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RADON INVERSION ON GRASSMANNIANS VIA
GARDING-GINDIKIN FRACTIONAL INTEGRALS

ERIC L. GRINBERG AND BORIS RUBIN

ABSTRACT. The Radon transform R f of functions on Stiefel and Grassmann
manifolds is studied. Connection between R f and Garding-Gindikin fractional
integrals associated to the cone of positive definite matrices is established.
By using this connection, we obtain Abel type representations and explicit
inversion formulae for Rf provided that f belongs to LP and the space of
continuous functions.

1. INTRODUCTION

Let Gpk, Gp i be the pair of Grassmann manifolds of linear k-dimensional and
k'-dimensional subspaces of R"™ respectively. Suppose that 1 <k <k’ <n-—-1. A
function ¢(§) on Gy is called the Radon transform of a sufficiently good function
f(n) on G if 9(€) = fnCE f(m)dem(n), dem(n) being a suitable measure on the
space of planes 7 in £&. The basic questions are whether the mapping f — ¢ is
injective and how to invert it. By taking into account that dim G,, , = k(n — k), we
conclude that the condition dim Gy, > dim G, i, which is necessary for injectivity,
is equivalent to k+ k' < n (for k¥ < k'). Thus the natural framework for the inversion
problem is

(1.1) 1<k<k'<n-1, E+k <n.

In the present paper we focus on this problem, leaving aside such important topics
as range characterization, affine Grassmannians, the complex case, geometrical ap-
plications, and further possible generalizations. Concerning these topics, the reader
is addressed to a series of fundamental papers by .M. Gel’fand (and collaborators),
F. Gonzalez, P. Goodey, E.L. Grinberg, S. Helgason, T. Kakehi, E.E. Petrov, R.S.
Strichartz, and others.

The following aproaches to the inversion problem are known. One can apply
a certain differential operator to the composition of the Radon transform and its
dual [Go], [Grl], [K]. The idea of this method belongs to S. Helgason. This method
works only for smooth f and k' — k even. Modification of this approach including
both even and odd cases, was developed in [Ru2] for ¥ = 1 by embedding the Radon
transform into a certain analytic family of intertwining operators. We believe this
idea can be extended to k£ > 1. Note that for £ > 1, the differential operator
resolving the problem is very complicated, and the corresponding harmonic analysis
on Grassmannians is rather difficult.
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2 ERIC L. GRINBERG AND BORIS RUBIN

Another approach, based on the use of differential forms was developed by
Gel’fand, Graev and Sapiro [GGS]. As the previous one, it deals with smooth
functions and k' — k even.

The third method employs modification of the plane waves decomposition and
belongs to Petrov. His inversion formulae (see (11), (11°) in [P1]) are presented
without proof for the special case k' = n — k. The class of admissible functions is
not specified, and the divergent integral in (11’) should be understood somehow in
a regularized sense. In contrast to the previous two, Petrov’s method is applicable
both to even and odd cases; see also [P2].

Below we develop a new alternative aproach. It differs from aforementioned,
covers the full range (1.1), and gives transparent and readable inversion formulae
for any integrable f. Along the way we derive a series of integral formulae which can
be used in different occurrences. In future publications we plan to present various
consequences, further developments and geometrical applications of our results.

Let us describe the basic idea of the method. It is convenient to define the Radon
transform in a slightly different form as follows. Let V,, ; be the Stiefel manifold of
orthonormal k-frames in R™. Given a sufficiently good function f(z) on V;, x, we
set

(1.2) RNE = [ f@am(o), €€Cnp, ¥ >k
3

It means that f(z) is integrated over all k-frames z in £ with respect to the relevant
normalized measure. In the special case k = 1, V,, 1 is the unit sphere S™ ! in
R™, Gp i can be identified with the set of (k' — 1)-dimensional totally geodesic
submanifolds of S*~!, and (1.2) becomes the classical spherical Radon transform
of the Minkowski-Funk-Helgason type [H2]. The latter was inverted by Helgason
[H1], [H2, p. 99] (see also [Ru2]). In our notation his formula reads as follows:

13 1@ =[(755)" [ Reaser RO 0 = 02)¥ /2a0]
0

u=1

provided that f is an even function on $™~1, ¢ = 2¥' =1 /(k' —2)lo _1, oy _y is the
area of the unit sphere Sk’_l, RZos—l(v)R f is the average of Rf over all (k' — 1)-
geodesics at distance p = cos™!(v) from z. The expression in square brackets
represents an obvious modification of the Riemann-Liouville fractional derivative
[Rul], so that fractional calculus plays a key role in derivation of (1.3).

