ |r|−α−df(r−1) ∈ L1

loc(Pm) guarantees finiteness of the right-hand side of
(2.37) for almost all s. This completes the proof.

¤

Remark 2.20. Condition (2.35) is best possible in the sense that there is a
function f ≥ 0 for which (2.35) fails and (Iα

−f)(s) ≡ ∞. Let

(2.38) fλ(r) = |Im + r|−λ/2,

where λ ≤ 2α + m− 1, α is real. Then for α > d− 1,

∞∫

R

|r|α−dfλ(r) dr =

R−1∫

0

|r|λ/2−α−d|Im + r|−λ/2 dr ≡ ∞,

and by (A.5),

(Iα
−fλ)(s) =

|Im + s|α−λ/2

Γm(α)

Im∫

0

|r|λ/2−α−d|Im − r|α−d dr(2.39)

= |Im + s|α−λ/2Bm(α, λ/2− α)/Γm(α) ≡ ∞.

In the case α = k/2, k < m, we have

(Ik/2
− fλ)(s) = π−km/2

∫

Mk,m

fλ(s + ω′ω)dω

= π−km/2

∫

Mm,k

|b + yy′|−λ/2 dy, b = Im + s.(2.40)

Owing to (A.6), the last integral coincides with (2.39) (with α = k/2) and is infinite.

The following formula is a consequence of (2.33) and (2.37):

(2.41)
∫

Pm

(Iα
−f)(s)

|s|γ−a−d

|Im + εs|γ ds =
Γm(γ − α)

Γm(γ)

∫

Pm

f(r)
|r|γ−d

|Im + εr|γ−α
dr ,

α ∈ Wm, d = (m + 1)/2, Re (γ − α) > (m− 1)/2, ε = 0, 1.
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2.5. The semigroup property

By the Fubini theorem, the equality (A.1) yields

(2.42) Iα
±Iβ
±f = Iα+β

± f, Reα > d− 1, Re β > d− 1,

provided the corresponding integral Iα+β
+ f or Iα+β

− f is absolutely convergent. The
equality (2.42) is usually referred to as the semigroup property of fractional inte-
grals. It extends to all complex α and β if f is good enough and fractional integrals
are interpreted as multiplier operators in the framework of the relevant Fourier-
Laplace analysis. This approach allows us to formulate the semigroup property
in the language of the theory of distributions; see [Gi1], [FK], [VG], [Rab] for
details.

Below we extend (2.42) to the important special case when α and β lie in the
Wallach-like set Wm defined by (2.31). Definitions (2.32) and (2.34) enable us to
do this under minimal assumptions for f so that all integrals are understood in the
classical Lebesgue sense.

Lemma 2.21. If f ∈ L1
loc(Pm), then

(2.43) Iα
±Iβ
±f = Iα+β

± f, α, β ∈ Wm,

provided the corresponding integral on the right-hand side is absolutely convergent.

Proof. In view of (2.42), it suffices to prove that

(2.44) Iα
±I

k/2
± f = I

k/2
± Iα

±f = I
α+k/2
± f, Re α > d− 1,

and

(2.45) I
k/2
± I

`/2
± f = I

(k+`)/2
± f,

where k and ` are positive integers less than m. By changing the order of integra-
tion, we have

(Iα
−I

k/2
− f)(s) =

π−km/2

Γm(α)

∞∫

s

|r − s|α−d dr

∫

Mk,m

f(r + ω′ω) dω

=
π−km/2

Γm(α)

∫

Mk,m

dω

∞∫

s+ω′ω

f(t)|t− s− ω′ω|α−d dt

=
π−km/2

Γm(α)

∞∫

s

f(t)h(t− s) dt,

where

h(z) =
∫

{ω∈Mk,m: ω′ω<z}

|z − ω′ω|α−ddω.

The same expression comes out if we transform I
k/2
− Iα

−f . By (A.6),

(2.46) h(z) =
πkm/2Γm(α)
Γm(α + k/2)

|z|α+k/2−d, Reα > d− 1,
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and we are done. For the left-sided integrals, the argument is similar. Namely,

(Iα
+I

k/2
+ f)(s) =

π−km/2

Γm(α)

s∫

0

|s− r|α−ddr

∫

{ω∈Mk,m : ω′ω<r}

f(r − ω′ω)dω

=
π−km/2

Γm(α)

s∫

0

f(t)h(s− t) dt

= (Iα+k/2
+ f)(s).

Let us prove (2.45). By (2.34),

(Ik/2
− I

`/2
− f)(s) = π−m(k+`)/2

∫

Mk,m

dω

∫

M`,m

f(y′y + ω′ω + s)dy.

The change of variables z =
[

y
ω

]
∈ Mk+`,m yields z′z = y′y + ω′ω, and therefore

(Ik/2
− I

`/2
− f)(s) = π−m(k+`)/2

∫

Mk+`,m

f(z′z + s)dz = (I(k+`)/2
− f)(s).

For the left-sided integrals, owing to (2.32), we have

(I(k+`)/2
+ f)(s) = π−m(k+`)/2

∫

{z∈Mk+`,m : z′z<s}

f(s− z′z) dz.

By the Fubini theorem, this reads

π−m(k+`)/2

∫

{ω∈Mk,m : ω′ω<s}

dω

∫

{y∈M`,m: y′y<s−ω′ω}

f(s− y′y − ω′ω) dy

and coincides with (Ik/2
+ I

`/2
+ f)(s). ¤

2.6. Inversion formulas

Below we obtain inversion formulas for the integrals (Iα
±f)(r), r ∈ Pm. For

our purposes, it suffices to restrict to the case α ∈ Wm. We recall that k ∈ N and
d = (m + 1)/2. For “good” functions f , the following statement holds.

Lemma 2.22. If ϕ = Iα
±f, f ∈ D(Pm), α ∈ Wm, then

(2.47) f = Dj
±Ij−α
± ϕ,

provided that j ≥ α if α = k/2 and j > Re α + d− 1 otherwise.

Proof. By the semigroup property (2.43), we have Ij−α
± ϕ = Ij

±f . Then ap-
plication of (2.6) and (2.13) (or (2.20)) gives (2.47). ¤

Unfortunately, we are not able to obtain pointwise inversion formulas for Iα
±f

if f is an arbitrary locally integrable function. To get around this difficulty, we
utilize the theory of distributions.
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Lemma 2.23. If ϕ = Iα
+f, f ∈ L1

loc(Pm), α ∈ Wm, then

(2.48) f = Dj
+Ij−α

+ ϕ,

for any integer j subject to the condition that j ≥ α if α = k/2 and j > Re α+d−1
otherwise. The differentiation in (2.48) is understood in the sense of distributions,
so that

(2.49) (f, φ) = (Ij−α
+ ϕ, Dj

−φ), φ ∈ D(Pm).

In particular, for α = j,

(2.50) (f, φ) = (ϕ, Dj
−φ).

Proof. As above, we have Ij−α
+ ϕ = Ij

+f , and therefore,

(f, φ)
(1)
= (f, Ij

−Dj
−φ)

(2)
= (Ij

+f, Dj
−φ)

(3)
= (Ij−α

+ ϕ, Dj
−φ).

The equality (1) holds thanks to (2.6), in (2) we apply the Fubini theorem; (3)
holds owing to the semigroup property (2.44). ¤

Let us invert the equation Iα
−f = ϕ. Formally, f = Dα

−ϕ where Dα
− = I−α

− , or
(f, φ) = (ϕ, I−α

+ φ), φ ∈ D(Pm) in the sense of distributions. The next statement
justifies this equality.

Lemma 2.24. Let α ∈ Wm, and let f be a locally integrable function on Pm

subject to the decay condition (2.35), so that (Iα
−f)(s) exists for almost all s ∈ Pm.

If ϕ = Iα
−f then the integral

(ϕ, I−α
+ φ) =

∫

Pm

ϕ(r)(I−α
+ φ)(r)dr, φ ∈ D(Pm),

is finite, and f can be recovered by the formula

(2.51) f = Dα
−ϕ,

where Dα
−ϕ is defined as a distribution

(2.52) (Dα
−ϕ, φ) = (ϕ, I−α

+ φ).

In particular, for α = j,

(2.53) (f, φ) = (ϕ, Dj
+φ).

Proof. Let φ1(s) = |s|α−dφ(s−1). This function belongs to D(Pm). By (2.19),

(I−α
+ φ)(s) = |s|−α−d(I−α

− φ1)(s−1).

If ϕ = Iα
−f then

(ϕ, I−α
+ φ) = ((Iα

−f)(s), |s|−α−d(I−α
− φ1)(s−1))

(use Theorem 2.19 with g(r) = |r|−α−df(r−1))

= ((Iα
+g)(s−1), |s|−2d(I−α

− φ1)(s−1))

= ((Iα
+g)(s), (I−α

− φ1)(s))
(1)
= (g, Iα

−I−α
− φ1)

(2)
= (g, φ1)
= (f, φ).
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Let us comment on these calculations. The equality (1) holds by the Fubini
theorem. Here we take into account that I−α

− φ1 ∈ D(Pm), because by the second
equality in (2.6),

(2.54) I−α
− φ1 = Ij−α

− Dj
−φ1

if j is big enough. A rigorous justification of the obvious equality Iα
−I−α
− φ1 = φ1

used in (2) is as follows:

Iα
−I−α
− φ1

(2.54)
= Iα

−Ij−α
− Dj

−φ1
(2.43)
= Ij

−Dj
−φ1

(2.6)
= I0

−φ1
(2.20)
= φ1.

For α = j, the result follows by Corollary 2.7, according to which I−j
+ φ = Dj

+φ.
The proof is complete. ¤





CHAPTER 3

Riesz potentials on matrix spaces

Riesz potentials of functions of matrix argument and their generalizations arise
in different contexts in harmonic analysis, integral geometry, and PDE; see [Far],
[Ge], [Kh], [St2], [Sh1]–[Sh3]. They are intimately connected with representations
of Jordan algebras and zeta functions (or zeta distributions) extensively studied in
the last three decades; see [FK], [Cl], [Ig], [SS], [Sh] and references therein. In
this chapter, we explore basic properties of matrix Riesz potentials which will be
used in Chapters 5 and 6 in our study of Radon transforms. Numerous results,
bibliography, and historical notes related to ordinary Riesz potentials on Rn can
be found in [Ru1], [Sa], [SKM].

3.1. Zeta integrals

3.1.1. Definition and examples. We denote

(3.1) |x|m = det(x′x)1/2.

For m = 1, this is the usual euclidean norm on Rn. If m > 1, then |x|m is the
volume of the parallelepiped spanned by the column-vectors of the matrix x [G, p.
251]. Let f(x) be a Schwartz function on the matrix space Mn,m, n ≥ m. Let us
consider the following distribution

(3.2) Z(f, α− n) =
∫

Mn,m

f(x)|x|α−n
m dx, α ∈ C.

For Reα > m− 1, the integral (3.2) absolutely converges, and for Re α ≤ m− 1, it
is understood in the sense of analytic continuation (see Lemma 3.2). Integrals like
(3.2) are also known as the zeta integrals or zeta distributions.

The case n = m deserves special consideration. In this case, we denote Mm =
Mm,m and define two zeta integrals

Z+(f, α−m) =
∫

Mm

f(x) |det(x)|α−m dx (≡ Z(f, α−m)),(3.3)

Z−(f, α−m) =
∫

Mm

f(x) |det(x)|α−m sgn det(x) dx.(3.4)

We call (3.4) the conjugate zeta integral (or distribution) by analogy with the case
α = 0, m = 1, where

Z−(f,−1) = p.v.

∞∫

−∞

f(x)
x

dx.

45
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A convolution of f with the distribution p.v. 1
x represents the Hilbert transform

[Ne], [SW], and is called a conjugate function.

Example 3.1. It is instructive to evaluate zeta integrals for the Gaussian func-
tions. Let

(3.5) e(x) = exp(−tr(x′x)).

By Lemma 1.11, for Re α > m− 1 we have

(3.6) Z(e, α− n) = 2−mσn,m

∫

Pm

|r|α/2−d exp(−tr(r))dr = cn,mΓm(α/2),

where σn,m is the constant (1.37), d = (m + 1)/2,

cn,m =
πnm/2

Γm(n/2)
, n ≥ m.

In the case n = m, for the function

(3.7) e1(x) = e(x) det(x)

we have

(3.8) Z−(e1, α−m) = Z+(e, α + 1−m) = cmΓm((α + 1)/2),

cm ≡ cm,m =
πm2/2

Γm(m/2)
, Re α > m− 2.

Formulas (3.6) and (3.8) extend meromorphically to all complex α, excluding α =
m − 1,m − 2, . . . for (3.6), and α = m − 2,m − 3, . . . for (3.8). Excluded values
are poles of the corresponding gamma functions written for m ≥ 2. If m = 1,
these poles proceed with step 2, namely, α = 0,−2,−4, . . . and α = −1,−3, . . . ,
respectively.

3.1.2. Analytic continuation. In the following, throughout the paper, we
assume m ≥ 2.

Lemma 3.2. Let f ∈ S(Mn,m). For Re α > m− 1, the integrals (3.2)-(3.4) are
absolutely convergent. For Re α ≤ m− 1, they extend as meromorphic functions of
α with the only poles

m− 1, m− 2, . . . , for (3.2) and (3.3),
m− 2, m− 3, . . . , for (3.4).

These poles and their orders are exactly the same as those of the gamma functions
Γm(α/2) and Γm((α + 1)/2), respectively. The normalized zeta integrals

(3.9)
Z(f, α− n)
Γm(α/2)

,
Z+(f, α−m)

Γm(α/2)
,

Z−(f, α−m)
Γm((α + 1)/2)

are entire functions of α.

Proof. This statement is known; see, e.g., [P5], [Kh], [Sh1]. We present
the proof for the sake of completeness. The equalities (3.6) and (3.8) say that the
functions α → Z(f, α− n) and α → Z−(f, α−m) have poles at least at the same
points and of the same order as the gamma functions Γm(α/2) and Γm((α + 1)/2),
respectively. Our aim is to show that no other poles occur, and the orders cannot
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exceed those of Γm(α/2) and Γm((α + 1)/2). Let us transform (3.2) by passing to
upper triangular matrices t ∈ Tm according to Lemma 1.12. We have

(3.10) Z(f, α− n) =
∫

Rm
+

F (t1,1, . . . , tm,m)
m∏

i=1

tα−i
i,i dti,i ,

F (t1,1, . . . , tm,m) =
∫

Rm(m−1)/2

dt∗

∫

Vn,m

f(vt)dv, dt∗ =
∏

i<j

dti,j .

Since F extends as an even Schwartz function in each argument, it can be written
as

F (t1,1, . . . , tm,m) = F0(t21,1, . . . , t
2
m,m),

where F0 ∈ S(Rm) (use, e.g., Lemma 5.4 from [Tr, p. 56]). Replacing t2i,i by si,i,
we represent (3.10) as a direct product of one-dimensional distributions

(3.11) Z(f, α− n) = 2−m(
m∏

i=1

(si,i)
(α−i−1)/2
+ , F0(s1,1, . . . , sm,m)),

which is a meromorphic function of α with the poles m− 1,m− 2, . . . , see [GSh1].
These poles and their orders coincide with those of the gamma function Γm(α/2).
To normalize the function (3.11), following [GSh1], we divide it by the product

m∏

i=1

Γ((α− i + 1)/2) =
m−1∏

i=0

Γ((α− i)/2) = Γm(α/2)/πm(m−1)/4.

As a result, we obtain an entire function.
For the distribution Z−(f, α−m), the argument is almost the same. Namely,

by Lemma 1.12, the integral (3.4) can be written as
∫

Rm
+

Φ(t1,1, . . . , tm,m)
m∏

i=1

tα−i
i,i dti,i

where

(3.12) Φ(t1,1, . . . , tm,m) = σm,m

∫

Rm(m−1)/2

dt∗

∫

O(m)

f(vt) sgn det(v) dv.

Since Φ extends to Rm as an odd Schwartz function in each argument, then

(3.13) Z−(f, α−m) =
1

2m

∫

Rm

Φ(t1,1, . . . , tm,m)
m∏

i=1

|ti,i|α−i sgn(ti,i) dti,i.

By the well known theory [GSh1, Chapter 1, Section 3.5], this integral extends as
a meromorphic function of α with the only poles m − 2,m − 3, . . . . To normalize
this function, we divide it by the product

m∏

i=1

Γ
(

α− i + 2
2

)
=

m−1∏

i=0

Γ
(

α− i + 1
2

)
= Γm

(
α + 1

2

)
/πm(m−1)/4.

As a result, we get an entire function. ¤
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Analytic continuation of integrals (3.2)-(3.4) can be performed with the aid of
the corresponding differential operators. In particular, for Z±(f, α −m), one can
utilize the Cayley differential operator

(3.14) D = det(∂/∂xi,j), x = (xi,j) ∈ Mm,

that enjoys the following obvious relations in the Fourier terms:

(3.15) (F [Df ])(y) = (−i)m det(y) (Ff)(y),

(3.16) D(Ff)(y) = im (F [f(x) det(x)])(y).

Lemma 3.3. Let x ∈ Mm, rank(x) = m. For any λ ∈ C,

(3.17) D [|det(x)|λ] = (λ,m) |det(x)|λ−1 sgn det(x),

(3.18) D [|det(x)|λ sgn det(x)] = (λ,m) |det(x)|λ−1.

Proof. Different proofs of these important formulas can be found in [Ra] and
[P2]; see also [Tu, p. 114]. All these proofs are very involved. Below we give
an alternative proof which is elementary. Note that (3.17) and (3.18) follow one
from another. Furthermore, it suffices to assume that λ is not an integer (λ /∈ Z).
Once (3.17) and (3.18) are proved for such λ, the result for λ ∈ Z then follows by
continuity.