We extend (1.3) to the higher rank case k > 1. The assumption of evenness of f
is replaced in a natural way by right invariance under the group O(k) of orthogonal
transformations so that f(z) becomes a function on the Grassmann manifold G, .
The one-dimensional Riemann-Liouville integral, arising in Helgason’s scheme and
leading to (1.3), is substituted for its higher rank counterpart

/w(s) (det(r — 5))*~**+D/2g5 Rea > (k—1)/2,
0

(1.4)  (Ifw)(r) = Trl@)

associated to the cone Py, of symmetric positive definite k x k matrices (see Section
2.2). Integrals (1.4) were introduced by Garding [G4], who was inspired by Riesz
[R1], Siegel [S], and Bochner [B1], [B2]. The function 'y () in (1.4) is the celebrated
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Siegel Gamma function (see (2.4), (2.5) below). Substantial profound generaliza-
tions of Riesz-Garding integrals are due to Gindikin [Gi]. Useful information on
this subject can also be found in [FK], [M], [T].

Main results. We need some notation. Note that for r € Py, integration in (1.4)
is performed over the “interval” {s € Py, : r—s € Py }. In the following Prez denotes
the orthogonal projection of z € V,, ; onto the subspace &; A’ is the transpose of
the matrix A, |A| = det(A). For ¢ € V,, , dz designates a measure on V;, ; which
is O(n) left-invariant, O(k) right-invariant, and normalized by

2kﬂ.nk/2
1. = vol = = —
( 5) On,k VO. (Vn,k) / dzx Fk(n/Q)

Va,k
[M, p. 70], [J, p- 57]. Each frame z € V1, generated by vectors (V) ... 2 is
identified with the matrix whose columns are (1), ... z(¥) (in the same order).
To the analytic family (1.4) we associate a differential operator
o 1 ifi=j

so that D4 I¢ = I$™" [G4] (see Sec. 2.2). Our first result concerns the so-called
£-zonal case, when f(z) is invariant under the left action of all transformations

g € O(n) preserving the coordinate frame g, = 0 ] € Vpe, I being the £ x ¢

I,
identity matrix. In this case the restriction k + k' < n can be reduced.

Theorem 1.1. Let f(z) € L'(Var), ¢(§) = (Rf)(€), & € Gupw,1 <k <k <
n—1. Suppose that f is £-zonal and O(k) right-invariant. The following statements
hold.

(i) For 1 < £ < min (k,n — k) and almost all z, one can write f(z) = fo(s),
s = o,xz’oy € Py, where

I,
1 B T(n/2)
(17) O'n,kV f(w)dx - F[(k/2) Fe((n _ k-)/2) !fo(s)du(s)a
(1.8) dpu(s) = |s|F—E-D/2| — 5|(n—k—t-1/2g

(ii) If £ < min (k,n — k'), then (Rf)(§) = Fo(S), S = o,Preoy, and f = fo(s)
can be recovered by

(1.9)  fols) = %ISI(k‘fl)/zDTIT_“[ISI('“"1)/21’0(5)](8)-

Here o = (k' —k)/2, m > (k'—1)/2 is an otherwise arbitrary integer, and D' is the

mth power of the operator (1.6) which is understood in the sense of distributions
(see Sec. 2.2).

This theorem follows from the relevant Abel type representation of the Radon
transform of £-zonal functions. We also prove an analogue of Theorem 1.1 for the
dual Radon transform (R*y)(x) that averages ¢(§) over all £ € Gy containing
x € V- For k =1, these results are known; see, e.g. [Ru2]. Unlike the case k = 1,
the treatment of D" in the sense of distributions is essential in the framework of
this method (even for smooth f), because of convergence of integrals involved.
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Now we eliminate the left-invariance assumption and exhibit a higher rank gen-
eralization of Helgason’s formula (1.3). To this end an analogue of the averaging
operator R q— 1(y) is needed. Given a positive definite matrix r in the “interval”
[0, It], we set

Ok — k) xk
F1/2
(1.10) Ty = 0 € Vo,
(n—k'—k)xk
i ( Ik )1 /2
where 0 (with subscripts) designates zero entries. Let g, € O(n) be an orthogonal
matrix which transforms zg = I(l € V1 into 2, and preserves coordinate unit
vectors €y y1,...,€,_k. Lhis matrix has the form
Iy g, 0 0 0
0 (I —r)/? 0 ri/?
1.11 =
(1.11) g 0 0 Tk —k 0
0 —rl/2 0 (I, — r)/?

Let & = Rey + ... + Reyr be the coordinate k'-plane and let K C SO(n) be the
isotropy subgroup of rotations preserving zg (one can identify K with SO(n — k)).
Given a function ¢(§) on Gy i, the required averaging operator is defined by

(1.12) <A4:¢a(x)=:jf¢xgwpg;la»dp,
K

9:(€ SO(n)) being an arbitrary rotation such that g, : zo — z. In the case k =1
the operator (1.12) coincides with its prototype from [Ru2, formula (2.2)].

Theorem 1.2. Let f be an O(k) right-invariant function belonging to LP(V,, 1), 1 <
p < oo (we identify L (V,, 1) with the space C(Vy i) of continuous functzons) Sup-
pose that (&) = (Rf)(&), £ € G, 1<k <k <n-1, k+ k' <n. Then for
any integer m > (k' — 1)/2,

Lr(k/2) L) i a1/ x s o
Tyl j2) A DT [T PME (), o= (K = R)/2

the differentiation being understood in the sense of distributions. In particular, for
E—k=20L€N,

(1.13) f=

AL Ty (D205 D))

This theorem generalizes (1.3) to the higher rank case and f € LP. Theorems
1.1 and 1.2 can be reformulated for f(x) replaced by the corresponding function on
Gn k-

A few words about technical tools are in order. We were inspired by the papers
of Herz [Herz] and Petrov [P2] (unfortunately the latter was not translated into
English). The key role in our argument belongs to Lemma 2.2 which generalizes
Lemma 3.7 of Herz [Herz, p. 495]. It extends the notion of bispherical coordinates
[VK, pp. 12, 22] to Stiefel manifolds.

It would be interesting to derive pointwise analogues of inversion formulae (1.9),
(1.13). The problem reduces to pointwise inversion of Garding-Gindikin fractional

(1.14) f=
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integrals. We plan to study this problem in forthcoming papers following some
ideas developed in [Rul]-[Ru3].

The paper is organized as follows. Section 2 contains preliminaries and deriva-
tion of basic integral formulae which are of independent interest. In Section 3 we
introduce averaging operators, which serve the inversion problem for Radon trans-
forms, and study their basic properties. Section 4 is devoted to Radon transforms.
By making use of the formulae from Section 2, we obtain Abel type representations
of Radon transforms of ¢-zonal functions in terms of Garding-Gindikin fractional
integrals and prove Theorems 1.1, 1.2.

Acknowledgements. The work on the paper was started in Summer 2000 when
B. Rubin was visiting Temple University in Philadelphia. He expresses gratitude
to his coauthor, Prof. Eric Grinberg, for the hospitality.

2. PRELIMINARIES

2.1. Matrix spaces and Gamma functions. We recall some definitions and
facts from [M], [T], [Herz]. Let 9, , n > k, be the space of real matrices having
n rows and k columns. We identify 9, ; with the real Euclidean space R™* so
that for z = (z; ;) the volume element is dz =[]}, Hle dz; ;. In the following 2’
denotes the transpose of z, and |z| = det (z) (for square matrices). Let Sy be the
space of k x k real symmetric matrices r = (r; ), r;,j = rj,i, which is the Euclidean
space of k(k + 1)/2 dimensions with the volume element dr = [],; dr;;. In Sk
we consider a convex cone Py of positive definite matrices 7, so that a'ra > 0 for
all vectors a # 0 in R¥. For r € P}, we write 7 > 0. Given r; and ry in Sy, the
inequality 71 > ro means 7, —r2 > 0. The function space LP(Q2), Q C Py, is defined
in a usual way with respect to the measure dr. The cone P}, is a symmetric space of
the group GL(k,R) of non-singular k x k real matrices. The action of g € GL(k, R)
onr € Py is given by » — g'rg. This action is transitive (but not simply transitive).
The relevant invariant measure on Py has the form

(2.1) du(r) = |r|7¢ H dr; ;, d=(k+1)/2

1<i<j<k
[T, p. 18]. Let T} be the group of upper triangular matrices ¢ of the form

tl tl,]

(2.2) t= . , t;, >0, t,;€ER

Each r € P, has a unique representation r = t't, t € T}, so that

(2.3) fr)dr = [ thdty | 5= dty. .. [ tpf(ts,. .. ts)dtg,
froe=Jen Jawn. ]
f(tl,...,tk)=2’“/.../f(t’t)Hdti,j

i<j

—00 — 00
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[T, p- 22], [M, p. 592]. To the cone P}, one can associate the Siegel Gamma function

(2.4) Tr(a) = /e‘tr(T)|r|a_ddr, tr(r) = trace of r.
P

Using (2.3), it is easy to check that this integral converges absolutely for Rea >
d — 1, and represents the product of usual I'-functions:

1 -1

(2.5) Ti(a) = n* ¢ D/4D(@)D (e — 5)---Tla— kT).
For the corresponding Beta function we have [Herz, p. 480]

R
26) [ R = 1P~ = By, ) Rp

0

L () Tk (B)
Bi(a,f) = ————=; Rea,Refs >d—1.
k(e B) Te(at B) B

2.2. Garding-Gindikin fractional integrals. Let Q = {r € P;: 0 < r < I}} be
the “unit interval” in Py, f € L'(Q). The Garding-Gindikin fractional integrals of
f of order « are defined by