We start with the formula

(3.19) Dx[f(ax)] = det(a) (Df)(ax), a ∈ GL(m,R),

which can be easily checked by applying the Fourier transform to both sides. Indeed,
if f is good enough at infinity (otherwise we can multiply f by a smooth cut-off
function) then by (3.15), the Fourier transform of the left-hand side of (3.19) reads

(−i)m det(y)F [f(ax)](y) =
(−i)m det(y)
|det(a)|m (Ff)((a−1)′y)

which coincides with the Fourier transform of the right-hand side. If f(x) =
|det(x)|λ then (3.19) yields

|det(a)|λD |det(x)|λ = det(a) [D |det(·)|λ](ax).

By setting a = x−1 (recall that rank(x) = m so that x is non-singular) we obtain

D |det(x)|λ = A|det(x)|λ−1 sgn det(x), A = [D |det(x)|λ](Im),

and therefore

(3.20) D [|det(x)|λ sgn det(x)] = A|det(x)|λ−1.

In order to evaluate A, we make use of the Gaussian functions

e(x) = exp(−tr(x′x)) and e1(x) = e(x) det(x) = (−2)−m(De)(x),

see (3.5) and (3.7). By (3.8),

Z−(e1, λ) = Z+(e, λ + 1) = cmΓm((λ + 1 + m)/2)
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(here and on we do not care about the poles because we assumed in advance that
λ /∈ Z). On the other hand, by (3.20) and (3.6),

Z−(e1, λ) = (−2)−mZ−(De, λ)

= 2−m(e(x),D [|det(x)|λ sgn det(x)])
= 2−mAZ+(e, λ− 1)
= cm2−mA Γm((λ− 1 + m)/2).

Hence, owing to (1.9), we obtain

A =
2m Γm((λ + 1 + m)/2)

Γm(λ− 1 + m)/2)
= (−1)m Γ(1− λ)

Γ(1− λ−m)
= (λ,m).

¤
Formulas (3.17) and (3.18) imply the following connection between zeta inte-

grals Z+(·) and Z−(·).
Corollary 3.4.

(3.21) Z∓(f, α−m) = cαZ±(Df, α + 1−m), cα = (−1)m Γ(α + 1−m)
Γ(α + 1)

.

The formula (3.21) can be used for analytic continuation of the zeta integrals
Z∓(f, α−m).

3.1.3. Functional equations for the zeta integrals. The following state-
ment is a core of the theory of zeta integrals (3.2)-(3.4).

Theorem 3.5. Let f ∈ S(Mn,m), n ≥ m. Then

(3.22)
Z(f, α− n)
Γm(α/2)

= π−nm/2 2m(α−n) Z(Ff,−α)
Γm((n− α)/2)

,

(3.23)
Z+(f, α−m)

Γm(α/2)
= π−m2/2 2m(α−m) Z+(Ff,−α)

Γm((m− α)/2)
,

(3.24)
Z−(f, α−m)
Γm((α + 1)/2)

= (−i)m π−m2/2 2m(α−m) Z−(Ff,−α)
Γm((m− α + 1)/2)

.

Proof. We recall that both sides of each equality are understood in the sense
of analytic continuation and represent entire functions of α. The equalities (3.22)
and (3.23) were obtained in [Far], [FK], [Ge], [Ra], [P2] in the framework of more
general considerations. A self-contained proof of them and detailed discussion can
be found in [Ru7]. The equality (3.24) was implicitly presented in [P2, p. 289]. In
fact, it follows from (3.23) owing to the formulas (3.21) and (3.15). We have

Z−(f, α−m)
Γm((α + 1)/2)

=
cαZ+(Df, α + 1−m)

Γm((α + 1)/2)

= cα π−m2/2 2m(α+1−m) Z+(F [Df ],−α− 1)
Γm((m− α− 1)/2)

= (−i)m cα π−m2/2 2m(α+1−m) ((Ff)(y),det(y) |det(y)|−α−1)
Γm((m− α− 1)/2)

= c
Z−(Ff,−α)

Γm((m− α + 1)/2)
,
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where (use (3.21) and (1.9))

c = (−i)m cα π−m2/2 2m(α+1−m) Γm((m− α + 1)/2)
Γm((m− α− 1)/2)

= (−i)m π−m2/2 2m(α−m).

¤

3.2. Normalized zeta distributions

It is convenient to introduce a special notation for the normalized zeta integrals
(3.9) which are entire functions of α. Let

(3.25) ζα(x) =
|x|α−n

m

Γm(α/2)
, x ∈ Mn,m, n ≥ m,

(3.26) ζ+
α (x)=

|det(x)|α−m

Γm(α/2)
, ζ−α (x)=

|det(x)|α−m sgn det(x)
Γm((α + 1)/2)

, x ∈ Mm.

Given a Schwartz function f , we denote

(3.27) (ζα, f) = a.c.

∫

Mn,m

f(x)ζα(x) dx, (ζ±α , f) = a.c.

∫

Mm

f(x)ζ±α (x) dx

where“a.c.” abbreviates analytic continuation. We call ζα and ζ±α normalized zeta
distributions of order α on Mn,m and Mm, respectively. By (3.21),

(3.28) (ζ−α , f) = cα (ζ+
α+1,Df), (ζ+

α , f) = dα (ζ−α+1,Df),

where

cα = (−1)m Γ(α + 1−m)
Γ(α + 1)

,

dα =
cα Γm(α/2 + 1)

Γm(α/2)
=

Γ(α + 1−m) Γ(m− α)
2m Γ(α + 1)Γ(−α)

(use (1.9)).

Our next goal is to obtain explicit representations of the distributions (3.27)
when the corresponding integrals are not absolutely convergent. Evaluation of
(ζα, f) when α is a non-negative integer is of primary importance in view of subse-
quent application to the Radon transform in Chapters 5 and 6.

Theorem 3.6. Let f ∈ S(Mn,m). For α = k, k = 1, 2, . . . , n,

(3.29) (ζk, f) =
π(n−k)m/2

Γm(n/2)

∫

O(n)

dγ

∫

Mk,m

f

(
γ

[
ω
0

])
dω.

Furthermore, in the case α = 0 we have

(3.30) (ζ0, f) =
πnm/2

Γm(n/2)
f(0).

Proof. STEP 1. Let first k > m− 1 . In polar coordinates we have

(ζk, f) =
1

Γm(k/2)

∫

Mn,m

f(x)|x|k−n
m dx

=
2−mσn,m

Γm(k/2)

∫

Pm

|r|k/2−ddr

∫

O(n)

f

(
γ

[
r1/2

0

])
dγ.
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Now we replace γ by γ

[
β 0
0 In−k

]
, β ∈ O(k), then integrate in β ∈ O(k), and

replace the integration over O(k) by that over Vk,m. We get

(ζk, f) =
2−mσn,m

σk,mΓm(k/2)

∫

O(n)

dγ

∫

Pm

|r|k/2−ddr

∫

Vk,m

f

(
γ

[
vr1/2

0

])
dv

(set ω = vr1/2 ∈ Mk,m)

=
σn,m

σk,mΓm(k/2)

∫

Mk,m

dω

∫

O(n)

f

(
γ

[
ω
0

])
dγ.

This coincides with (3.29).
STEP 2. Our next task is to prove that analytic continuation of (ζα, f) at the

point α = k (≤ m− 1) has the form (3.29). To this end, we express ζα through the
G̊arding-Gindikin distribution; see Section 2.3. For Re α > m − 1, by passing to
polar coordinates, we have (ζα, f) = 2−mσn,mGα/2(F ), where

Gα/2(F ) =
1

Γm(α/2)

∫

Pm

F (r)|r|α/2−ddr, F (r) =
1

σn,m

∫

Vn,m

f(vr1/2)dv.

To continue the proof, we need the following

Lemma 3.7. Let S(Pm) be the space of restrictions onto Pm of the Schwartz
functions on Sm ⊃ Pm with the induced topology. The map

S(Pm) 3 F → f(x) = F (x′x)

is an isomorphism of S(Pm) onto the space S(Mn,m)\ of O(n) left-invariant func-
tions on Mn,m.

This important statement, which is well known for m = 1 (see, e.g., Lemma
5.4 in [Tr, p. 56]), was presented in a slightly different form by J. Farau [Far,
Prop. 3] and derived from the more general result of G. W. Schwarz [Sc, Theorem
1]. According to (2.28), analytic continuation of Gα/2(F ) at the point α = k,
k = 1, 2, . . . , m− 1, is evaluated as follows:

Gk/2(F ) = π−km/2

∫

Mk,m

F (ω′ω)dω

= π−km/2

∫

Mk,m

dω

∫

O(n)

f

(
γ

[
(ω′ω)1/2

0

])
dγ.

By making use of the polar coordinates, one can write ω′ ∈ Mm,k as

ω′ = βu0(ωω′)1/2, β ∈ O(m), u0 =
[

Ik

0

]
∈ Vm,k.

Hence, ω = (ωω′)1/2u′0β
′, and

(ω′ω)1/2 = (βu0ωω′u′0β
′)1/2 = βu0(ωω′)1/2u′0β

′ = βu0ω.
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By changing variable γ → γ

[
β′ 0
0 In−m

]
, we obtain

Gk/2(F ) = π−km/2

∫

Mk,m

dω

∫

O(n)

f

(
γ

[
βu0ω

0

])
dγ

= π−km/2

∫

Mk,m

dω

∫

O(n)

f

(
γ

[
ω
0

])
dγ,

and (3.29) follows. For α = 0, owing to (2.27), we have

(ζ0, f) = 2−mσn,mF (0) =
πnm/2

Γm(n/2)
f(0).

¤

Remark 3.8. For n > m, the integration in (3.29) over O(n) can be replaced
by that over SO(n).

The following formulas for (ζk, f) are consequences of (3.29). We denote

(3.31) c1 =
π(nm−km−nk)/2 Γk(n/2)

2k Γm(n/2)
, c2 =

π(m−k)(n/2−k)

Γk(k/2) Γm−k((n− k)/2)
.

Corollary 3.9. For all k = 1, 2, . . . , n,

(3.32) (ζk, f) = c1

∫

Vn,k

dv

∫

Mk,m

f(vω)dω.

Moreover, if k = 1, 2, . . . , m− 1, then

(ζk, f) = c1

∫

Vm,k

du

∫

Mn,k

f(yu′)|y|m−n
k dy(3.33)

= c2

∫

Mn,k

dy

|y|n−m
k

∫

Mk,m−k

f([y; yz])dz.(3.34)

Proof. From (3.29) we have

(ζk, f) =
π(n−k)m/2

Γm(n/2)

∫

Mk,m

dω

∫

O(n)

f(γλ0ω)dγ

(
λ0 =

[
Ik

0

]
∈ Vn,k

)

=
π(n−k)m/2

σn,k Γm(n/2)

∫

Mk,m

dω

∫

Vn,k

f(vω)dv
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which coincides with (3.32). To prove (3.33), we pass to polar coordinates in (3.32)
by setting ω′ = ur1/2, u ∈ Vm,k, r ∈ Pk. This gives

(ζk, f) = 2−k c1

∫

Vn,k

dv

∫

Pk

|r|(m−k−1)/2dr

∫

Vm,k

f(vr1/2u′)du

= c1

∫

Vm,k

du

∫

Mn,k

f(yu′)|y|m−n
k dy.

To prove (3.34), we represent ω in (3.32) in the block form u = [η; ζ], η ∈ Mk,k, ζ ∈
Mk,m−k, and change the variable ζ = ηz. This gives

(ζk, f) = c1

∫

Mk,k

|η|m−kdη

∫

Mk,m−k

dz

∫

Vn,k

f(v[η; ηz])dv.

Using Lemma 1.11 repeatedly, and changing variables, we obtain

(ζk, f) = 2−k c1 σk,k

∫

Pk

|r|(m−k−1)/2dr

∫

Mk,m−k

dz

∫

Vn,k

f(v[r1/2, r1/2z])dv

= c1 σk,k

∫

Mn,k

dy

|y|n−m
k

∫

Mk,m−k

f([y; yz])dz.

By (3.31), (1.37) and (1.10), this coincides with (3.34). ¤

The representation (3.34) was obtained in [Sh1] and [Kh] in a different way.

Remark 3.10. Another proof of Theorem 3.6, which does not utilize Faraut’s
Lemma 3.7, was given in [Ru7]. The proof given above mimics the classical ar-
gument (cf. [GSh1, Chapter 1, Section 3.9] in the rank-one case) and is very
instructive.

One can also write (ζk, f) as

(3.35) (ζk, f) =
∫

Mn,m

f(x)dνk(x), f ∈ S(Mn,m),

where νk is a positive locally finite measure νk defined by

(3.36) (νk, ϕ) ≡ c1

∫

Vn,k

dv

∫

Mk,m

ϕ(vω)dω, ϕ ∈ Cc(Mn,m),

Cc(Mn,m) being the space of compactly supported continuous functions on Mn,m;
cf. (3.32). In order to characterize the support of νk, we recall that M(k)

n,m stands
for the submanifold of matrices x ∈ Mn,m having rank k, and denote

(3.37) M
(k)

n,m =
k⋃

j=0

M(j)
n,m (the closure of M(k)

n,m).

Lemma 3.11. The following statements hold.
(i) supp νk = M

(k)

n,m.
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(ii) The manifold M(k)
n,m is an orbit of ek =

[
Ik 0
0 0

]

n×m

under the group G of

transformations

x → g1xg2, g1 ∈ GL(n,R), g2 ∈ GL(m,R),

and

(3.38) dimM(k)
n,m = k(n + m− k).

(iii) The manifold M
(k)

n,m is a collection of all matrices x ∈ Mn,m of the form

(3.39) x = γ

[
ω
0

]
, γ ∈ O(n), ω ∈ Mk,m,

or

(3.40) x = vω, v ∈ Vn,k, ω ∈ Mk,m.

Proof. (i) Let us consider (3.36). Since rank(vω) ≤ k, then (νk, ϕ) = 0 for all
functions ϕ ∈ Cc(Mn,m) supported away from M

(k)

n,m, i.e. supp νk = M
(k)

n,m.
(ii) We have to show that each x ∈ M(k)

n,m is represented as x = g1ekg2 for
some g1 ∈ GL(n,R) and g2 ∈ GL(m,R). We write x = us, where u ∈ Vn,m and
s = (x′x)1/2 is a positive semi-definite m ×m matrix of rank k (see Appendix C,

11). By taking into account that s = g′2

[
Ik 0
0 0

]

m×m

g2 for some g2 ∈ GL(m,R),

and u = γ

[
Im

0

]
for some γ ∈ O(n), we obtain x = g1ekg2 with

g1 = γ

[
g′2 0
0 In−m

]
∈ GL(n,R).

Therefore, the manifold M(k)
n,m is a homogeneous space of the group G. This allows

us to find the dimension of M(k)
n,m by the formula

dim M(k)
n,m = dim G− dim G1,

where G1 is the subgroup of G leaving ek stable. In order to calculate the dimension
of G1, we write the condition g1ekg2 = ek in the form

[
a1 a2

a3 a4

] [
Ik 0
0 0

] [
b1 b2

b3 b4

]
=

[
Ik 0
0 0

]
,

where a1 ∈ GL(k,R) and b1 ∈ GL(k,R). This gives a1 b1 = Ik, a3 = 0, b2 = 0.
Hence,

dim G1 = n2 − k(n− k) + m(m− k),

and (3.38) follows.
(iii) It is clear that each matrix of the form (3.39) or (3.40) has rank ≤ k.

Conversely, if rank(x) ≤ k then, as above, x = us = γ

[
s
0

]
where γ ∈ O(n) and

s = (x′x)1/2 is a positive semi-definite m ×m matrix of rank ≤ k. The latter can
be written as

s = gλg′, g ∈ O(m), λ = diag(λ1, . . . , λk, 0, . . . , 0),
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and therefore,

x = γ

[
gλ
0

]
g′ = γ

[
g 0
0 In−m

] [
λ
0

]
g′ = γ1

[
ω
0

]

where γ1 = γ

[
g 0
0 In−m

]
and ω ∈ Mk,m. The representation (3.40) follows from

(3.39). ¤
Corollary 3.12. The integral (3.35) can be written as

(3.41) (ζk, f) =
∫

rank(x)≤ k

f(x)dνk(x) =
∫

rank(x)=k

f(x)dνk(x).

Proof. The first equality follows from Lemma 3.11 (i). The second one is
clear from the observation that if rank(x) ≤ k − 1 then, by (3.40), x = vω, v ∈
Vn,k−1, ω ∈ Mk−1,m. The set of all such pairs (v, ω) has measure 0 in Vn,k ×
Mk,m. ¤

Remark 3.13. We cannot obtain simple explicit representation of the conjugate
normalized zeta distributions (ζ−k , f), k = 0, 1, . . . , m − 1. At the first glance, it
would be natural to use the formula

(ζ−α , f) = cα (ζ+
α+1,Df), cα = (−1)m Γ(α + 1−m)

Γ(α + 1)
,

see (3.28), in which (ζ+
α+1,Df) can be evaluated for α = k by Theorem 3.6 or

Corollary 3.9. Unfortunately, we cannot do this because cα = ∞ for such α . On
the other hand, Lemma 3.2 says that (ζ−k , f) is well defined by (3.13), namely,

(3.42) (ζ−k , f) = 2−m π−m(m−1)/4 (ωk,Φ),

where

ωk(t1,1, . . . , tm,m) =
m∏

i=1

|ti,i|α−i sgn (ti,i)
Γ((α− i)/2 + 1)

∣∣∣∣∣
α=k

,

Φ(t1,1, . . . , tm,m) =
∫

Rm(m−1)/2

dt∗

∫

O(m)

f(vt) sgn det(v) dv.