(2.7) 1
(I£1)(r) / f@)lr —s|*~4ds, (I2f)(r) = Fia) / f(s)|s = r|*~4ds,
where r € Q, d = (k+1)/2, Rea >d — 1. By (2.6),
Iy,
a |Ik - 8|a
28) / (121 dr = 5 1 / s { " L as

and therefore (I f)(r) are well defined for almost all » € Q. The equality (2.6) also
implies

(2.9) .lf =155, feL'(Q), Rea,Ref>d-—1,

(the semigroup property). Denote

(2.10) Dy =det (’rh"j 65—1]) s Mij = { 1/2 gz ;;7 D_=(-1)¥D,.

For m € N and sufficiently good f,

(2.11) DPISf=I¢"™f, Rea>m+d—1

(see, e.g., [Ga]). Let D(Q) be the space of infinitely differentiable functions sup-
ported in Q. For w € D(Q), the integrals I§w can be extended to all a € C as entire
functions of a, so that I¢ 5w = IY™Pw and DTIfw = I$DPw = IS ™w for
all a,8 € C and all m € N [Gi]. This enables us to define I f for f € L'(Q) and
Rea < d—1 in the sense of distributions by setting

(12f,w) = / (12w dr = (1,T55), w € D(Q).
Q
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Note that explicit construction of analytic continuation of I§w is rather complicated
if w does not vanish near the boundary of @ (cf. [G4], [R1], [R2]). In order to
invert ¢ = I¢ f for f € L*(Q) and Rea > d — 1 in the sense of distributions, let
meN, m—Rea>d—1. By (2.9), I f = I"" %y, and therefore

(2.12) /f w(r)dr = (DI %p,w) = (¢, [T *D"w).

2.3. Stiefel manifolds. Let V,, , = {x € M,, 1, : 'z = I);} be the Stiefel manifold
of orthonormal k-frames in R™. For n = k, V;, , = O(n) represents the orthogonal
group in R". The Stiefel manifold is a homogeneous space with respect to the
action V. 3 = vz € Vo i, v € O(n), so that V,, , = O(n)/O(n—k). The groups
O(n) and SO(n) = {y € O(n) : det (y) = 1} act on V,  transitively. It is known
that dim V,, , = k(2n — k — 1)/2. We fix invariant measures dz on V,, j and dvy on
SO(n) normalized by [,, dz = on (see (1.5)) and fSO(n) dy =1.

Lemma 2.1. ([Herz, p. 482}, [GK, p. 93], [M, p. 66]). Almost allz € My, n >k,
can be decomposed as

T = vr1/2, vEVuk, r=x'c€P;r sothat dr= 2*k|r|("*k*1)/2drdv.

Lemma 2.2. Let k and £ be arbitrary integers satisfyingl <k <f<n-—1, k+£<
n. Almost all x € V,, ;; can be represented in the form

url/
(213) z = [ ’U(Ik _ T)1/2 ] ) u € w,k; (S Vn—ﬁ,k; r e Pka
so that
wn [ s [ Joe [ ([ ])
k-1 —l—k—1
(2.15)  dv(r) =2 Fp | —rfdr = K# 5= %'

Proof. Let us check (2.13). If z = [ Z ] € Vor, a € My, b€ My_pp, then

It =2’z = a'a + b'b. By Lemma 2.1, a = ur'/2. Hence b'b = I} — r, and therefore
b=uv(Iy —r)"/2. In order to prove (2.14) we write it in the form

(2.16) / f(z / I, — d'al’da / f ([ ol _“a,a)1/2 ]) dv

0<a’a<Iy Vo—t,k

and show the coincidence of two measures, dz and dz = |I}, — a'a|’dadv. Consider
the Fourier transforms

Fi(s) = / etr(is'z)dr and Fi(s) = / etr(is'z)dz,
Vn,k Vn,k
s € My, etr(A) = eT () Following [Herz], it suffices to show that F; = F,. To
this end we employ Bessel functions A (r) of Herz for which

1
(2.17) / etr(is'z)dr = 2k7r"k/2A(n,k,1)/2(Zs's).

Va,k
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Let

_ S1 _ a . .
§ = [ 5 ] , T= [ o(Iy — d'a)/? ] 3 81 €My, 52 € My_pp; a € My

Then s'z = s\a + sho(Ix — a’a)'/?, and we have
Fy(s) = / etr(isha)|Iy — a'a|’da / etr(isho(I — a'a)'/?)dv.
a'a<ly Va_ek

By (2.17) (use the equality tr(ishvR) = tr(iR"1RshvR) = tr(iRshv) with
R = (I, — a'a)'/?) the inner integral is evaluated as

1 1
2k7r("*£)k/2A5(ZRs'232R) = 2k7r("*£)k/2A5(Zs'232R2)
(the last passage holds due to invariance As(R™'rR) = As(r)). Thus
1
Fy(s) = / etr(isia)p(a'a)da, ¢(r) = 28x(n—Ok/2|, —a'a|5A5(Zs'232(Ik —r)).

a'a<lI

The function F5(s) can be transformed by the generalized Bochner formula

| etivaela'ada = x/2g(Gy),
mtl,k
9(A) = [ AXAn)rPe(r)dr, A= ——F—, y €M

Pk
[Herz, p. 493], that yields

I,
1 1
Fao) = 2422 [ A, (Gstoan) " As(Gshsalle = )| I = ',
0

v, ¢ being defined by (2.15). This integral can be evaluated using the formula (2.6)
from [Herz, p. 487]. The result is

1 1
Fy(s) = 2k7rnk/2A(n—k—1)/2(Z(31131 + 8582)) = QkW"k/QA(n—k_np(ZS's)-
By (2.17), the latter coincides with Fj(s). O

Remark 2.3. The assumptions k+ £ < n and k < £ in Lemma 2.2 are necessary for
absolute convergence of the integral fOI'“ in the right hand side of (2.14). It would
be interesting to prove this lemma directly, without using the Fourier transform.

Lemma 2.4. Letx € Vy , y € Viu; 1 <k, £ <n. Then

1 1
(218) [ s = [ ey
On,k On,t
n,k Vn,z
Proof. We should observe that formally the left hand side is a function of y, while
the right hand side is a function of z. In fact, both are constant (see Lemma 2.5).

Let G = SO(n), g € G, g1 = g~ '. The left hand side is
/ f(y'gz)dg = / f((g1y)')dgs
G G
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which equals the right hand side. O
We shall need a “lower-dimensional” representation of integrals of the form
(2.19) Iy = / f(A'z)dz, AeMyp; 1<k l<n-—1.
Vak

For k = £ = 1 such a representation is well known.

Lemma 2.5. Let A € My, R=AA e Py, k+£4<n, v=(k—-4{-1)/2,
d=(Mm—-k—0-1)/2. If k<, then

Iy,
(220) 1= 22 it = ritdar [ R ur')du.
0 Ve

Ifk>t c=2"%0, 100 ke/Ons, then

I,
(2.21) Iy = C/|T|7|Ig —7‘|6dr / f(R1/2T1/2u')du
0 Vi,e
R
(2.22) = C|R|_6_k/2/|7“|7|R—r|5dr / f(r1/2u')du.
0 Vi,e

Proof. By Lemma 2.1, a = vR'Y?, v e Vn,e, and
Iy = / F(RY*v'z)dx = / f(R?w)x)d, we = [ él ] .
Vn k Vn k
Now (2.20) follows by Lemma 2.2. If k > £, then (2.18) yields

;= Ik / F(RY2'z)dv = Z"—'; / FRP (i) )dv,  wi = [ ék ] '
Vit ’ Ve

On,t

We apply Lemma 2.2 again, but with k¥ and £ interchanged. This gives (2.21). The
proof of (2.22) is as follows.
o= 2[R ey

Vn,l

On,t

!
(2.16)  OTnik VRE 12, a
T Ong / e = a'afda / / (R (wk [ v(Ip — a'a)'/? D ) w

o<a'a<ly Viek,t

= ImhkOnoki I — a'al’ f(R"/*d)da
On,t
o<a'a<ly

(set s = aR'/? € My, ¢ so that ds = |R|*/?da M, p. 58])
— Un,k o.nfk,l o ) !
= 7071[']%'6_“6/2 / |R — s's|°f(s")ds.
’ o<s's<R
It remains to apply Lemma 2.1. a
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2.4. The Grassmann manifolds. Analysis on the Stiefel manifold V,, j includes
functions on the Grassmann manifold Gy, = Vi1 /O(k). The “points” of G, 1, are
k-dimensional subspaces of R”. Given ¢ € V,, ;, we denote by {2} the subspace for
which columns of x serve as a basis. Note that n = {z} € G, ;. In the following
nt € G, nk designates the orthogonal complement to 7 € G, k. A function f(x)
on Vy 1 is O(k) right-invariant if and only if there is a function F'() on Gy, x so that
f(x) = F({z}). We endow Gy, with the normalized O(n) left-invariant measure
dn so that

(2.23) i flz)dz = /F(n)dn.
" Va,k Gn,k

2.5. Invariant functions.

Definition 2.6. Let p € O(n —{), g, = [ 8 2 ] € O(n). A function f(z) on
Vae (F(n) on Gry) is called £-zonal if f(g,x) = f(z) (F(g,m) = F(n)) for all
peOn—L)andx € Vo (n€ Gpyi).