In particular, for k = 0,

(3.43) ω0(t1,1, . . . , tm,m) =
m∏

i=1

|ti,i|λ sgn (ti,i)
Γ(λ/2 + 1)

∣∣∣∣∣
λ=−i

,

where the generalized functions

|s|λ sgn (s)
Γ(λ/2 + 1)

∣∣∣∣
λ=−i

, i = 1, 2, . . . ,m,

are defined as follows. For i odd:(
|s|λ sgn (s)
Γ(λ/2 + 1)

∣∣∣∣
λ=−i

, ϕ

)
=

1
Γ(1− i/2)

(s−i, ϕ)

=

∞∫

0

s−i

{
ϕ(s)− ϕ(−s)− 2

[
sϕ′(0) +

s3

3!
ϕ′′′(0) + . . . +

si−2

(i− 2)!
ϕ(i−2)(0)

]}
ds.
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For i even: (
|s|λ sgn (s)
Γ(λ/2 + 1)

∣∣∣∣
λ=−i

, ϕ

)
=

(−1)i/2 ϕ(i−1)(0) (i/2− 1)!
(i− 1)!

;

see [GSh1, Chapter 1, Section 3.5] . Note that the Fourier transform of the distri-
bution ζ−0 has the form

(3.44) (Fζ−0 )(y) =
(−i)m πm2/2

Γm((m + 1)/2)
sgn det(y).

This follows immediately from (3.24) and the Parseval formula (1.5).
In the following the expression (ζ−0 , f) will be understood in the sense of regu-

larization according to (3.42), (3.43).

3.3. Riesz potentials and the generalized Hilbert transform

The functional equation (3.22) for the zeta distribution can be written in the
form

(3.45)
1

γn,m(α)
Z(f, α− n) = (2π)−nmZ(Ff,−α) ,

(3.46) γn,m(α) =
2αm πnm/2 Γm(α/2)

Γm((n− α)/2)
, α 6= n−m + 1, n−m + 2, . . . .

We recall that m ≥ 2. The excluded values α = n − m + 1, n − m + 2, . . . are
poles of the gamma function Γm((n− α)/2). Note that for n = m, all α = 1, 2, . . .
are excluded. The normalization in (3.45) gives rise to the Riesz distribution hα

defined by

(hα, f) = 2−αm π−nm/2 Γm

(
n− α

2

)
(ζα, f)(3.47)

= a.c.
1

γn,m(α)

∫

Mn,m

|x|α−n
m f(x)dx,

where f ∈ S(Mn,m) and “a.c.” abbreviates analytic continuation in the α-variable.
For Re α > m−1, the distribution hα is regular and agrees with the usual function
hα(x) = |x|α−n

m /γn,m(α). The Riesz potential of a function f ∈ S(Mn,m) is defined
by

(3.48) (Iαf)(x) = (hα, fx), fx(·) = f(x− ·).
For Re α > m − 1, one can represent Iαf in the classical form by the absolutely
convergent integral

(3.49) (Iαf)(x) =
1

γn,m(α)

∫

Mn,m

f(x− y)|y|α−n
m dy.

We also introduce the generalized Hilbert transform

(3.50) (Hf)(x) = (ζ−0 , fx) = (ζ−0 ∗ f)(x).

By (3.44), this can be regarded as a pseudo-differential operator with the symbol

(3.51) (Fζ−0 )(y) =
(−i)m πm2/2

Γm((m + 1)/2)
sgn det(y).
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Clearly, H extends as a linear bounded operator on L2(Mn,m). For m = 1, it
coincides (up to a constant multiple) with the usual Hilbert transform on the real
line.

The following properties of Riesz potentials and Riesz distributions are inher-
ited from those for the normalized zeta integrals. We denote

γ1 = 2−km π−km/2 Γm

(
n− k

2

)
/Γm

(n

2

)
,(3.52)

γ2 = 2−k(m+1) π−k(m+n)/2 Γk

(
n−m

2

)
.(3.53)

Theorem 3.14. Let f ∈ S(Mn,m), n ≥ m. Suppose that α = k is a positive
integer. If k 6= n−m + 1, n−m + 2, . . ., then

(Ikf)(x) = γ1

∫

Mk,m

dω

∫

O(n)

f

(
x− γ

[
ω
0

])
dγ,(3.54)

= γ2

∫

Vn,k

dv

∫

Mk,m

f(x− vω)dω.(3.55)

Furthermore,

(3.56) (I0f)(x) = f(x).

This statement is an immediate consequence of Theorem 3.6.

Lemma 3.15. Let f ∈ S(Mn,m), n ≥ m, α ∈ C, α 6= n−m+1, n−m+2, . . . .
(i) The Fourier transform of the Riesz distribution hα is evaluated by the formula
(Fhα)(y) = |y|−α

m , the precise meaning of which is

(3.57) (hα, f) = (2π)−nm(|y|−α
m , (Ff)(y)) = (2π)−nmZ(Ff,−α).

(ii) If k = 0, 1, . . . , and ∆ is the Cayley-Laplace operator, then

(3.58) hα = (−1)mk∆khα+2k, i.e. (hα, f) = (−1)mk(hα+2k, ∆kf).

(iii) If n = m, k = 1, 2, . . . , and D is the Cayley operator, then

(3.59) hα = cD2k−1ζ−α+2k−1, i.e. (hα, f) = c (−1)m(ζ−α+2k−1,D2k−1f),

c =
(−1)m(k+1) Γm(1 + (m− α− 2k)/2)

2(α+2k−1)m πm2/2
.

Proof. (i) follows immediately from the definition (3.47) and the functional
equation (3.45). To prove (3.58), for sufficiently large α, according to (1.49), we
have

∆khα+2k(x) =
1

γn,m(α + 2k)
∆k|x|α+2k−n

m

=
Bk(α)

γn,m(α + 2k)
|x|α−n

m

= chα(x),

where by (1.50) and (1.9),

c =
Bk(α) γn,m(α)
γn,m(α + 2k)

=
Bk(α) Γm(α/2) Γm((n− α)/2− k)
4mk Γm(α/2 + k) Γm((n− α)/2)

= (−1)mk.



58 3. RIESZ POTENTIALS ON MATRIX SPACES

For all admissible α ∈ C, (3.58) follows by analytic continuation. Let us prove (iii).
Owing to (3.58), hα = (−1)mk D2k−1Dhα+2k. Since, by (3.47 ) and (3.28),

hα+2k =
Γm((m− α− 2k)/2)

2(α+2k)m πm2/2
ζ+
α+2k, and Dζ+

α+2k =
Γ(α + 2k)

Γ(α + 2k −m)
ζ−α+2k−1 ,

then (3.59) follows after simple calculation using (1.9). ¤

Lemma 3.15 implies the following.

Theorem 3.16. Let f ∈ S(Mn,m), n ≥ m.
(i) If k = 0, 1, 2, . . . , then

(3.60) (I−2kf)(x) = (−1)mk(∆kf)(x).

(ii) If k = 1, 2, . . . , and n > m, then

(3.61) (I1−2kf)(x) = (−1)mk(I1∆kf)(x) = c1

∫

Sn−1

dv

∫

Rm

(∆kf)(x− vy′) dy,

c1 =
(−1)mk Γ((n−m)/2)

2m+1 π(m+n)/2
.

(iii) If k = 1, 2, . . . , and n = m, then

(3.62) (I1−2kf)(x) = c2 (HD2k−1f)(x), c2 =
(−1)m(k+1) Γm((m + 1)/2)

πm2/2
,

H being the generalized Hilbert transform (3.50).

Proof. The equality (3.60) is a consequence of (3.48), (3.57), and (3.58).
Namely,

(I−2kf)(x) = (h−2k, fx)
(3.58)
= (−1)mk(h0, ∆kfx)

(3.57)
= (−1)mk(2π)−nmZ(F(∆kfx), 0)

= (−1)mk(∆kfx)(0) = (−1)mk(∆kf)(x).

Similarly, by (3.48), (I1−2kf)(x) = (h1−2k, fx). If n > m, then, by (3.58),

(h1−2k, fx) = (−1)mk(h1, ∆kfx) = (−1)mk(h1, (∆kf)x) = (−1)mk(I1∆kf)(x),

and it remains to apply (3.55) (with k = 1). If n = m, then we apply (3.59 ) with
α = 1− 2k and get

(h1−2k, fx) = (−1)mc2 (ζ−0 ,D2k−1fx) = c2 (ζ−0 , (D2k−1f)x) = c2 (HD2k−1f)(x).

¤

Integral representations (3.49) and (3.54) (or (3.55)) can serve as definitions of
Iαf for functions f belonging to Lebesgue spaces and α belonging to the associated
Wallach-like set

(3.63) Wn,m = {0, 1, 2, . . . , k0}∪{α : Re α>m−1; α 6= n−m+1, n−m+2, . . .},
k0 = min(m− 1, n−m).
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Theorem 3.17. [Ru7]. Let f ∈ Lp(Mn,m), n ≥ m. If α ∈ Wn,m, then the
Riesz potential (Iαf)(x) absolutely converges for almost all x ∈ Mn,m provided

(3.64) 1 ≤ p <
n

Re α + m− 1
.

For m = 1, the condition (3.64) is well known [St1] and best possible. We do
not know whether (3.64) can be improved if m > 1.

3.3.1. Inversion of Riesz potentials. Let us discuss the following problem.
Given a Riesz potential g = Iαf , how do we recover its density f? In the rank-one
case, a variety of pointwise inversion formulas for Riesz potentials is available in
a large scale of function spaces [Ru1], [Sa]. However, in the higher rank case we
encounter essential difficulties. Below we show how the unknown function f can be
recovered in the framework of the theory of distributions.

First we specify the space of test functions. The Fourier transform formula

(hα, f) = (2π)−nm(|y|−α
m , (Ff)(y))

reveals that the Schwartz class S ≡ S(Mn,m) is not good enough because it is not
invariant under multiplication by |y|−α

m . To get around this difficulty, we follow
the idea of V.I. Semyanistyi [Se] suggested for m = 1. Let Ψ ≡ Ψ(Mn,m) be the
subspace of functions ψ(y) ∈ S vanishing on the set of all matrices of rank < m,
i.e.,

(3.65) {y : y ∈ Mn,m, rank(y) < m} = {y : y ∈ Mn,m, |y′y| = 0},
with all derivatives. The coincidence of both sets in (3.65) is clear because rank(y) =
rank(y′y), see, e.g., [FZ, p. 5]. The set Ψ is a closed linear subspace of S. Therefore,
it can be regarded as a linear topological space with the induced topology of S. Let
Φ ≡ Φ(Mn,m) be the Fourier image of Ψ. Since the Fourier transform F is an
automorphism of S (i.e., a topological isomorphism of S onto itself), then Φ is
a closed linear subspace of S. Having been equipped with the induced topology
of S, the space Φ becomes a linear topological space isomorphic to Ψ under the
Fourier transform. We denote by Φ′ ≡ Φ′(Mn,m) the space of all linear continuous
functionals (generalized functions) on Φ. Since for any complex α, multiplication
by |y|−α

m is an automorphism of Ψ, then, according to the general theory [GSh2],
Iα, as a convolution with hα, is an automorphism of Φ, and we have

F [Iαf ](y) = |y|−α
m (Ff)(y)

for all Φ′-distributions f . In the rank-one case, the spaces Φ, Ψ, their duals and
generalizations were studied by P.I. Lizorkin, S.G. Samko and others in view of ap-
plications to the theory of function spaces and fractional calculus; see [Sa], [SKM],
[Ru1] and references therein.

Theorem 3.18. Let α ∈ Wn,m and let f be a locally integrable function such
that g(x) = (Iαf)(x) is well defined as an absolutely convergent integral for almost
all x ∈ Mn,m. Then f can be recovered from g in the sense of Φ′-distributions by
the formula

(3.66) (f, φ) = (g, I−αφ), φ ∈ Φ,

where

(3.67) (I−αφ)(x) = (F−1|y|αmFφ)(x).



60 3. RIESZ POTENTIALS ON MATRIX SPACES

In particular, if α = 2k is even, then

(3.68) (f, φ) = (−1)mk(g, ∆kφ), φ ∈ Φ,

∆ being the Cayley-Laplace operator (1.44).



CHAPTER 4

Radon transforms

4.1. Matrix planes

Definition 4.1. Let k, n, and m be positive integers, 0 < k < n, Vn,n−k be
the Stiefel manifold of orthonormal (n− k)-frames in Rn, Mn−k,m be the space of
(n− k)×m real matrices. For ξ ∈ Vn,n−k and t ∈ Mn−k,m, the set

(4.1) τ ≡ τ(ξ, t) = {x : x ∈ Mn,m; ξ′x = t}
will be called a matrix k-plane in Mn,m. For k = n−m, the plane τ will be called
a matrix hyperplane. We denote by T the manifold of all matrix k- planes.

The parameterization τ = τ(ξ, t) by the points (ξ, t) of a ”matrix cylinder”
Vn,n−k ×Mn−k,m is not one-to-one because for any orthogonal transformation θ ∈
O(n−k), the pairs (ξ, t) and (ξθ′, θt) define the same plane τ . We identify functions
ϕ(τ) on T with the corresponding functions ϕ(ξ, t) on Vn,n−k ×Mn−k,m satisfying
ϕ(ξθ′, θt) = ϕ(ξ, t) for all θ ∈ O(n− k), and supply T with the measure dτ so that

(4.2)
∫

T

ϕ(τ) dτ =
∫

Vn,n−k×Mn−k,m

ϕ(ξ, t) dξdt.

The plane τ is, in fact, a usual km-dimensional plane in Rnm. To see this, we
write x = (xi,j) ∈ Mn,m and t = (ti,j) ∈ Mn−k,m as column vectors

(4.3) x̄ =




x1,1

x1,2

...
xn,m


 ∈ Rnm, t̄ =




t1,1

t1,2

...
tn−k,m


 ∈ R(n−k)m,

and denote

(4.4) ξ̄ = diag(ξ, . . . , ξ) ∈ Vnm,(n−k)m.

Then (4.1) reads

(4.5) τ = τ(ξ̄, t̄) = {x̄ : x̄ ∈ Rnm; ξ̄′x̄ = t̄}.
The km-dimensional planes (4.5) form a subset of measure zero in the affine Grass-
mann manifold of all km-dimensional planes in Rnm.

The manifold T can be regarded as a fibre bundle, the base of which is the
ordinary Grassmann manifold Gn,k of k-dimensional linear subspaces of Rn, and
whose fibres are homeomorphic to Mn−k,m. Indeed, let

π : T → Gn,k,

be the canonical projection which assigns to each matrix plane τ(ξ, t) the subspace

(4.6) η = η(ξ) = {y : y ∈ Rn; ξ′y = 0} ∈ Gn,k .

61



62 4. RADON TRANSFORMS

The fiber Hη = π−1(η) is the set of all matrix planes (4.1), where t sweeps the
space Mn−k,m. Regarding T as a fibre bundle, one can utilize a parameterization
which is alternative to (4.1) and one-to-one. Namely, let

(4.7) x = [x1 . . . xm], t = [t1 . . . tm],

where xi ∈ Rn and ti ∈ Rn−k are column-vectors. For τ = τ(ξ, t) ∈ T, we have

τ = {x : x ∈ Mn,m; ξ′xi = ti, i = 1, . . . ,m}.
Each ordinary k-plane τi = {xi : xi ∈ Rn; ξ′xi = ti} can be parameterized by the
pair (η, λi), where η is the subspace (4.6), λi ∈ η⊥, i = 1, . . . , m, are columns of
the matrix λ = ξt ∈ Mn,m, and η⊥ denotes the orthogonal complement of η in Rn.
The corresponding parameterization

(4.8) τ = τ(η, λ), η ∈ Gn,k, λ = [λ1 . . . λm], λi ∈ η⊥,

is one-to-one. Both parameterizations (4.1) and (4.8) will be useful in the following.

4.2. Definition and elementary properties of the Radon transform

The Radon transform f̂ of a function f(x) on Mn,m assigns to f a collection
of integrals of f over all matrix k-planes (4.1). Namely,

f̂(τ) =
∫

x∈τ

f(x), τ ∈ T.

In order to give this integral precise meaning, we note that the matrix plane τ =
τ(ξ, t), ξ ∈ Vn,n−k, t ∈ Mn−k,m, consists of “points”

x = gξ

[
ω
t

]
,

where ω ∈ Mk,m, and gξ ∈ SO(n) is a rotation satisfying

(4.9) gξξ0 = ξ, ξ0 =
[

0
In−k

]
∈ Vn,n−k.

This observation leads to the following

Definition 4.2. The Radon transform of a function f(x) on Mn,m is defined
as a function on the “matrix cylinder” Vn,n−k ×Mn−k,m by the formula

(4.10) f̂(τ) ≡ f̂(ξ, t) =
∫

Mk,m

f

(
gξ

[
ω
t

])
dω.

It is worth noting that the expression (4.10) is independent of the choice of the
rotation gξ : ξ0 → ξ. Indeed, if g1 and g2 are two such rotations, then g1 = g2g
where g belongs to the isotropy subgroup of ξ0. Hence g has the form

g =
[

θ 0
0 In−k

]
, θ ∈ SO(k).
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Multiplying matrices and changing variable θω → ω, we get
∫

Mk,m

f

(
g1

[
ω
t

])
dω =

∫

Mk,m

f

(
g2

[
θ 0
0 In−k

] [
ω
t

])
dω

=
∫

Mk,m

f

(
g2

[
ω
t

])
dω.

Furthermore, since

(4.11) gξ

[
ω
t

]
= gξ

[
ω
0

]
+ gξ

[
0
t

]
= gξ

[
ω
0

]
+ ξt,

one can write

f̂(ξ, t) =
∫

Mk,m

f

(
gξ

[
ω
0

]
+ ξt

)
dω(4.12)

=
∫

{y∈Mn,m : ξ′y=0}

f(y + ξt) dy.(4.13)

If m = 1, then f̂(ξ, t) is the ordinary k-plane Radon transform that assigns to
a function f(x) on Rn the collection of integrals of f over all k-dimensional planes.
If m = 1 and k = n− 1, the definition (4.12) gives the classical hyperplane Radon
transform [H], [GGV].