Lemma 2.7. For k + £ < n the following statements hold.
(a) A function f(x) on Vi is £-zonal if and only if there is a function fi on

My i such that f(z) = fi(o)z), op = [ 0 € Vo

I,
() Let k > £. A function f(z) on Vy i is £-zonal and O(k) right-invariant

a.e.

(simultaneously) if and only if there is a function fo on Py such that f(z) =
fo(s), s = oyxa'oy = o Przo0. One can write fo(s) = fi(sY?uh), uh =
[0¢x(k—e), Ie], where fi is the function from (a).

(¢) Let k > L. A function F(n) on G,y is £-zonal if and only if there is
function Fy (or Fg- ) on Py such that F(n) *= Fy(s), s = a}Pryoy (or F(n) =
Fg-(r), r =o}Pryiop, r+s=1p).

Proof. (a) Let f be f-zonal. We write xz = Z ] , 4 € Mp_rk, b € Myy.
By taking into account that k + £ < n, one can apply Lemma 2.1 which gives
a=vs"? veEV, 4k, s =aa=1I; —b'b, so that pa = pvs'/?. Let

Iy,

ry € SO(n —¥£) sothat r,:vg= [ 0 :
n—k—£) xk

B2

We set p =r;'. Then
s =[5 ) = ([ ]) = 50 = st

The converse statement in (a) is obvious.

(b) By (a), f(z) = filoyz) = fi((z'o¢)'"), and Lemma 2.1 yields 2’0y =
us'’?, u € Viy, s = ojaza’op. Let ug = [ O(k}f)xe ], r. € O(k), so that
ryuo = u. Since f is O(k) right-invariant, then

f) = flary) = filogara) = fi((rya'oe)') = fi((ryus'/?))
Fi((uos'?)") = fi(s?ug) = fo(s).

The converse statement is obvious.
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(¢) Let x € Vo, and y € Vp, —k be orthogonal bases of n and n* respectively,
ie. n = {z} = {y}t. The functions 9(z) = F({z}) and ¥ (y) = F({y}*) are
{-zonal. Moreover, 9 (¢1) is O(k) ( O(n — k)) right-invariant. Hence the result
follows from (b). O

Lemmas 2.7, 2.5, and the equality (1.5) imply the following
Lemma 2.8. Let 1<k<n-—1, 1</{<min(k,n—k). Denote
(2.24)  du(s) = |s|"|I — s|°ds, y=(k—£-1)/2, d=(n—k—-£-1)/2,

c=T¢(n/2)/Te(k/2)Te((n — k)/2).
(i) If f € LY (Vo) is €-zonal and O(k) right-invariant, then for almost all z,
f(x) = fo(s), s = opxz’oy, and

I,
1

(2.25) p— flx)dz = c/fo(s)d,u(s).
RV 0
(ii) If F € L*(G,, 1) is £-zonal, then for almost alln, F(n) = Fy(s), s = o,Pr,0y,
and
I,

(2.26) /'Fwwn=c/Fu@mA@.
Gp ke 0

This lemma proves part (i) in Theorem 1.1.

3. AVERAGING OPERATORS

Suppose that 1 <k < k' <n -1, k+ k' <n. We set G = SO(n),
- =17 0 _
K—{pEG.p—[O Ik]’ v € SO(n k)},

K'Z{TEG:T:[ ], aeSO(k’),/o’eSO(n—k’)},

a 0
0 B
so that K and K' are isotropy subgroups of the coordinate frame zy = [ I(l ]
and the plane & = Re; + ...+ Regr respectively. The corresponding normalized
invariant measures will be denoted by dp and dr. Given z € Vp, i, £ € Gp i, let
9z € G and g¢ € G be such that g,z90 = 2 and g¢§o = §. For f : V,;, — C and
¢ : G — C, we denote fe(z) = f(gex), pa(§) = ¢(928)-

Letr € [0,I;] = {r € P : 0 < r < L }U{0}U{Ix}, 2, € Vi i be the frame (1.10)
and g, : To — z, be the matrix (1.11). Note that g, € O(n). Indeed, by taking
into account that matrices r'/2 and (I —r)'/? commute (they are diagonalizable
by the same orthogonal transformation; see the proof of Theorem A9.3 in [M, p.
588]), we get gl.gr = L.

We introduce the following averaging operators:

(3.1) (Mﬁ@=/MmMﬂ(W@@=/%Wf®@
J

K
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Lemma 3.1. For 1 <k<k'<n-—1, k+k' <n,
(32) | eounne©i =1 [ r@0ne@d
el n,k Vi

provided that either of these integrals converges for f and ¢ replaced by |f| and ||
respectively.

Proof. The left hand side is

/ o(960) (M ) (96.)dg = / dr / o(960) (979,50} dg

G

G
I[ dp K/ dr G[ (96 F(gT9rp"20)dg
- /f(/\:co)d)\IZgo()\pgr_lfo)dP

G

as desired. O

Lemma 3.2. Suppose that 1 <k <k <n-—1, k+ k' <n, and let dv(r) be the
measure (2.15) with £ replaced by k'. Then
I
63 [ J@dr=ovkonwn [(LEIW), VEE G
Vi

0

I
G [ w©d=TEEE [anp@ane), Vo€ Vi
n,k
Gn,kl 0

Proof. Replace in (2.14) £ by k', f by fe and set

_ O(k'— k) xk _ O(n—k'—k)xk
u=a«a |: I ) V= ﬂ I )

a € SO(K'), B € SO(n — k'). Integration with respect to dadf (instead of dudv)
gives (3.3). Let us prove (3 4). Denote the left hand side of (3.4) by I and write it
as I = [, p(g)dg where ¢(g) = [, va(pg~"&)dp. Since @ is K right-invariant, one
can identify it with a certain function 9 on V,, ; = G/K so that ¢(g) = 1(g=o).
By (3.3),

1 , ,
1= [ y(e)de = TEAInkk / / B(rgrzo)d
On,k On,k
',k

where the inner integral reads

/@(Tgr)dT = /dT/cpz(ngIT_1€o)dp= /wz(pgflé“o)dp

K’ K’ K K

Thus we are done. O
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Let us introduce another averaging operator on V;, , which serves as an analogue
of the spherical mean. Assuming 2k < n, given a k X k matrix a such that a'a €
[0, It], we set

(35)  (Maf)(z) = — / f$<[“(fk‘“'a)”2]> du, eV

On—k,k a
Va_k,k

This can be written as fw,y:a f(y)do,(y) where do,(y) designates the corresponding

normalized measure on the “section” {y € V,,  : 'y = a}.
Lemma 3.3. (i) For z,z € Vp i,

(3.6) / Fo(p2)dp = (M. ) (@).

K
(ii) Let f'(z) = f(xy), <€ O(k). Then

(3.7) Moy [ = Maf7.
(iii) If f is O(k) right-invariant, then

(3.8) Mgy f = M.f, r? = xz2'zo € [0, It].

Proof. (i) We write

z= [ zl ] , 20 =xpz, 21 =u(ly — 22)% we Vo k-
2
Then
! 1/2
2
K K
which gives (3.6).
(if) We have
(3.9)
u(ly —d'a)'/? _ v(' (I — d'a)'/?y)
[ ([ E ) a= [, - o,
Vn—k,k Vn—k,k

v = uy. Since 7/ (I — a'a)*/?y = (I — v'a'ay)'/?, (3.9) imples M, 7 = M, f.
(iii) By Lemma 2.1, 25z = (2'z¢)' = (vr)’ = rv', v € O(k), and (3.8) follows
from (3.7). O

Lemma 3.4. Let f € LP(Voi), || - llp = | - llr(vii)s 2k <.
(a) If1<p< oo, then supgcgracr, [IMafllp <I1f]lp-
() If1<p< oo, then lirrll [|Maf = fllp = 0.
a—>1g

(¢) If f € C(Vpi), then Myf — f as a = Ij, uniformly on Vi, .
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Proof. For G = SO(n), we have ||f||} = on||f(92)l|1s(g), V2 € Vn,x- Hence, by
the generalized Minkowski inequality,

1/p
IMaflly = (ons / (Mo f)(go)Pdg)
_1y1/2 1/
- L [ )
Un k.k a
n k,k
< / / Fla(dg) " du = |51l
Un Ick
_ A1) 1/2
Let us prove (b). Denote 2z, = [ u(l aa @) ] . As above,
01/,’;
Maf = fllo < 22 [ 1£(g22) = Fgo0)l|zs
’ Va—k,k
1/p _ Iy
(3.10) =0 17 (9720) = F(gz0)llLeydys  w=1] :
(n—2k)xk
SO(n—Fk)
Replace gy — g under the sign of the norm and denote
a 0 (Iy—da)/? .
(311) Aa = 0 In—2k 0 ) f = f(g.CL'o)
—(Iy —d'a)'?> 0 a

Then z, = A,%o, and the integral in (3.10) can be written as || f(gAs) —f(g)lle(G).
The latter tends to 0 as a — I, (see [HR, Chapter 5, Sec. 20.4). The statement (c)
follows directly from (3.5). O

Lemma 3.5. Let 1<k <n-—1, 2k <n, A=(n—2k—1)/2. For any x € Vp,
Iy,

(3.12) /f _ In- ’““/uk r A=Y/ 2dr /(Mm,l/zf)(x)dfu.
0

O(k)