In terms of the one-to-one parameterization (4.8), where τ = τ(η, λ), η ∈
Gn,k, λ = [λ1 . . . λm] ∈ Mn,m, and λi ∈ η⊥, the Radon transform (4.10) can be
written as

(4.14) f̂(τ) =
∫

η

dy1 . . .

∫

η

f([y1 + λ1 . . . ym + λm]) dym.

For m = 1, this is the well known form of the k-plane transform in Rn; cf. [H, p.
30, formula (56)].

The following sufficient conditions of the existence of the Radon transform f̂
immediately follow from Definition 4.2. More subtle results will be presented in
Section 4.7.2.

Lemma 4.3.
(i) If f ∈ L1(Mn,m), then the Radon transform f̂(ξ, t) exists for all ξ ∈ Vn,n−k and
almost all t ∈ Mn−k,m. Furthermore,

(4.15)
∫

Mn−k,m

f̂(ξ, t) dt =
∫

Mn,m

f(x) dx, ∀ ξ ∈ Vn,n−k.

(ii) Let ||x|| = (tr(x′x))1/2 = (x2
1,1 + . . . + x2

n,m)1/2. If f is a continuous function
satisfying

(4.16) f(x) = O(||x||−a), a > km,

then f̂(ξ, t) exists for all ξ ∈ Vn,n−k and all t ∈ Mn−k,m.
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Proof. (i) is a consequence of the Fubini theorem:
∫

Mn−k,m

f̂(ξ, t) dt =
∫

Mn−k,m

dt

∫

Mk,m

f

(
gξ

[
ω
t

])
dω

=
∫

Mn,m

f(gξx) dx =
∫

Mn,m

f(x) dx.

(ii) becomes obvious from (4.5) if we regard τ = τ(ξ, t) as a km-dimensional plane
in Rnm. ¤

Lemma 4.4. Suppose that the Radon transform

f(x) −→ f̂(ξ, t), x ∈ Mn,m, (ξ, t) ∈ Vn,n−k ×Mn−k,m,

exists (at least almost everywhere). Then
(i) f̂(ξ, t) is a “matrix-even” function, i.e.,

(4.17) f̂(ξθ′, θt) = f̂(ξ, t), ∀θ ∈ O(n− k).

(ii) The Radon transform commutes with the group M(n,m) of matrix motions.
Specifically, if g(x) = γxβ + b where γ ∈ O(n), β ∈ O(m), and b ∈ Mn,m, then

(4.18) (f ◦ g)∧(ξ, t) = f̂(γξ, tβ + ξ′γ′b).

Proof. (i) Formula (4.17) is a matrix analog of the “evenness property” of
the classical Radon transform (the case m = 1, k = n− 1): f̂(−ξ,−t) = f̂(ξ, t) [H,
p. 3]. By (4.10),

f̂(ξθ′, θt) =
∫

Mk,m

f

(
gξθ′

[
ω
θt

])
dω,

where one can choose gξθ′ = gξ

[
Ik 0
0 θ′

]
. Hence

gξθ′

[
ω
θt

]
= gξ

[
Ik 0
0 θ′

] [
ω
θt

]
= gξ

[
ω
t

]

which gives (4.17).
(ii) By (4.10),

(f ◦ g)∧(ξ, t) =
∫

Mk,m

f

(
γ

(
gξ

[
ωβ
tβ

])
+ b

)
dω (ωβ → ω)

=
∫

Mk,m

f

(
gγξ

([
ω
tβ

]
+ g−1

γξ b

))
dω.

We set g−1
γξ b =

[
p
q

]
, p ∈ Mk,m, q ∈ Mn−k,m, and change the variable ω+p → ω.

Then the last integral reads ∫

Mk,m

f

(
gγξ

[
ω

tβ + q

])
dω.

By (4.9), q = ξ′0g
−1
γξ b = ξ′0g

′
ξγ
′b = (gξξ0)′γ′b = ξ′γ′b, and we are done.
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¤

Corollary 4.5. For x, y ∈ Mn,m, let fx(y) = f(x + y). Then

(4.19) f̂x(ξ, t) = f̂(ξ, ξ′x + t).

Corollary 4.6. If the function f : Mn,m → C is O(n) left-invariant, i.e.,
f(γx) = f(x) for all γ ∈ O(n), then

(4.20) f̂(γξθ′, θt) = f̂(ξ, t), ∀ γ ∈ O(n), θ ∈ O(n− k).

4.3. Interrelation between the Radon transform and the Fourier
transform

We recall that the Fourier transform of a function f ∈ L1(Mn,m) is defined by

(4.21) (Ff)(y) =
∫

Mn,m

exp(i tr(y′x)) f(x) dx, y ∈ Mn,m.

The following statement is a matrix generalization of the so-called projection-slice
theorem. It links together the Fourier transform (4.21) and the Radon transform
(4.10).

For y = [y1 . . . ym] ∈ Mn,m, let L(y) = lin(y1, . . . , ym) be the linear hull of the
vectors y1, . . . , ym, i.e., the smallest linear subspace containing y1, . . . , ym. Suppose
that rank(y) = `. Then dimL(y) = ` ≤ m.

Theorem 4.7. Let f ∈ L1(Mn,m), 1 ≤ k ≤ n − m. If y ∈ Mn,m, and ζ
is a (n − k)-dimensional plane containing L(y), then for any orthonormal frame
ξ ∈ Vn,n−k spanning ζ, there exists b ∈ Mn−k,m such that y = ξb. In this case,

(4.22) (Ff)(y) =
∫

Mn−k,m

exp(i tr(b′t)) f̂(ξ, t) dt,

or

(4.23) (Ff)(ξb) = F [f̂(ξ, ·)](b), ξ ∈ Vn,n−k, b ∈ Mn−k,m.

Proof. Since each vector yj (j = 1, . . . ,m) lies in ζ, it decomposes as yj = ξbj

for some bj ∈ Rn−k. Hence y = ξb where b = [b1 . . . bm] ∈ Mn−k,m. Thus it remains
to prove (4.23). By (4.10),

F [f̂(ξ, ·)](b) =
∫

Mn−k,m

exp(i tr(b′t)) dt

∫

Mk,m

f

(
gξ

[
ω
t

])
dω.

If x = gξ

[
ω
t

]
, then, by (4.9),

ξ′x = ξ′0g
′
ξgξ

[
ω
t

]
= ξ′0

[
ω
t

]
= t,

and the Fubini theorem yields

F [f̂(ξ, ·)](b) =
∫

Mn,m

exp(i tr(b′ξ′x)) f(x) dx = (Ff)(ξb).

¤
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Remark 4.8. It is clear that ξ and b in the basic equality (4.22) are not uniquely
defined. If rank(y) = m one can choose some ξ and b as follows. By taking into
account that n− k ≥ m, we set

ξ0 =
[

0
In−k

]
∈ Vn,n−k, ω0 =

[
0

Im

]
∈ Vn−k,m, v0 =

[
0

Im

]
∈ Vn,m,

so that ξ0ω0 = v0. Consider the polar decomposition

y = vr1/2, v ∈ Vn,n−k, r = y′y ∈ Pm,

and let gv be a rotation with the property gvv0 = v. Then

y = vr1/2 = gvv0r
1/2 = gvξ0ω0r

1/2 = ξb,

where

(4.24) ξ = gvξ0 ∈ Vn,n−k, b = ω0r
1/2 ∈ Mn−k,m.

Theorem 4.9.
(i) If 1 ≤ k ≤ n−m, then the Radon transform f → f̂ is injective on the Schwartz
space S(Mn,m), and f can be recovered by the formula

f(x) =
2−m

(2π)nm

∫

Pm

|r|n−m−1
2 dr

(4.25)

×
∫

Vn,m

exp(−i tr(x′vr1/2))(F f̂(gvξ0, ·))(ξ′0v0r
1/2)dv.

(ii) For k > n−m, the Radon transform is non-injective on S(Mn,m).

Proof. By Theorem 4.7, given the Radon transform f̂ of f ∈ S(Mn,m), the
Fourier transform (Ff)(y) can be recovered at each point y ∈ Mn,m by the formula
(4.22), so that if f̂ ≡ 0 then Ff ≡ 0. Since F is injective, then f ≡ 0, and we
are done. Remark 4.8 allows us to reconstruct f from f̂ , because (4.24) expresses
ξ and b through y ∈ Mn,m explicitly. This gives (4.25).

To prove (ii), let ψ 6≡ 0 be a Schwartz function, the Fourier transform of which
is supported in the set M(m)

n,m of matrices x ∈ Mn,m of rank m. This is an open set
in Mn,m. By (4.23),

(4.26) F [ψ̂(ξ, ·)](b) = ψ̂(ξb) = 0 ∀ ξ ∈ Vn,n−k, ∀ b ∈ Mn−k,m,

because ξb /∈ M(m)
n,m (since n − k < m, then rank(ξb) < m). By injectivity of the

Fourier transform in (4.26), we obtain ψ̂(ξ, t) = 0 ∀ξ, t. Thus for k > n −m, the
injectivity of the Radon transform fails. ¤

4.4. The dual Radon transform

Definition 4.10. Let τ = τ(ξ, t) be a matrix plane (4.1), (ξ, t) ∈ Vn,n−k ×
Mn−k,m. We say that the plane τ ≡ τ(ξ, t) contains a “point” x ∈ Mn,m if ξ′x = t.
The dual Radon transform ϕ̌(x) assigns to a function ϕ(τ) on T the integral of ϕ
over all matrix k-planes containing x. Namely,

ϕ̌(x) =
∫

τ3x

ϕ(τ), x ∈ Mn,m.
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The precise meaning of this integral is

ϕ̌(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x) dξ(4.27)

=
∫

SO(n)

ϕ(γξ0, ξ
′
0γ
′x) dγ, ξ0 =

[
0

In−k

]
∈ Vn,n−k.

Clearly, ϕ̌(x) exists for all x ∈ Mn,m if ϕ is a continuous function. Later we
shall prove that ϕ̌(x) is finite a.e. on Mn,m for any locally integrable function ϕ.

Remark 4.11. The definition (4.27) is independent of the parameterization
τ = τ(ξ, t) in the sense that for any other parameterization τ = τ(ξθ′, θt), θ ∈
O(n− k) (see Section 4.1), the equality (4.27) gives the same result:

1
σn,n−k

∫

Vn,n−k

ϕ(ξθ′, θξ′x)dξ =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ1, ξ
′
1x)dξ1 = ϕ̌(x).

Lemma 4.12. The duality relation

∫

Mn,m

f(x)ϕ̌(x)dx =
1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t)f̂(ξ, t)dt(4.28)

(
or

∫

Mn,m

f(x)ϕ̌(x)dx =
1

σn,n−k

∫

T

ϕ(τ)f̂(τ) dτ
)

is valid provided that either side of this equality is finite for f and ϕ replaced by |f |
and |ϕ|, respectively.

Proof. By (4.10), the right-hand side of (4.28) equals

(4.29)
1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t) dt

∫

Mk,m

f

(
gξ

[
ω
t

])
dω.

Setting x = gξ

[
ω
t

]
, we have

ξ′x = (gξξ0)′gξ

[
ω
t

]
= ξ′0

[
ω
t

]
= t.

Hence, by the Fubini theorem, (4.29) reads

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn,m

ϕ(ξ, ξ′x)f(x) dx =
∫

Mn,m

ϕ̌(x)f(x) dx.

¤

Lemma 4.13. The dual Radon transform commutes with the group M(n,m) of
matrix motions. Specifically, if gx = γxβ + b where γ ∈ O(n), β ∈ O(m), and
b ∈ Mn,m, then

(4.30) (ϕ ◦ g)∨(x) = ϕ̌(gx).
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More precisely, if τ = τ(ξ, t), then

(ϕ ◦ g)(ξ, t) = ϕ(γξ, tβ + ξ′γ′b)

and

(4.31) (ϕ ◦ g)∨(x) = ϕ̌(γxβ + b).

Proof. By (4.27),

(ϕ ◦ g)∨(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(γξ, ξ′xβ + ξ′γ′b)dξ (γξ → ξ)

=
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′(γxβ + b))dξ = ϕ̌(γxβ + b).

¤
Corollary 4.14. If γ ∈ O(n) and ϕ(γξ, t) = ϕ(ξ, t), then ϕ̌(γx) = ϕ̌(x).

4.5. Radon transforms of radial functions

In this section, we show that the Radon transform and the dual Radon trans-
form of radial functions are represented by G̊arding-Gindikin fractional integrals
studied in Chapter 2. This phenomenon is well known in the rank-one case when
diverse Radon transforms of radial functions are represented by the usual Riemann-
Liouville fractional integrals. In the higher rank case, an exceptional role of the
G̊arding-Gindikin fractional integrals in the theory of the Radon transform on
Grassmann manifolds was demonstrated in [GR]. We recall (see Section 1.7) that
a function f(x) on Mn,m is radial if it is O(n) left-invariant. Each such function
has the form f(x) = f0(x′x). In the similar way one can define radial functions of
matrix planes.

Definition 4.15. For 0 < k < n and m ≥ 1, let T be the manifold of matrix
planes τ = τ(ξ, t), (ξ, t) ∈ Vn,n−k ×Mn−k,m; see (4.1). A function ϕ(τ) ≡ ϕ(ξ, t) is
called radial if it is O(n) left-invariant in the ξ variable, i.e., ϕ(γξ, t) = ϕ(ξ, t) for
all γ ∈ O(n) and all (or almost all) ξ and t.

Note that if ϕ is a radial function, then

(4.32) ϕ(γξθ′, θt) = ϕ(ξ, t), ∀γ ∈ O(n), θ ∈ O(n− k).

This equality is a result of parameterization which is not one-to-one; see Section
4.1.

Lemma 4.16. Every function ϕ on T of the form ϕ(ξ, t) = ϕ0(t′t) is radial.
Conversely, if 1 ≤ k ≤ n −m and ϕ(ξ, t) is radial, then there is a function ϕ0(s)
on Pm such that ϕ(ξ, t) = ϕ0(t′t) for all ξ ∈ Vn,n−k and all matrices t ∈ Mn−k,m

(if ϕ is a “rough” function then “all” should be replaced by “almost all”).

Proof. The first statement is clear. By the polar decomposition (see Appendix
C, 11), for all matrices t ∈ Mn−k,m we have

t = us1/2, u ∈ Vn−k,m, s = t′t ∈ Pm.

Let

ξ0 =
[

0
In−k

]
∈ Vn,n−k, u0 =

[
0

Im

]
∈ Vn−k,m.
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We choose γ ∈ O(n) and θ ∈ O(n− k) so that u = θ′u0, γξθ′ = ξ0. Then

ϕ(ξ, t) = ϕ(ξ, θ′u0s
1/2)

(4.32)
= ϕ(γξθ′, u0s

1/2)

= ϕ(ξ0, u0s
1/2)

def= ϕ0(s).

This is what we need. ¤

Theorem 4.17. Let f be a radial function on Mn,m so that f(x) = f0(r),
r = x′x. Let I

k/2
− f0 be the G̊arding-Gindikin fractional integral (2.34). Then

(4.33) f̂(ξ, t) = πkm/2(Ik/2
− f0)(s), s = t′t ∈ Pm,

provided that either side of this equality exists in the Lebesgue sense.

Proof. The statement follows immediately from (4.10):

f̂(ξ, t) =
∫

Mk,m

f

(
gξ

[
ω
t

])
dω =

∫

Mk,m

f0(ω′ω + t′t) dω(4.34)

= πkm/2(Ik/2
− f0)(s).

¤

Remark 4.18. The rank of s in (4.33) does not exceed m. If rank(s) = m then
s ∈ Pm. If rank(s) < m (it always happens if k > n − m) then s is a boundary
point of the cone Pm. The fact, that for radial f the Radon transform f̂ is also
radial, follows immediately by Corollary 4.6, Definition 1.14, and Definition 4.15.

Let us pass to the dual Radon transform.

Theorem 4.19. For (ξ, t) ∈ Vn,n−k × Mn−k,m, let ϕ(ξ, t) = ϕ0(t′t). Suppose
that 1 ≤ k ≤ n−m and denote

Φ0(s) = |s|δϕ0(s), δ = (n− k)/2− d, d = (m + 1)/2, c =
πkm/2σn−k,m

σn,m
.

Let I
k/2
+ Φ0 be the G̊arding-Gindikin fractional integral (2.32) of Φ0. Then for any

x ∈ Mn,m of rank m,

(4.35) ϕ̌(x) = c|r|d−n/2(Ik/2
+ Φ0)(r), r = x′x ∈ Pm,

provided that either side of this equality exists in the Lebesgue sense.

Proof. By (4.27),

ϕ̌(x) =
∫

SO(n)

ϕ0(x′γξ0ξ
′
oγ
′x)dγ, ξ0 =

[
0

In−k

]
∈ Vn,n−k.
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We write x in the polar coordinates x = vr1/2, v ∈ Vn,m, r ∈ Pm, and get

ϕ̌(x) =
∫

SO(n)

ϕ0(r1/2v′γξ0ξ
′
oγ
′vr1/2) dγ

=
1

σn,m

∫

Vn,m

ϕ0(r1/2v′ξ0ξ
′
ovr1/2) dv.(4.36)

Since n− k ≥ m, one can transform (4.36) by making use of the bi-Stiefel decom-
position from Lemma 1.13. Let us consider the cases k < m and k ≥ m separately.

10. The case k < m. We set

v =
[

a
u(Im − a′a)1/2

]
, a ∈ Mk,m, u ∈ Vn−k,m.

Multiplying matrices and using (1.40), we obtain

ϕ̌(x) = c1

∫

0<a′a<Im

|Im − a′a|δϕ0(r1/2(Im − a′a)r1/2) da

= c1

∫

0<bb′<Im

|Im − bb′|βϕ0(r1/2(Im − bb′)r1/2)db,

where c1 = σn−k,m/σn,m . Then we pass to polar coordinates

b = vq1/2, v ∈ Vm,k, q ∈ Pk,

and use the equality |Im − bb′| = |Ik − b′b|. This gives

ϕ̌(x) = 2−kc1

∫

Vm,k

dv

Ik∫

0

|q|(m−k−1)/2|Ik − q|δϕ0(r1/2(Im − vqv′)r1/2)dq

= 2−kc1|r|−δ

∫

Vm,k

dv

Ik∫

0

|q|(m−k−1)/2Φ0(r1/2(Im − vqv′)r1/2)dq.

Hence, by (2.15),

ϕ̌(x) = πkm/2 σn−k,m

σn,m
|r|d−n/2(Ik/2

+ Φ0)(r),

and (4.35) follows.
20. The case k ≥ m. Let us transform (4.36) by the formula (1.41). We have

ϕ̌(x) = c2

Im∫

0

|s|γ |Im − s|δϕ0(r1/2(Im − s)r1/2) ds

= c2

Im∫

0

|Im − s|γ |s|δϕ0(r1/2sr1/2) ds,

c2 =
2−mσk,m σn−k,m

σn,m
, γ = k/2− d.
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By changing variable r1/2sr1/2 = s0 (see Lemma 1.1 (ii)) so that |s| = |r|−1|s0|,
ds0 = |r|dds, and

|Im − s| = |r−1/2(r − r1/2sr1/2)r−1/2| = |r|−1|r − s0|,
we obtain

ϕ̌(x) = c2|r|−γ−δ−d

r∫

0

|r − s0|γ |s0|δϕ0(s0) ds0

= c2|r|d−n/2

r∫

0

|r − s0|k/2−dΦ0(s0) ds0.

By (1.37) this coincides with (4.35). ¤

Remark 4.20. In Theorem 4.19, we have assumed 1 ≤ k ≤ n −m, although,
Definition 4.10 is also meaningful for k > n −m. In the last case the integral on
the right-hand side of (4.35) requires regularization. Since the main object of our
study here is the Radon transform f̂(ξ, t), and the condition k ≤ n−m constitutes
a natural framework of the inversion problem (see Theorem 4.9), we do not focus
on the case k > n−m and leave it for subsequent publications.

4.6. Examples

Formulas (4.33) and (4.35) allow us to compute the Radon transform and the
dual Radon transform of some elementary functions. The following examples are
useful in different occurrences. As above, we suppose

f ≡ f(x), x ∈ Mn,m, ϕ ≡ ϕ(ξ, t), (ξ, t) ∈ Vn,n−k ×Mn−k,m,

and write f
∧−→ ϕ (ϕ ∨−→ f) to indicate that ϕ is the Radon transform of f (f is the

dual Radon transform of ϕ). Given a symmetric m ×m matrix s and α ∈ C, we
denote

(4.37) sα
+ =




|s|α if s ∈ Pm,

0 if s 6∈ Pm.

Lemma 4.21. Let

(4.38) λ1 =
πkm/2Γm((λ− k)/2)

Γm(λ/2)
, Re λ > k + m− 1.

The following formulas hold.

(4.39) |x′x|−λ/2 ∧−→ λ1 |t′t|(k−λ)/2,

(4.40) |Im + x′x|−λ/2 ∧−→ λ1 |Im + t′t|(k−λ)/2,

(4.41) (a− x′x)(λ−k)/2−d
+

∧−→ λ1 (a− t′t)λ/2−d
+ , a ∈ Pm.
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Proof. We denote

f1(x) = |x′x|−λ/2,

f2(x) = |Im + x′x|−λ/2,

f3(x) = (a− x′x)(λ−k)/2−d
+ .

Then f̂i(ξ, t) = ϕi(t′t) where by (4.34),

ϕ1(s) =
∫

Mk,m

|ω′ω + s|−λ/2dω,

ϕ2(s) =
∫

Mk,m

|Im + ω′ω + s|−λ/2dω,

ϕ3(s) =
∫

Mk,m

(a− ω′ω − s)(λ−k)/2−d
+ dω.

Owing to (A.6), ϕ1(s) = λ1|s|(k−λ)/2 and ϕ2(s) = λ1|Im + s|(k−λ)/2. For the third
integral we have ϕ3(s) = 0 if a− s 6∈ Pm. Otherwise,

ϕ3(s) =
∫

{ω∈Mk,m : ω′ω<a−s}

|a− ω′ω − s|(λ−k)/2−ddω,

and the formula (A.7) gives ϕ3(s) = λ1|a− s|λ/2−d. ¤

Lemma 4.22. Let 1 ≤ k ≤ n−m,

(4.42) λ2 =
Γm(n/2)Γm((λ− k)/2)
Γm(λ/2)Γm((n− k)/2)

, Re λ > k + m− 1.

Then

(4.43) |t′t|(λ−n)/2 ∨−→ λ2|x′x|(λ−n)/2,

(4.44) |t′t|(λ−n)/2|Im + t′t|−λ/2 ∨−→ λ2|x′x|(λ−n)/2|Im + x′x|(k−λ)/2,

(4.45) |t′t|(k−n)/2+d(t′t− a)(λ−k)/2−d
+

∨−→ λ2|x′x|d−n/2(x′x− a)λ/2−d
+ .

Proof. Let

ϕ1(ξ, t) = |t′t|(λ−n)/2,

ϕ2(ξ, t) = |t′t|(λ−n)/2|Im + t′t|−λ/2,

ϕ3(ξ, t) = |t′t|(k−n)/2+d(t′t− a)(λ−k)/2−d
+ .

By (4.35),

(4.46) ϕ̌i(x) = c|r|d−n/2(Ik/2
+ Φi)(r), r = x′x, i = 1, 2, 3,
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where c = πkm/2σn−k,m/σn,m,

Φ1(s) = |s|(λ−k)/2−d,

Φ2(s) = |s|(λ−k)/2−d|Im + s|−λ/2,

Φ3(s) = (s− a)(λ−k)/2−d
+ .

For ϕ̌1(x), owing to (4.46) and (2.32), we obtain

ϕ̌1(x) = c|r|d−n/2π−km/2

∫

{ω∈Mk,m: ω′ω<r}

|r − ω′ω|(λ−k)/2−ddω.

Hence (A.7) and (1.37) yield

ϕ̌1(x) =
Γm(n/2) Γm((λ− k)/2)
Γm(λ/2) Γm((n− k)/2)

|r|(λ−n)/2, r = x′x.

This coincides with (4.43).
For ϕ̌3(x), according to (4.46), we have

ϕ̌3(x) = c|r|d−n/2π−km/2

∫

{ω∈Mk,m: ω′ω<r}

(r − ω′ω − a)(λ−k)/2−d
+ dω.

Hence ϕ̌3(x) = 0 if r − a 6∈ Pm, and

ϕ̌3(x) = c|r|d−n/2π−km/2

∫

{ω∈Mk,m: ω′ω<r−a}

|r − a− ω′ω|(λ−k)/2−ddω

if r − a ∈ Pm. Applying (A.7), we obtain

ϕ̌3(x) =
Γm(n/2) Γm((λ− k)/2)
Γm(λ/2) Γm((n− k)/2)

|r|d−n/2 |r − a|λ/2−d.

This gives (4.45).
In order to prove (4.44), we consider the cases k ≥ m and k < m separately.
10. The case k ≥ m. By (4.46),

ϕ̌2(x) = c1|r|d−n/2

r∫

0

|s|(λ−k)/2−d |r − s|k/2−d |Im + s|−λ/2 ds

= c1|r|d−n/2

Im+r∫

Im

|r + Im − s|k/2−d |s− Im|(λ−k)/2−d |s|−λ/2 ds,

c1 = 2−mσn−k,mσk,m/σn,m. Owing to (A.3), we obtain

ϕ̌2(r) = c1Bm(k/2, (λ− k)/2) |r|(λ−n))/2 |Im + r|(k−λ)/2,

and (4.44) follows.
20. The case k < m. By (4.46) and (2.19),

ϕ̌2(x) = c |r|d−n/2(Ik/2
+ Φ2)(r) = c |r|(k−n)/2(Ik/2

− G2)(r−1)

where
G2(s) = |s|−k/2−dΦ2(s−1) = |Im + s|−λ/2.
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Hence, in view of (2.19),

ϕ̌2(x) = c π−km/2 |r|(k−n)/2

∫

Mk,m

|Im + r−1 + ω′ω|−λ/2dω.

This integral can be evaluated by the formula (A.6), and we obtain

ϕ̌2(x) =
c Γm((λ− k)/2)

Γm(λ/2)
|r|(k−n)/2 |Im + r−1|(k−λ)/2

= λ2 |r|(λ−n)/2 |Im + r|(k−λ)/2, r = x′x.

¤

4.7. Integral identities. Existence of the Radon transform

4.7.1. Integral identities. It is important to have precise information about
the behavior of the Radon transform at infinity and near certain manifolds. The
same is desirable for the dual Radon transform. Examples in Section 4.6 combined
with duality (4.28) give rise to integral identities which provide this information in
integral terms. For m = 1, similar results were obtained in [Ru4]; see also [Ru5]
for Radon transforms on affine Grassmann manifolds.

We present these results in two theorems. The constants λ1 and λ2 below are
defined by (4.38) and (4.42), respectively, d = (m + 1)/2, and all equalities hold
provided that either side exists in the Lebesgue sense.

Theorem 4.23. If 1 ≤ k ≤ n−m, Re λ > k + m− 1, then

(4.47)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, t) |t′t|(λ−n)/2 dt

= λ2

∫

Mn,m

f(x) |x′x|(λ−n)/2 dx,

(4.48)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, t) |t′t|(λ−n)/2 |Im + t′t|−λ/2 dt

= λ2

∫

Mn,m

f(x) |x′x|(λ−n)/2 |Im + x′x|(k−λ)/2 dx,

(4.49)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, t) |t′t|−δ (t′t− a)(λ−k)/2−d
+ dt

= λ2

∫

Mn,m

f(x) |x′x|d−n/2 (x′x− a)λ/2−d
+ dx,

δ = (n− k)/2− d.
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Theorem 4.24. If 1 ≤ k ≤ n−m, Reλ > k + m− 1, then

(4.50)

∫

Mn,m

ϕ̌(x) |x′x|−λ/2 dx

=
λ1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t) |t′t|(k−λ)/2 dt,

(4.51)

∫

Mn,m

ϕ̌(x) |Im + x′x|−λ/2 dx

=
λ1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t) |Im + t′t|((k−λ)/2 dt,

(4.52)

∫

Mn,m

ϕ̌(x) (a− x′x)(λ−k)/2−d
+ dx

=
λ1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t) (a− t′t)λ/2−d
+ dt.

4.7.2. Existence of the Radon transform. In most of the formulas pre-
sented above we a priori assumed that the Radon transform is well defined. Now
we arrive at one of the central questions: for which functions f does the Radon
transform f̂(ξ, t) exist? In other words, which functions are integrable over all (or
almost all) matrix planes ξ′x = t in Mn,m? The crux is how to specify the behavior
of f(x) at infinity. Below we study this problem if (a) f is a continuous function,
(b) f is a locally integrable function, and (c) f ∈ Lp.

Theorem 4.25. Let f(x) be a continuous function on Mn,m, satisfying

(4.53) f(x) = O(|Im + x′x|−λ/2).

If λ > k + m− 1 then the Radon transform f̂(ξ, t) is finite for all (ξ, t) ∈ Vn,n−k ×
Mn−k,m. If λ ≤ k + m − 1 then there is a function fλ(x) which obeys (4.53) and
f̂λ(ξ, t) ≡ ∞.

Proof. It suffices to consider the function fλ(x) = |Im + x′x|−λ/2. By (4.40),
f̂λ(ξ, t) = λ1 |Im + t′t|(k−λ)/2 provided λ > k + m − 1. This proves the first
statement of the theorem. Conversely, owing to (4.33), the Radon transform f̂λ(ξ, t)
is finite if and only if (Ik/2

− fλ)(t′t) < ∞ (we utilize the same notation fλ both for
|Im + x′x|−λ/2 and |Im + r|−λ/2, r = x′x). If λ ≤ k + m− 1, then I

k/2
− fλ ≡ ∞; see

Remark 2.20. Thus f̂λ(ξ, t) ≡ ∞ for the same λ. ¤
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Theorem 4.26. Let f be a locally integrable function on Mn,m. If

(4.54)
∫

{y∈Mn,m : y′y>R}

|y′y|(k−n)/2|f(y)| dy < ∞ for all R ∈ Pm,

then f̂(ξ, t) is finite for almost all (ξ, t) ∈ Vn,n−k × Mn−k,m. If (4.54) fails for
some R ∈ Pm, then f̂(ξ, t) may be identically infinite.

Proof. STEP 1. Suppose first that f is a radial function so that f(x) = f0(r),
r = x′x. Then (4.54) becomes

(4.55)

∞∫

R

|r|k/2−d |f0(r)| dr < ∞ for all R ∈ Pm.

By Theorem 4.17,

f̂(ξ, t) = πkm/2(Ik/2
− f0)(t′t),

and therefore, f̂(ξ, t) < ∞ if and only if (Ik/2
− f0)(t′t) < ∞. Now the result follows

from Lemma 2.19 and Remark 2.20.
STEP 2. The general case reduces to the radial one. Indeed, let

F (x) =
∫

SO(n)

f(γx)dγ

be the “radialization” of f . If (4.55) holds, then, by STEP 1, the Radon transform
of F is a radial function of the form F̂ (ξ, t) = Φ0(s), s = t′t, which is finite for
almost all t. On the other hand, owing to commutation (4.18), Φ0(t′t) is the mean
value of f̂(ξ, t) over all ξ ∈ Vn,n−k, and therefore,

1
σn,n−k

∫

Vn,n−k

f̂(ξ, t)dξ = Φ0(t′t) < ∞

for almost all t. It follows that f̂(ξ, t) < ∞ for almost all (ξ, t) ∈ Vn,n−k×Mn−k,m.
¤

Theorem 4.27. Let f ∈ Lp(Mn,m). The Radon transform f̂(ξ, t) is finite for
almost all (ξ, t) ∈ Vn,n−k ×Mn−k,m if and only if

(4.56) 1 ≤ p < p0 =
n + m− 1
k + m− 1

.

Proof. By Hölder’s inequality,
∫

{y∈Mn,m : y′y>R}

|y′y|(k−n)/2|f(y)| dy ≤ A‖f‖p,



4.7. INTEGRAL IDENTITIES. EXISTENCE OF THE RADON TRANSFORM 77

where

Ap′ =
∫

{y∈Mn,m : y′y>R}

|y′y|p′(k−n)/2 dy

= c

∞∫

R

|r|p′(k−n)/2+n/2−ddr (d = (m + 1)/2, c = c(n, m))

= c

R−1∫

0

|r|p′(n−k)/2−n/2−d dr < ∞

provided p < p0. Thus, by Theorem 4.26, the Radon transform f̂(ξ, t) is finite for
almost all (ξ, t) ∈ Vn,n−k ×Mn−k,m. Conversely, if p > p0, then one can choose λ
satisfying

n + m− 1
p

< λ ≤ k + m− 1.

For such λ, the function fλ(x) = |Im + x′x|−λ/2 belongs to Lp(Mn,m) (use the
formula (A.6)), and f̂λ(ξ, t) ≡ ∞; see the proof of Theorem 4.25. In order to cover
the case p = p0, we need a more subtle counter-example. One can show that for
p ≥ p0, the function

(4.57) F (x) = |2Im + x′x|−(n+m−1)/2p(log |2Im + x′x|)−1

belongs to Lp(Mn,m), and F̂ (ξ, t) ≡ ∞. The proof of this statement is technical,
and presented in Appendix B. ¤

Remark 4.28. (i) Theorems 4.25 and 4.27 agree with each other in the sense
that all functions satisfying (4.53) belong to Lp(Mn,m) where

n + m− 1
λ

< p < p0.

The last statement holds by the formula (A.6), according to which the function
|Im + x′x|−λp/2 is integrable for such p.

(ii) The equality (4.48) implies part (ii) of Theorem 0.5 and provides alternative
proof of the “if part” of Theorem 4.27 when 1 ≤ k ≤ n−m. Indeed, choosing λ = n,
we have

(4.58)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

|f̂(ξ, t)| |Im + t′t|−n/2 dt

= λ2

∫

Mn,m

|f(x)| |Im + x′x|(k−n)/2 dx.

Hence, if |Im + x′x|α/2f(x) ∈ L1(Mn,m) for some α ≥ k − n, then f̂(ξ, t) is finite
for almost all (ξ, t) ∈ Vn,n−k × Mn−k,m. Moreover, by Hölder’s inequality, the
right-hand side of (4.58) does not exceed A‖f‖p, where

(4.59) Ap′ =
∫

Mn,m

|Im + x′x|p′(k−n)/2dx.
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By (A.6), the last integral is finite when p′(k − n) > k + m − 1, i.e., for p < p0.
Thus the left-hand side of (4.58) is finite too, and therefore, the Radon transform
f̂(ξ, t) is well defined for almost all (ξ, t) ∈ Vn,n−k ×Mn−k,m.

4.7.3. Existence of the dual Radon transform. The special case λ =
k + 2d in (4.52) deserves particular mentioning. In this case

(4.60)
∫

x′x<a

ϕ̌(x)dx =
λ1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t) (a− t′t)k/2
+ dt,

and therefore,

(4.61)
∫

x′x<a

|ϕ̌(x)| dx ≤ c

∫

Vn,n−k

dξ

∫

t′t<a

|ϕ(ξ, t)| dt, c =
λ1 |a|k/2

σn,n−k
.

Since a ∈ Pm is arbitrary, this implies the following.

Theorem 4.29. If ϕ(ξ, t) is a locally integrable function on the set Vn,n−k ×
Mn−k,m, 1 ≤ k ≤ n −m, then the dual Radon transform ϕ̌(x) is finite for almost
all x ∈ Mn,m.



CHAPTER 5

Analytic families associated to the Radon
transform

5.1. Matrix distances and shifted Radon transforms

In this section, we introduce important mean value operators which can be
called the shifted Radon transforms. Here we adopt the terminology of F. Rouvière
[Rou] that admirably suits our case. In contrast to the rank-one case m = 1, where
averaging parameters are positive numbers, in the higher rank case m > 1 these
parameters are matrix-valued.

Some geometric preliminaries are in order. We shall need a natural analog of
the euclidean distance for the space Mn,m of rectangular n ×m matrices. Unlike
m = 1, when the distance is represented by a positive number, in the higher rank
case our “distance” will be matrix-valued and represented by a positive semi-definite
m×m matrix.

Definition 5.1. A matrix distance between two points x and y in Mn,m is
defined by

(5.1) d(x, y) = [(x− y)′(x− y)]1/2.

Given a point x ∈ Mn,m and a matrix k-plane τ = τ(ξ, t) ∈ T (see (4.1)), a matrix
distance between x and τ is defined by

(5.2) d(x, τ) = [(ξ′x− t)′(ξ′x− t)]1/2.

Abusing notation, we write (cf. (3.1))

(5.3) |x− y|m = det(d(x, y)), |x− τ |m = det(d(x, τ)).

Let us comment on this definition. We first note that for m = 1, (5.1) is the
usual euclidean distance between points in Rn. If y = 0, then d(x, 0) = (x′x)1/2.
This agrees with the polar decomposition x = vr1/2, r = x′x, v ∈ Vn,m. If
rank(x) = m, then d(x, 0) = r1/2 is a positive definite matrix. If rank(x) < m − 1
then d(x, 0) ∈ ∂Pm and det(d(x, 0)) = 0.

Let us explain (5.2). For ξ ∈ Vn,n−k, let {ξ} denote the (n − k)-dimensional
subspace spanned by ξ, and Pr{ξ} the orthogonal projection onto {ξ} which is a
linear map with n × n matrix ξξ′. Then, as in the euclidean case, it is natural to
define the distance between the point x ∈ Mn,m and the plane τ = τ(ξ, t) ∈ T as
that between two points, namely, Pr{ξ}x = ξξ′x and ξt. By (5.1), we have

d(x, τ) = d(ξξ′x, ξt) = [(ξξ′x− ξt)′(ξξ′x− ξt)]1/2 = [(ξ′x− t)′(ξ′x− t)]1/2.

This can be regarded as a matrix distance between x and the projection Prτx of x
onto the plane τ .

79
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Lemma 5.2.
(i) The group M(n,m) of matrix motions,

Mn,m 3 x −→ γxβ + b, γ ∈ O(n), β ∈ O(m), b ∈ Mn,m,

acts on the manifolds Mn,m and T transitively.
(ii) The determinants |x − y|m and |x − τ |m are invariant under the action of
M(n,m). Namely,

|gx− gy|m = |x− y|m, |gx− gτ |m = |x− τ |m, g ∈ M(n,m).

(iii) The distances d(x, y) and d(x, τ) are invariant under the subgroup M(n) of
M(n,m), acting by the rule x → γx + b, γ ∈ O(n), b ∈ Mn,m (i.e. β = 0).

Proof. The statements follow immediately from Definition 5.1, by taking into
account that

(5.4) g : τ(ξ, t) −→ τ(γξ, tβ + ξ′γ′b).

¤

Definition 5.3. Let r ∈ Pm. The shifted Radon transform of a function f(x)
on Mn,m is defined by

f̂r(ξ, t) =
1

σn−k,m

∫

Vn−k,m

dv

∫

Mk,m

f

(
gξ

[
ω

t + vr1/2

])
dω(5.5)

=
1

σn−k,m

∫

Vn−k,m

f̂(ξ, t + vr1/2)dv,(5.6)

where (ξ, t) ∈ Vn,n−k ×Mn−k,m, gξ ∈ SO(n) is a rotation satisfying (4.9).

If r = 0 then f̂r(ξ, t) coincides with the Radon transform f̂(ξ, t); cf. (4.10).
The integral (5.5) averages f(x) over all x satisfying ξ′x = t + vr1/2. This means
that f̂r(ξ, t) is the integral of f(x) over all x at matrix distance r1/2 from the plane
τ = τ(ξ, t) (see Definition 4.1). One can write

(5.7) f̂r(τ) = f̂r(ξ, t) =
∫

d(x,τ)=r1/2

f(x).

Definition 5.4. Let 1 ≤ k ≤ n−m, r ∈ Pm, T be the manifold of all matrix
k-planes

τ ≡ τ(ξ, t) = {x ∈ Mn,m : ξ′x = t}, (ξ, t) ∈ Vn,n−k ×Mn−k,m.

Given a point z ∈ Mn−k,m at distance r1/2 from the origin (i.e. z′z = r), the shifted
dual Radon transform of a function ϕ(τ) ≡ ϕ(ξ, t) on T is defined by

(5.8) ϕ̌r(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x + z)dξ.
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Let us comment on this definition. We first note that (5.8) is independent of
the choice of z with z′z = r. Indeed, by passing to polar coordinates

z = θu0r
1/2, θ ∈ O(n− k), u0 =

[
0

Im

]
∈ Vn−k,m,

we have

ϕ̌r(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x + θu0r
1/2) dξ (set ξ = ηθ′)

=
1

σn,n−k

∫

Vn,n−k

ϕ(ηθ′, θ(η′x + u0r
1/2) dη (use ϕ(ξθ′, θt) = ϕ(ξ, t))

=
1

σn,n−k

∫

Vn,n−k

ϕ(η, η′x + u0r
1/2) dη.(5.9)

If r = 0 then ϕ̌r(x) is the usual dual Radon transform (4.27). Owing to (5.2),
the matrix distance d(x, τ) between x and τ = τ(ξ, ξ′x + z) is r1/2. Hence, ϕ̌r(x)
may be regarded as the mean value of ϕ(ξ, t) over all matrix planes at distance r1/2

from x:

(5.10) ϕ̌r(x) =
∫

d(x,τ)=r1/2

ϕ(τ) .

5.2. Intertwining operators

Given a sufficiently good function w(r) on R+, we define the following inter-
twining operator

(Wf)(τ) ≡ (Wf)(ξ, t) =
∫

Mn,m

f(x)w(|ξ′x− t|m) dx(5.11)

=
∫

Mn,m

f(x)w(|x− τ |m) dx,

which assigns to a sufficiently good function f(x) on Mn,m a function (Wf)(τ) on
the manifold T of matrix k-planes τ = τ(ξ, t), (ξ, t) ∈ Vn,n−k ×Mn−k,m. The dual
operator, which maps a function ϕ(τ) on T to the corresponding function (W ∗ϕ)(x)
on Mn,m, is defined by

(W ∗ϕ)(x) =
1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t)w(|ξ′x− t|m) dt(5.12)

=
1

σn,n−k

∫

T

ϕ(τ)w(|x− τ |m) dτ.

We recall that |x− τ |m denotes for the determinant of the matrix distance between
x and τ ; see (5.3). For m = 1, operators (5.11) and (5.12) were introduced in
[Ru4]. The following statement follows immediately from Lemma 5.2.

Lemma 5.5. Operators W and W ∗ commute with the group M(n, m) of matrix
motions.
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Lemma 5.6. If τ = τ(ξ, t), (ξ, t) ∈ Vn,n−k ×Mn−k,m, then

(5.13) (Wf)(τ) ≡ (Wf)(ξ, t) =
∫

Mn−k,m

f̂(ξ, z)w(|t− z|m) dz,

provided that either side of (5.13) is finite for f replaced by |f |.
Proof. Let gξ ∈ SO(n) be a rotation satisfying

gξξ0 = ξ, ξ0 =
[

0
In−k

]
∈ Vn,n−k.

The change of variable x = gξy in (5.11) gives

(Wf)(ξ, t) =
∫

Mn,m

f(gξy)w(|ξ′0y − t|m) dy, ξ0 =
[

0
In−k

]
∈ Vn,n−k.

By setting

y =
[

ω
z

]
, ω ∈ Mk,m, z ∈ Mn−k,m,

we have

(Wf)(ξ, t) =
∫

Mn−k,m

w(|t− z|m) dz

∫

Mk,m

f

(
gξ

[
ω
z

])
dω

=
∫

Mn−k,m

f̂(ξ, z)w(|t− z|m) dz.

¤

Lemma 5.7. Let 1 ≤ k ≤ n−m, δ = (n− k)/2− d, d = (m + 1)/2,

τ = τ(ξ, t), (ξ, t) ∈ Vn,n−k ×Mn−k,m, u0 =
[

0
Im

]
∈ Vn−k,m.

Then

(Wf)(ξ, t) = 2−mσn−k,m

∫

Pm

|r|δ w(|r|1/2) f̂r(ξ, t) dr,(5.14)

(W ∗ϕ)(x) = 2−mσn−k,m

∫

Pm

|r|δ w(|r|1/2) ϕ̌r(x) dr.(5.15)

Proof. From (5.13), by passing to the polar coordinates (see Lemma 1.11),
we obtain

(Wf)(ξ, t) =
∫

Mn−k,m

f̂(ξ, t + z)w(|z|m) dz

= 2−m

∫

Pm

|r|δ w(|r|1/2) dr

∫

Vn−k,m

f̂(ξ, t + vr1/2) dv.
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By (5.6), this coincides with (5.14). Furthermore, (5.12) yields

(W ∗ϕ)(x) =
1

σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

ϕ(ξ, t + ξ′x) w(|t|m) dt

=
2−m

σn,n−k

∫

Vn,n−k

dξ

∫

Pm

|r|δ w(|r|1/2) dr

∫

Vn−k,m

ϕ(ξ, ur1/2 + ξ′x) du

=
2−mσn−k,m

σn,n−k

∫

Vn,n−k

dξ

∫

Pm

|r|δ w(|r|1/2) dr

∫

O(n−k)

ϕ(ξ, θu0r
1/2 + ξ′x) dθ.

Now we change the order of integration and replace ξ by ξθ′. Since ϕ(ξθ′, θt) =
ϕ(ξ, t), then

(W ∗ϕ)(x) =
2−mσn−k,m

σn,n−k

∫

Pm

|r|δ w(|r|1/2) dr

∫

Vn,n−k

ϕ(ξ, u0r
1/2 + ξ′x) dξ.

By (5.9), this gives (5.15). ¤

5.3. The generalized Semyanistyi fractional integrals

To avoid possible confusion, we shall discriminate between operators acting on
Mn,m and the similar operators on Mn−k,m. As before, the notation Iα, ∆, D, and
H will be used for the Riesz potential, the Cayley-Laplace operator, the Cayley
operator, and the generalized Hilbert transform on Mn,m. We write Ĩα, ∆̃, D̃, and
H̃ for the similar operators on Mn−k,m. These will be applied to functions f̂(ξ, t)
and ϕ(ξ, t) in the t-variable. We assume 1 ≤ k ≤ n −m, and denote by S(T) the
space of functions ϕ(ξ, t) which are infinitely differentiable in the ξ-variable and
belong to the Schwartz space Mn−k,m in the t-variable uniformly in ξ ∈ Vn,n−k.

Consider the following operators

(5.16) Pαf = Ĩαf̂ ,
∗
P

αϕ = (Ĩαϕ)∨,

where f ∈ S(Mn,m), ϕ ∈ S(T), and

(5.17) α ∈ C, α 6= n− k −m + 1, n− k −m + 2, . . . .

The right-hand sides of equalities in (5.16) absolutely converge for Re α > m−1 and
are understood in the sense of analytic continuation for other values of α. Below
we prove a series of lemmas giving explicit representation of operators (5.16) for
different values of α.

Lemma 5.8. Let f ∈ S(Mn,m), ϕ ∈ S(T). If

Re α > m− 1, α 6= n− k −m + 1, n− k −m + 2, . . . ,
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then Pα and
∗
P α are intertwining operators of the form (5.11) and (5.12), respec-

tively. Namely,

(Pαf)(ξ, t) =
1

γn−k,m(α)

∫

Mn,m

f(x) |ξ′x− t|α+k−n
m dx,(5.18)

(
∗
P

αϕ)(x) =
1

γn−k,m(α)

∫

Vn,n−k

d∗ξ
∫

Mn−k,m

ϕ(ξ, t) |ξ′x− t|α+k−n
m dt,(5.19)

where d∗ξ = σ−1
n,n−k dξ is the normalized measure on Vn,n−k and γn−k,m(α) is the

normalized constant for the Riesz potential on Mn−k,m; cf. (3.46).

Proof. The formula (5.19) follows immediately from the definitions (5.16),
(4.27), and (3.49). Furthermore, by (5.16), (4.10), and (3.49), we have

(Pαf)(ξ, t) =
1

γn−k,m(α)

∫

Mn−k,m

|y|α+k−n
m dy

∫

Mk,m

f

(
gξ

[
ω

t− y

])
dω

=
1

γn−k,m(α)

∫

Mn,m

f(x) |ξ′x− t|α+k−n
m dx.

This proves (5.18). ¤

Lemma 5.9. Let f ∈ S(Mn,m), ϕ ∈ S(T), 1 ≤ k ≤ n − m. If ` is a positive
integer so that ` ≤ n− k −m (cf. (5.17)), then

(P `f)(ξ, t) = c`

∫

Mk+`,m

dz

∫

O(n−k)

f

(
ξt− gξ

[
Ik 0
0 γ

] [
z
0

])
dγ,(5.20)

(
∗
P

`ϕ)(x) = c`

∫

Vn,n−k

d∗ξ
∫

M`,m

dz

∫

O(n−k)

ϕ

(
ξ, ξ′x− γ

[
z
0

])
dγ,(5.21)

where

(5.22) c` = 2−`m π−`m/2 Γm

(n− k − `

2

)
/Γm

(n− k

2

)
.

Moreover,

(5.23) (P 0f)(ξ, t) = f̂(ξ, t), (
∗
P

0ϕ)(x) = ϕ̌(x).

Proof. By (5.16), analytic continuation of Pαf and
∗
P αϕ reduces to that of

the Riesz potential on Mn−k,m. One can readily see that f̂(ξ, t), defined by (4.10),
is a Schwartz function in the t-variable. Thus,

(5.24) P `f = Ĩ`f̂ ,
∗
P

`ϕ = (Ĩ`ϕ)∨.

Now (5.21) follows from (3.54), and (5.23) is a consequence of (3.56). Furthermore,
by (3.54) and (4.10),
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(P `f)(ξ, t) = c`

∫

M`,m

dz

∫

O(n−k)

f̂

(
ξ, t + γ

[
z
0

])
dγ

= c`

∫

M`,m

dz

∫

O(n−k)

dγ

∫

Mk,m

f


gξ




ω

t + γ

[
z
0

]




 dω.

Since

gξ




ω

t + γ

[
z
0

]

 = ξt + gξ

[
Ik 0
0 γ

] 


ω
z
0


 ,

then (5.20) follows if we change the notation
[

ω
z

]
→ z. ¤

Remark 5.10. We call Pαf and
∗
P αϕ the generalized Semyanistyi fractional

integrals; see Remark 5.14 for comments. Formulas (5.18)–(5.23) can serve as def-

initions of Pαf and
∗
P αϕ if f and ϕ are arbitrary locally integrable functions so

that the corresponding integrals converge.

Lemma 5.11. Let f ∈ S(Mn,m), ϕ ∈ S(T). If ` = 1, 2, . . . , then

(5.25) (P−2`f)(ξ, t) = (−1)m`∆̃`f̂(ξ, t),

and

(5.26) (
∗
P
−2`ϕ)(x) = (−1)m`[∆̃`ϕ]∨(x) = (−1)m`

∫

Vn,n−k

∆̃`ϕ(ξ, t)
∣∣∣
t=ξ′x

d∗ξ.

Proof. The statement follows from (5.16) and (3.60). ¤

Lemma 5.12. Let f ∈ S(Mn,m), ϕ ∈ S(T), ` = 1, 2, . . . . We denote

(5.27) c1 =
(−1)m` Γ((n− k −m)/2)

2m+1 π(m+n−k)/2
, c2 =

(−1)m(`+1) Γm((m + 1)/2)
πm2/2

.

(i) If 1 ≤ k ≤ n−m and Fξ(t) = ∆̃`f̂(ξ, t) then

(P 1−2`f)(ξ, t) = (−1)m`(Ĩ1Fξ)(t)(5.28)

= c1

∫

Sn−k−1

dv

∫

Rm

Fξ(t− vy′) dy

and

(
∗
P

1−2`ϕ)(x) = (−1)m`[Ĩ1∆̃`ϕ]∨(x)(5.29)

= c1

∫

Vn,n−k

d∗ξ
∫

Sn−k−1

dv

∫

Rm

∆̃`ϕ(ξ, t)
∣∣∣
t=ξ′x−vy′

dy.
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(ii) If k = n−m, then

(5.30) (P 1−2`f)(ξ, t) = c2 (H̃D̃2`−1f̂(ξ, ·))(t)
and

(
∗
P

1−2`ϕ)(x) = c2 (H̃D̃2`−1ϕ(ξ, ·))∨(x)(5.31)

= c2

∫

Vn,n−k

(H̃D̃2`−1ϕ(ξ, ·))(ξ′x) d∗ξ,

H̃ being the generalized Hilbert transform; cf. (3.50).

Proof. (i) follows from (5.16) and (3.61); (ii) is a consequence of (5.16) and
(3.62). ¤

The following statement is the main results of this chapter.

Theorem 5.13. Let 1 ≤ k ≤ n−m, α ∈ C; α 6= n−k−m+1, n−k−m+2, . . . .
(i) If f ∈ S(Sm) then

(5.32) (
∗
P

αf̂)(x) = cn,k,m(Iα+kf)(x)

(the generalized Fuglede formula), where

(5.33) cn,k,m = 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)
.

(ii) Let `0 = min{m− 1, n− k −m},
A = {0, 1, 2, . . . , `0} ∪ {α : Re α>m−1; α 6=n− k−m +1, n− k−m +2, . . . }.

Suppose that f ∈ L1
loc(Mn,m) and α ∈ A. Then equality (5.32) holds provided

that the Riesz potential (Iα+kf)(x) is finite for f replaced by |f | (e.g., for f ∈ Lp,
1 ≤ p < n/(Re α + k + m− 1)).

Proof. (i) Let f ∈ S(Sm). We make use of the equality (4.47) with λ = α + k
and Reα > m− 1. This gives

(5.34)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, t) |t|α+k−n
m dt

=
Γm(n/2) Γm(α/2)

Γm((α + k)/2) Γm((n− k)/2)

∫

Mn,m

f(y) |y|α+k−n
m dy.

Replacing f(y) by the shifted function fx(y) = f(x + y) and taking into account
(4.19), we get

(5.35)

1
σn,n−k

∫

Vn,n−k

dξ

∫

Mn−k,m

f̂(ξ, ξ′x + t) |t|α+k−n
m dt

=
Γm(n/2) Γm(α/2)

Γm((α + k)/2) Γm((n− k)/2)

∫

Mn,m

f(x + y) |y|α+k−n
m dy,



5.3. THE GENERALIZED SEMYANISTYI FRACTIONAL INTEGRALS 87

cf. (5.19) and (3.49). Hence, (5.32) follows when Re α > m− 1 with the constant

cn,k,m =
Γm(n/2) Γm(α/2) γn,m(α + k)

Γm((α + k)/2) Γm((n− k)/2) γn−k,m(α)

(3.46)
= 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)
.

By analytic continuation, it is true for all α ∈ C, α 6= n−k−m+1, n−k−m+2, . . . .
(ii) Suppose f ∈ L1

loc(Mn,m). For Reα > m− 1, (5.32) follows from (5.35) by
taking into account that (5.35) was derived from (4.47), and the latter is also true
for locally integrable functions. For α = `, ` = 1, 2, . . . `0, we have

(
∗
P

`f̂)(x) =
c`

σn,n−k

∫

Vn,n−k

dξ

∫

M`,m

dz

∫

O(n−k)

dγ

∫

Mk,m

f


x− gξ




ω

γ

[
z
0

]




 dω

= c`

∫

O(n)

dβ

∫

M`,m

dz

∫

O(n−k)

dγ

∫

Mk,m

f


x− β




ω

γ

[
z
0

]




 dω,

where c` is the constant (5.22). We write



ω

γ

[
z
0

]

 =

[
Ik 0
0 γ

] 


ω
z
0


 .

Then the change of variables β

[
Ik 0
0 γ

]
→ β gives

(
∗
P

`f̂)(x) = c`

∫

M`,m

dz

∫

Mk,m

dω

∫

O(n)

f


x− β




ω
z
0





 dβ

= c`

∫

M`+k,m

dy

∫

O(n)

f

(
x− β

[
y
0

])
dβ

= cn,k,m(I`+kf)(x),

where

cn,k,m = c` 2(`+k)m π(`+k)m/2 Γm

(n

2

)
/Γm

(n− `− k

2

)

= 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)
.

¤
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Remark 5.14. Some comments are in order. The idea to study Radon trans-
forms as members of the corresponding analytic families goes back to Semyanistyi
[Se] who considered the hyperplane Radon transform on Rn (the case m = 0, k =
n − 1). This approach was extended by Rubin to Radon transforms of different
kinds, see, e.g., [Ru2]. In the rank-one case m = 1 the formula (5.32) is due to
Fuglede [Fu] for α = 0 and to Rubin [Ru2], [Ru4] for any α. In the higher rank
case m > 1, it was established for α = 0 in [OR] (for sufficiently good functions)
and justified for f ∈ Lp in [Ru7].

The formula (5.32) has the same nature as the classical decomposition of dis-
tributions in plane waves. To see this, one should formally set x = 0 in (5.32) and
regard this equality in the framework of the theory of distributions. The idea of
decomposition of a function in integral of plane waves amounts to Radon [R] and
John [Jo], and has proved to be very fruitful in PDE. For the distribution |x|λ on
Rn an account of this theory is presented in [GSh1, Section 3.10]. This method
was generalized by Petrov [P2] for the matrix case for k = n − m, and briefly
outlined by Shibasov [Sh2] for k < n −m. Our way of thinking differs from that
in [Sh2], [P2], and [GSh1], and the result is more general because we allow f to
be a “rough” function.

For the sake of completeness, we also present the following statement which
follows from Theorem 5.13 and the semigroup property of Riesz potentials. Con-
cerning this property, see [Kh] and [Ru7].

Theorem 5.15. Let

Re α > m− 1, Re β > m− 1, Re (α + β) < n− k −m + 1.

If the integral Iα+β+kf absolutely converges then

(5.36)
∗
P

αP βf = cn,k,mIα+β+kf,

cn,k,m being the constant (5.33).

Proof. By (5.32) and (5.16), we have

cn,k,mIα+β+kf =
∗
P

α+β f̂ = (Ĩα+β f̂)∨ = (ĨαĨβ f̂)∨ =
∗
P

αP βf.

¤



CHAPTER 6

Inversion of the Radon transform

6.1. The radial case

Theorems 4.17, 4.27, and the inversion formula (2.51) for the G̊arding-Gindikin
fractional integrals imply the following result for the Radon transform of radial
functions.

Theorem 6.1. Suppose that f(x) ≡ f0(r), x ∈ Mn,m, r = x′x, and let

(6.1) f ∈ Lp(Mn,m), 1 ≤ p <
n + m− 1
k + m− 1

.

Then the Radon transform f̂(ξ, t) is well defined by (4.10) for almost all (ξ, t) ∈
Vn,n−k ×Mn−k,m and represents a radial function, namely,

(6.2) f̂(ξ, t) = πkm/2(Ik/2
− f0)(s) = ϕ0(s), s = t′t ∈ Pm.

If 1 ≤ k ≤ n−m, then f0 can be recovered from ϕ0 by the formula

(6.3) f0(r) = π−km/2(Dk/2
− ϕ0)(r),

where D
k/2
− is defined in the sense of D′(Pm)-distributions by (2.52).

Remark 6.2. The condition (6.1) can be replaced by the weaker one. Indeed,
owing to Theorem 2.19, it suffices to assume that

(6.4)

∞∫

R

|r|(k−m−1)/2 |f0(r)| dr < ∞ for all R ∈ Pm.

Furthermore, we know that by Theorem 4.9, the assumption k ≤ n−m is necessary
for injectivity of the Radon transform. One might expect that once we restrict to
radial functions, then this assumption can be reduced. However, it is not so, because
the function ψ in the proof of Theorem 4.9 can be chosen to be radial. Note that
if k > n −m, then the exterior variable s in (6.2) ranges on the boundary of the
cone, and we “lose the dimension”.

In the same manner, Theorem 4.19 and Lemma 2.23 allow us to obtain an
inversion formula for the dual Radon transform.

Theorem 6.3. Let ϕ(ξ, t) ≡ ϕ0(s), (ξ, t) ∈ Vn,n−k × Mn−k,m, s = t′t. We
assume 1 ≤ k ≤ n−m and denote

Φ0(s) = |s|δϕ0(s), δ = (n− k)/2− d, d = (m + 1)/2.

If Φ0(s) ∈ L1
loc(Pm) then the dual Radon transform ϕ̌(x) is well defined by (4.27)

for almost all x ∈ Mn,m and represents the radial function

(6.5) ϕ̌(x) = c|r|d−n/2(Ik/2
+ Φ0)(r) = f0(r), r = x′x ∈ Pm,

89
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c = πkm/2σn−k,m/σn,m. The function ϕ0 can be recovered from f0 by the formula

(6.6) ϕ0(s) = c−1|s|−δ(Dj
+I

j−k/2
+ F0)(s), F0(r) = |r|n/2−df0(r),

for any integer j ≥ k/2. If k is even, then

(6.7) ϕ0(s) = c−1|s|−δ(Dk/2
+ F0)(s).

The differential operator D+ in (6.6) and (6.7) is understood in the sense of
D′(Pm)-distributions (cf. (2.48) and (2.49)).

6.2. The method of mean value operators

As it was mentioned in Introduction, after the 1917 paper by Radon [R], the
following two inversion methods have been customarily used for reconstruction of
functions from their integrals over affine planes. These are the method of mean
value operators, and the method of Riesz potentials. The third classical method
presented in [GSh1] is the method of plane waves. Below we focus on the first
method and extend it to functions of matrix argument.

Definition 6.4. Given a function f(x) on Mn,m, we define

(6.8) (Mrf)(x) =
1

σn,m

∫

Vn,m

f(vr1/2 + x)dv, r ∈ Pm.

This is a matrix generalization of the usual spherical mean on Rn.

We say that r ∈ Pm tends to zero when tr(r) → 0.

Lemma 6.5. If f ∈ Lp(Mn,m), 1 ≤ p < ∞, then

(6.9) lim
r→0

(Mrf)(x) = f(x)

in the Lp-norm. If f ∈ C0(Mn,m), i.e., f(x) → 0 as ||x|| = (tr(x′x))1/2 →∞, this
limit is uniform on Mn,m.

Proof. By the generalized Minkowski inequality,

‖Mrf − f‖p ≤ 1
σn,m

∫

Vn,m

‖f(vr1/2 + ·)− f(·)‖p dv.

Since the integrand does not exceed 2‖f‖p, by the Lebesgue theorem on dominated
convergence, one can pass to the limit under the sign of integration. Let y =
vr1/2 ∈ Mn,m. We represent the corresponding nm-vector ȳ = (y1,1, . . . , yn,m) in
polar coordinates

ȳ = θρ, ρ = ‖y‖ = (tr(y′y))1/2, θ ∈ Snm−1,

so that

lim
r→0

‖f(vr1/2 + ·)− f(·)‖p
p = lim

ρ→0

∫

Rnm

|f(θρ + x̄)− f(x̄)|pdx̄ = 0.

This gives (6.9) in the Lp-norm. The proof of the second part of the statement is
the same. ¤
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The following lemma which combines the Radon transform and the shifted dual
Radon transform (5.7) is the core of the method. It reduces the inversion problem
for the Radon transform to the case of radial functions. Thus “dimension of the
problem” becomes essentially smaller.

Lemma 6.6. For fixed x ∈ Mn,m, let Fx(r) = (Mrf)(x), r ∈ Pm. Then

(6.10) (f̂)∨s (x) = πkm/2(Ik/2
− Fx)(s), s ∈ Pm,

provided that either side of this equality exists in the Lebesgue sense.

Proof. We denote ϕ(ξ, t) = f̂(ξ, t), fx(y) = f(x + y). Let z ∈ Mn−k,m be a
matrix at distance s1/2 from the origin. By (5.8) and (4.19),

(f̂)∨s (x) =
1

σn,n−k

∫

Vn,n−k

f̂x(ξ, z)dξ

=
∫

SO(n)

f̂x(γξ, z)dγ.

Interchanging the order of the Radon transform and integration over SO(n), and
using (4.18), we get

ϕ̌s(x) =
∫

Mk,m

dω

∫

SO(n)

fx

(
γ

[
ω
z

])
dγ.

Hence, z → ϕ̌s(x) is the Radon transform of the radial function

f̃x(y) =
∫

SO(n)

fx(γy)dγ =
∫

SO(n)

f(x + γy)dγ, y ∈ Mn,m.

In other words,

(6.11) ϕ̌s(x) = (f̃x)∧(ξ, z),

where

f̃x(y) =
1

σn,m

∫

Vn,m

f(x + vr1/2)dv = Fx(r), r = y′y.

Owing to (6.11), the desired equality (6.10) follows from the representation (4.33)
for the Radon transform of a radial function. ¤

Corollary 6.7. Let f ∈ Lp(Mn,m), 1 ≤ p < (n + m− 1)/(k + m− 1). Then
(6.10) holds for almost all x ∈ Mn,m. In particular, (6.10) holds for any continuous
function f satisfying

f(x) = O(|Im + x′x|−λ/2), λ > k + m− 1.

Proof. It suffices to show that the right side of (6.10) is finite for almost all
x ∈ Mn,m whenever f ∈ Lp(Mn,m), 1 ≤ p < (n+m− 1)/(k +m− 1). By Theorem
2.19, the integral (Ik/2

− Fx)(s) is well defined provided

(6.12) I =

∞∫

R

|r|k/2−d|Fx(r)| dr < ∞ for all R ∈ Pm.
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The proof of (6.12) is simple. Indeed, taking into account (6.8) and using Lemma
1.11, we obtain

I ≤ 1
σn,m

∞∫

R

|r|k/2−d dr

∫

Vn,m

|f(vr1/2 + x)| dv

=
2m

σn,m

∫

{y∈Mn,m : y′y>R}

|y′y|(k−n)/2|f(x + y)| dy.

By Hölder’s inequality, I ≤ A‖f‖p, where the constant A is the same as in the
proof of Theorem 4.27. If p < (n + m − 1)/(k + m − 1) then A < ∞, and we are
done. ¤

Now we can prove the main result.

Theorem 6.8. Let 1 ≤ k ≤ n−m,

(6.13) f ∈ Lp(Mn,m), 1 ≤ p <
n + m− 1
k + m− 1

.

Then the Radon transform ϕ(ξ, t) = f̂(ξ, t) is well defined by (4.10) for almost all
(ξ, t) ∈ Vn,n−k ×Mn−k,m and can be inverted by the formula

(6.14) f(x) = π−km/2
(Lp)

lim
r→0

(Dk/2
− Φx)(r), Φx(s) = ϕ̌s(x),

where D
k/2
− is defined in the sense of D′(Pm)-distributions by (2.52). If f is a

continuous function satisfying

(6.15) f(x) = O(|Im + x′x|−λ/2), λ > k + m− 1,

then the limit in (6.14) can be treated in the sup-norm.

Proof. By Lemmas 6.6 and 2.24, one can recover Fx(r) = (Mrf)(x) and get

(Mrf)(x) = π−km/2(Dk/2
− Φx)(r), r ∈ Pm.

Now the result follows by Lemma 6.5. ¤

6.3. The method of Riesz potentials

The second traditional inversion method for the Radon transform reduces the
problem to inversion of the Riesz potentials. This method relies on the formula
(5.32) where α is in our disposal. The case α = 0 corresponds to the Fuglede
formula

(6.16) (f̂)∨(x)=cn,k,m(Ikf)(x),

which together with Theorem 3.17 implies the following.

Theorem 6.9. Let f ∈ Lp(Mn,m), 1 ≤ p < n/(k + m − 1). Then the Radon
transform ϕ = f̂ is well defined, and f can be recovered from ϕ in the sense of
Φ′-distributions by the formula

(6.17) cn,k,m(f, φ) = (ϕ̌, I−kφ),

φ ∈ Φ, cn,k,m = 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)
,
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where the operator I−k is defined by

(I−kφ)(x) = (F−1|y|kmFφ)(x).

In particular, for k even,

(6.18) cn,k,m(f, φ) = (−1)mk/2(ϕ̌,∆k/2φ),

∆ being the Cayley-Laplace operator (1.44).

Remark 6.10. For k odd, the Radon transform can be inverted under more
restrictive assumptions as follows. Let k < n−m. We choose α = 1 in (5.32) and
get

(6.19) Ĩ1f̂ = cn,k,mIk+1f.

If f ∈ Lp(Mn,m), 1 ≤ p < n/(k + m), then f can be recovered from ϕ = f̂ by the
formula

(6.20) cn,k,m(f, φ) = (−1)m(k+1)/2(Ĩ1ϕ,∆(k+1)/2φ), φ ∈ Φ.

6.4. Decomposition in plane waves

This method was developed in [P2] for the case k = n − m, and outlined in
[Sh2] for 1 ≤ k ≤ n−m. It is based on decomposition of distributions in (matrix)
plane waves. As we have already noted in Remark 5.14, our formula (5.32) has the
same nature. Together with (5.26), (5.29), and (5.31), it enables us to invert the
Radon transform of functions f ∈ S(Mn,m).

Theorem 6.11. Let 1 ≤ k ≤ n − m, f ∈ S(Sm). The Radon transform
ϕ(ξ, t) = f̂(ξ, t) can be inverted by the following formulas.
(i) For k even,

(6.21) f(x) = (−1)mk/2c−1
n,k,m

∫

Vn,n−k

∆̃k/2ϕ(ξ, t)
∣∣∣
t=ξ′x

d∗ξ ,

cn,k,m = 2kmπkm/2Γm

(n

2

)
/Γm

(
n− k

2

)

(we recall that d∗ξ stands for the invariant measure on Vn,n−k of total mass 1).
(ii) For k odd and k < n−m,

(6.22) f(x) = c1

∫

Vn,n−k

d∗ξ
∫

Sn−k−1

dv

∫

Rm

∆̃(k+1)/2ϕ(ξ, t)
∣∣∣
t=ξ′x−vy′

dy,

c1 = (−1)m(k+1)/22−km−m−1π(k−n)/2−m(k/2+1)Γm+1

(
n− k

2

)
/Γm

(n

2

)
.

(iii) For k odd and k = n−m,

(6.23) f(x) = c2

∫

Vn,n−k

(H̃D̃kϕ(ξ, ·))(ξ′x) d∗ξ,

c2 = (−1)m(k+3)/22−kmπ−m(k+m)/2Γm

(m

2

)
Γm

(
m + 1

2

)
/Γm

(n

2

)
.
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Proof. We write (5.32) with α = −k so that

(6.24) f(x) = c−1
n,k,m(

∗
P
−kϕ)(x),

where
∗
P −k is the operator (5.16). Now it remains to apply formulas (5.26), (5.29),

and (5.31).
¤

Formulas (6.21)–(6.23) differ from those in [P2] and [Sh2].



APPENDIX A

Table of integrals

Let k, m ∈ N; α, β, γ ∈ C; d = (m + 1)/2. We recall that Sm,Pm, and Pm

denote the set of all m × m real symmetric matrices, the cone of positive defi-
nite matrices in Sm, and the closed cone of positive semi-definite matrices in Sm,
respectively. The following formulas hold.

(A.1)

b∫

a

|r − a|α−d|b− r|β−ddr = Bm(α, β)|b− a|α+β−d,

a ∈ Sm, b > a, Re α > d− 1, Re β > d− 1;

(A.2)

b∫

c

|b− r|α−d|r − c|β−d dr

|r|α+β
=

Bm(α, β)
|a|α|b|β |b− a|α+β−d,

a ∈ Sm, b > a, c = b1/2a1/2b−1a1/2b1/2, Reα > d− 1, Re β > d− 1;

(A.3)

b∫

Im

|b− r|α−d|r − Im|β−d dr

|r|α+β
=

Bm(α, β)
|b|β |b− Im|α+β−d,

b > Im, Reα > d− 1, Re β > d− 1;

(A.4)

∞∫

s

|r|−γ |r − s|α−ddr = |s|α−γBm(α, γ − α),

s ∈ Pm, Reα > d− 1, Re (γ − α) > d− 1;

(A.5)

∞∫

s

|Im + r|−γ |r − s|α−ddr = |Im + s|α−γBm(α, γ − α),

s ∈ Pm, Re α > d− 1, Re (γ − α) > d− 1;

(A.6)
∫

Mk,m

|b + y′y|−λ/2dy =
πkm/2Γm((λ− k)/2)

Γm(λ/2)
|b|(k−λ)/2,

b ∈ Pm, Re λ > k + m− 1;
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(A.7)
∫

{y∈Mk,m: y′y<b}

|b− y′y|(λ−k)/2−ddy =
πkm/2Γm((λ− k)/2)

Γm(λ/2)
|b|λ/2−d,

b ∈ Pm, Re λ > k + m− 1.

PROOF

(A.1). We have

I ≡
b∫

a

|r − a|α−d|b− r|β−ddr =

c∫

0

|s|α−d|c− s|β−d ds,

c = b− a. Let s = c1/2tc1/2. By Lemma 1.1 (ii),

I = |c|α+β−d

Im∫

0

|t|α−d|Im − t|β−d dt = |c|α+β−dBm(α, β).

(A.2), (A.3). Let us write (A.1) from the right to the left, and set

r = a1/2b1/2τb1/2a1/2, dr = (|a||b|)ddτ.

This gives

Bm(α, β)|b− a|α+β−d =(|a||b|)α+β−d

c−1∫

b−1

|τ − b−1|α−d|c−1 − τ |β−ddτ.

Then we set τ = s−1, dτ = |s|−2dds, and get

Bm(α, β)|b− a|α+β−d = |a|α|b|β
b∫

c

|b− s|α−d|s− c|β−d ds

|s|α+β

which was required. The equality (A.3) follows from (A.2).
(A.4), (A.5). By setting r = q−1, dr = |q|−m−1dq, one can write the left-hand

side of (A.4) as

|s|α−d

s−1∫

0

|q|γ−α−d|s−1 − q|α−ddq
(A.1)
= |s|α−γBm(α, γ − α),

and we are done. The equality (A.5) follows from (A.4) if we replace s and r by
Im + s and Im + r, respectively.

(A.6), (A.7). By changing variable y → yb1/2, we obtain
∫

Mk,m

|b + y′y|−λ/2dy = |b|(k−λ)/2J1,

∫

{y∈Mk,m: y′y<b}

|b− y′y|(λ−k)/2−ddy = |b|λ/2−dJ2,
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where

J1 =
∫

Mk,m

|Im + y′y|−λ/2dy,

J2 =
∫

{y∈Mk,m: y′y<Im}

|Im − y′y|(λ−k)/2−ddy.

Let us show that

J1 = J2 =
πkm/2Γm((λ− k)/2)

Γm(λ/2)
.

The case k ≥ m. We write both integrals in the polar coordinates according
to Lemma 1.11. For J1 we have

J1 = 2−mσk,m

∫

Pm

|r|k/2−d|Im + r|−λ/2dr

= 2−mσk,mBm

(
k

2
,
λ− k

2

)

(the second equality holds by (A.5) with s = 0, α = k/2, γ = λ/2). Similarly,

J2 = 2−mσk,m

Im∫

0

|r|k/2−d|Im − r|(λ−k)/2−ddr

= 2−mσk,mBm

(
k

2
,
λ− k

2

)
.

Now the result follows by (1.13) and (1.37).
The case k < m. We replace y by y′ and pass to the polar coordinates. This

yields

J1 =
∫

Mm,k

|Im + yy′|−λ/2dy

= 2−k

∫

Vm,k

dv

∫

Pk

|Im + vqv′|−λ/2|q|(m−k−1)/2dq,

(|Im + vqv′| = |Ik + q|)
= 2−kσm,k

∫

Pk

|q|(m−k−1)/2|Ik + q|−λ/2dq.

By (A.5) (with s = 0, m = k, γ = λ/2) and (1.10),

J1 = 2−kσm,kBk

(
m

2
,
λ−m

2

)

=
πkm/2Γk((λ−m)/2)

Γk(λ/2)

=
πkm/2Γm((λ− k)/2)

Γm(λ/2)
.
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Similarly,

J2 =
∫

{y∈Mm,k: yy′<Im}

|Im − yy′|(λ−k)/2−ddy

= 2−k

∫

Vm,k

dv

∫

{q∈Pk: vqv′<Im}

|Im − vqv′|(λ−k)/2−d|q|(m−k−1)/2dq

= 2−kσm,k

Ik∫

0

|Ik − q|(λ−m−k−1)/2|q|(m−k−1)/2dq

= 2−kσm,kBk

(
m

2
,
λ−m

2

)
,

and we get the same.



APPENDIX B

A counterexample to Theorem 4.27

Let us prove that the function

(B.1) F (x) = F0(x′x) = |2Im + x′x|−(n+m−1)/2p(log |2Im + x′x|)−1

belongs to Lp(Mn,m), but

(B.2) F̂ (ξ, t) ≡ ∞ for p ≥ p0 = (n + m− 1)/(k + m− 1).

We shall put “ ' ”, “ . ” , and “ & ” instead of “=”, “≤”, and “≥”, respectively, if
the corresponding relation holds up to a constant multiple. To prove (B.2), owing
to (4.34), we have

F̂ (ξ, t) =
∫

Mk,m

|2Im + ω′ω + s|−(n+m−1)/2p(log |2Im + ω′ω + s|)−1dω,

where s = t′t. This gives ( set ω = y(2Im + s)1/2, dω = |2Im + s|k/2dy)

F̂ (ξ, t) = |2Im + s|k/2−(n+m−1)/2pI1(z), z = log |2Im + s|,

I1(z) =
∫

Mk,m

|Im + y′y|−(n+m−1)/2p(z + log |Im + y′y|)−1dy.

For k ≥ m, by Lemma 1.11, we obtain

I1(z) '
∫

Pm

|r|k/2|Im + r|−(n+m−1)/2p(z + log |Im + r|)−1d∗r ,

d∗r = |r|−(m+1)/2dr. Let us pass to polar coordinates on Pm:

(B.3) r = γ′aγ, γ ∈ O(m), a = diag(a1, . . . , am), aj > 0.

Then

(B.4) d∗r = cm vm(a)
( m∏

j=1

a
−(m+1)/2
j daj

)
dγ,

where

vk(a) =
∏

1≤i<j≤k

|ai − aj |, k = 2, . . . , m, c−1
m = π−(m2+m)/4

m∏

j=1

j Γ(j/2),

[T, p. 23, 43]. By (B.3) and (B.4),
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I1(z) '
∞∫

0

. . .

∞∫

0

vm(a)


z +

m∑

j=1

log(1 + aj)



−1

×



m∏

j=1

a
(k−m−1)/2
j (1 + aj)−(n+m−1)/2pdaj


 .

The transformation aj + 1 = bj yields

(B.5) I1(z) &
3∫

2

bλ
1db1

5∫

4

bλ
2db2. . .

∞∫

2m

vm(b)


z+

m∑

j=1

log bj



−1

bλ
mdbm,

where λ = (k −m− 1)/2− (n + m− 1)/2p. Note that in (B.5),

vm(b) =
∏

1≤i<j≤m

|bj − bi| =
m−1∏

i=1

|bm − bi|
∏

1≤i<j≤m−1

|bj − bi| & (bm − 2m)m−1

and log b1 < . . . < log bm. Hence, for p ≥ p0,

I1(z) &
∞∫

2m

bλ
m(bm − 2m)m−1 [z + m log bm]−1

dbm = ∞.

If k < m then

I1(z) =
∫

Mm,k

|Im + ωω′|−(n+m−1)/2p(z + log |Im + ωω′|)−1dω

'
∫

Vm,k

dv

∫

Pk

|q|(m−k−1)/2|Im + vqv′|−(n+m−1)/2p(z + log |Im + vqv′|)−1dq.

Using the equality |Im + vqv′| = |Ik + q| [Mu, p. 575], and setting q = β′bβ,
β ∈ O(k), b = diag(b1, . . . , bk), bj > 0, we have

I1(z) '
∫

Pk

|q|(m−k−1)/2|Ik + q|−(n+m−1)/2p(z + log |Ik + q|)−1dq

'
∞∫

0

. . .

∞∫

0

[ k∏

j=1

b
(m−k−1)/2
j (1 + bj)−(n+m−1)/2p

]

×

z +

k∑

j=1

log(1 + bj)



−1

vk(b) db1 . . . dbk.

Proceeding as above, for ν = (m− k − 1)/2− (n + m− 1)/2p, p ≥ p0, we obtain

I1(z) &
∞∫

2k

bν
k(bk − 2k)k−1 [z + k log bk]−1

dbk = ∞.



B. A COUNTEREXAMPLE TO THEOREM ?? 101

Let I2 = ‖F‖p
p. To complete the proof it remains to show that I2 < ∞. As

above, we have

I2 '
∫

Pm

|r|n/2|F0(r)|pd∗r

=
∫

Pm

|r|n/2|2Im + r|−(n+m−1)/2(log |2Im + r|)−pd∗r

'
∫

Rm
+

[ m∏

j=1

a
n/2−(m+1)/2
j (2 + aj)−(n+m−1)/2

]

×



m∑

j=1

log(2 + aj)



−p

vm(a) da1 . . . dam,

where Rm
+ is the set of points a = (a1, . . . , am) with positive coordinates. Let us

split Rm
+ into m + 1 pieces Ω0, . . . , Ωm, where

Ω0 = {a : 0 < aj < 1 for all j = 1, . . . ,m},

Ωm = {a : aj > 1 for all j = 1, . . . ,m},
and Ω` (` = 1, 2, . . . , m − 1) is the set of points a ∈ Rm

+ having ` coordinates > 1

and m− ` coordinates ≤ 1. Then I2 '
m∑

`=0

A`, where A` =
∫
Ω`

(...).

-

6

a1

a2

0

1

1

Ω2

Ω1

Ω1

Ω0

(The case m = 2)

For p > 1, we have

A0 =

1∫

0

. . .

1∫

0

[ m∏

j=1

a
n/2−(m+1)/2
j (2 + aj)−(n+m−1)/2

]

×



m∑

j=1

log(2 + aj)



−p

vm(a) da1 . . . dam

.
m∏

j=1

1∫

0

a
n/2−(m+1)/2
j daj < ∞.
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In order to estimate Am, we first note that the integrand is a symmetric function
of a1, . . . , am. Hence, Am = (m!)Bm, where Bm is the integral over the set {a :
a ∈ Ωm; a1 > a2 > . . . > am}. Using obvious inequalities

(B.6) a
n/2−(m+1)/2
j (2 + aj)−(n+m−1)/2 < a−m

j ,

we have

Bm .
∞∫

1

da1

am
1 logp(2 + a1)

a1∫

1

a−m
2 da2 . . .

am−2∫

1

a−m
m−1

∏

1≤i<j≤m−1

|ai − aj | dam−1

×
am−1∫

1

a−m
m

m−1∏

i=1

|ai − am| dam.

Since

am−1∫

1

a−m
m

m−1∏

i=1

|ai − am| dam ≤
( m−1∏

i=1

ai

) am−1∫

1

dam

am
m

=
1− a1−m

m−1

m− 1

m−1∏

i=1

ai .
m−1∏

i=1

ai,

it follows that

Bm .
∞∫

1

da1

am−1
1 logp(2 + a1)

a1∫

1

a1−m
2 da2 . . .

am−2∫

1

a1−m
m−1

∏

1≤i<j≤m−1

|ai − aj | dam−1.

Repeating this process, we get

Bm .
∞∫

1

d a1

a1 logp(2 + a1)
< ∞.

Let us estimate A`, ` = 1, . . . , m−1. Owing to the symmetry, it suffices to consider
the integral

B` =

∞∫

1

da1

a1∫

1

da2 . . .

a`−1∫

1

[ ∏̀

j=1

a
n/2−(m+1)/2
j (2 + aj)−(n+m−1)/2

]

× J(a1, . . . , a`) da`,

where

J(a1, . . . , a`) =

1∫

0

. . .

1∫

0

[ m∏

j=`+1

a
n/2−(m+1)/2
j (2 + aj)−(n+m−1)/2

]

×



m∑

j=1

log(2 + aj)



−p

vm(a) da`+1 . . . dam.
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We use the inequality

vm(a) =
∏

1≤i<j≤m

|ai − aj | ≤
∏̀

i=1

m∏

j=i+1

|ai − aj | ≤
∏

1≤i<j≤`

|ai − aj |
∏̀

i=1

(ai + 1)m−`.

This gives

J(a1, . . . , a`) ≤ [log(2 + a1)]−p
∏

1≤i<j≤`

|ai − aj |
∏̀

i=1

(ai + 1)m−`,

and, owing to (B.6),

B` .
∞∫

1

da1

a`
1 logp(2 + a1)

a1∫

1

a−`
2 da2 . . .

a`−2∫

1

a−`
`−1

∏

1≤i<j≤`−1

|ai − aj | da`−1

×
a`−1∫

1

a−`
`

`−1∏

i=1

|ai − a`| da`.

Proceeding as above (see the argument for Bm), we obtain

B` .
∞∫

1

d a1

a1 logp(2 + a1)
< ∞.

Thus, I2 < ∞, and we are done.





APPENDIX C

Some facts from algebra

We recall some well-known facts repeatedly used throughout the monograph.
We do this for convenience of the reader by taking into account that the literature
on this subject is rather sparse. More results from matrix algebra can be found,
i.e., in [Mu] and [FZ].

Notation:

• Mn,m is the space of real matrices x = (xi,j) having n rows and m columns.
• x′ denotes the transpose of x.
• rank(x) = rank of x.
• Im is the identity m×m matrix.
• tr(a) is the trace of the square matrix a.
• |a| is the absolute value of the determinant det(a).
• O(m) is the group of orthogonal m×m matrices.
• Vn,m = {v ∈ Mn,m : v′v = Im} is the Stiefel manifold.

Some useful facts:

1. If x is n×m and y is m× n, then |In + xy| = |Im + yx|.
2. If a is a square matrix and |a| 6= 0 then (a−1)′ = (a′)−1.
3. rank(x) = rank(x′) = rank(xx′) = rank(x′x).
4. rank(xy) ≤ min(rank(x), rank(y)).
5. rank(x + y) ≤ rank(x) + rank(y).
6. rank(axb) = rank(x) if a and b are nonsingular square matrices.
7. tr(a) = tr(a′).
8. tr(a + b) = tr(a) + tr(b).
9. If x is n×m and y is m× n then tr(xy) = tr(yx).
10. Let Sm be the space of m×m real symmetric matrices r = (ri,j), ri,j = rj,i.

A matrix r ∈ Sm is called positive definite (positive semi-definite) if u′ru > 0
(u′ru ≥ 0) for all vectors u 6= 0 in Rm; this is commonly expressed as r > 0 (r ≥ 0).
Given r1 and r2 in Sm, the inequality r1 > r2 means r1 − r2 > 0.

(i) If r > 0 then r−1 > 0.
(ii) x′x ≥ 0 for any matrix x.
(iii) If r ≥ 0 then r is nonsingular if and only if r > 0.
(iv) If r > 0, s > 0, and r − s > 0 then s−1 − r−1 > 0 and |r| > |s|.
(v) A symmetric matrix is positive definite (positive semi-definite) if and only

if all its eigenvalues are positive (non-negative).
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(vi) If r ∈ Sm then there exists an orthogonal matrix γ ∈ O(m) such that
γ′rγ = Λ where Λ =diag(λ1, . . . , λm). Each λj is real and equal to the jth eigen-
value of r.

(vii) If r is a positive semi-definite m×m matrix then there exists a positive
semi-definite m ×m matrix, written as r1/2, such that r = r1/2r1/2. If r = γΛγ′,
γ ∈ O(m), then r1/2 = γΛ1/2γ′ where Λ1/2 =diag(λ1/2

1 , . . . , λ
1/2
m ).

11. If x is n × k and y is m × k, n ≥ m, then x′x = y′y if and only if there
exists v ∈ Vn,m such that x = vy. In particular, if x is n ×m, n ≥ m, then there
exists v ∈ Vn,m such that x = vy, where y = (x′x)1/2.
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