If f is O(k) right-invariant, then
(313) / Fly)dy = Tk Tk / = P2 (Mo e ) )

Proof. By making use of (2.14) with £ = n— k and r replaced by I}, —r, the integral
I=[, . f(y)dy can written as

I=2" k/|Ik M 1/2/(1“ / fz([ I’“_lﬁ)l/2 D du.
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This coincides with (3.12). In order to derive (3.13) from (3.12), we make use of
(3.8) and write M,,,1/2 f as M,,,ry1/2 f- Then we interchange integrals and replace
vrv' = r. O

Remark 3.6. The case a = 0 in (3.5) is worth mentioning separately. In this case
1 u
Mof)(@) =0, 1k an_M fe ([ 0 ]) du averages f over the set of all k-frames

lying in the (n — k)-plane {z}+. Thus (M, f)(z) is the Radon transform of the
form (Rf)({z}1) (see definition in the next section).

4. RADON TRANSFORMS

Definition 4.1. Let x € V4, £ € Gy, 1 < k < k' <n—1. For sufficiently good
functions f(z) and ¢(£), the Radon transform (R f)(£) and its dual (R*y)(x) are
defined by (3.1) with » = I;. A simple calculation gives

1 U
(a.1) ®© = [ 5e(] 5 ]) aw
Ok k
(42) (R*0)(z) = [ galpoi"a)dp, K =SO(m~b)
K
where
Iy, 0 0 0
B | o o 0 I
(4'3) gk = gT‘lT‘:Ik = 0 0 In_w—r O >
0 —1I, 0 0
o Ok —k) xk
gr9x = In and gk:xo=[Ik]—> I .
O(n—r"yxk

In (4.1) f is integrated over all k-frames lying in the fixed k’-subspace £. The dual
transform (4.2) averages ¢ over the set of all k’-subspaces containing the k-frame
x.

The Radon transforms (4.1), (4.2) can be represented in terms of functions on
Grassmannians. Let £ € Gnpr, 1 € Gk @n(&) = ¢(958), Fe(n) = F(gen) where
gy € G and g¢ € G satisfy g, : o = {20} = 1, ge : {o = & (see Sec. 2.4). Assuming
f(z) = F({z}), from (4.1) and (4.2) we get the following traditional definitions:

(4.4) mmwz/&wwz/Fwwmm
R*' ncé

(4.5) <#mw=/%mfw@=/mwm@,
K £Dn

dmy(n) and dmy(€) being the relevant normalized measures. Clearly,

(4.6) (RF)(€) = (RAE) and (R*¢)({z}) = (R*p)(2).
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By Lemma 3.1,
(@) | comned= / £ @)(R* ) ),
G Vo k
(48) / P(€)(RF)()de = / F(n)(R* o) (n)dn.
Gt Gk

These imply

(4.9) / RAE©dE = —— [ f@)ar, / (R*0)(@)de = on / P(€)dE,

On,k
n, k! Vi, ke Vi, k n,k’

@) [ ®R©i= [ Foa, [ ®oma= [ e

n, k! n,k n,k n, k!
Thus the Radon transforms (4.1), (4.2), (4.4) and (4.5) are well defined almost
everywhere for all integrable f, F' and ¢.

Consider an important special case when f, F' and ¢ are £-zonal (see Definition
2.6). As we shall see, in this case the Radon transforms and their duals enjoy Abel
type representation in terms of Garding-Gindikin fractional integrals associated to
the cone Py. Assuming & € Vo i, £ € Gppr, 1 <k <k’ <n —1, we denote

oy = [ g ] €Vien  a=(K—k)/2,

k=4 -1  _ n—kK -4 -1 6_k’—k—£—1_
- 2 b ’Y - 2 ? - 2 b)
s =oyza'oy, S =o0,Preoy; r=I—s; R=oPreiop=1—5.
Theorem 4.2. (i) Let f(z) = fo(s), fo(s) =|s|"fo(s), 1 <€ <k —k. Then
c1|S|70 R (18 fo)(S), if £<Fk,

411) (R =
C2 f [T, — tl°|t]7dt [ fo(S*2utu'SY2)du if £> k;
Ve,k

_ Le(¥'/2) _ o9—k,_—tk/ Ty (K'/2)
c1 = T (/2)° e =2"Fx Z—Fk((k’—é)/2)'
( (ii; Let o(€) = @o(R), ¢o(R) = |R[7¢o(R), 1 < £ < min (k,k' — k). Then
4.12
& |r[~0=(=K)/2(1960)(R), ifl<n—k,

®R@ =1 1w _
é [ |Inw—RP|RYAR [ @o(r*/?uRu'r'?)du if £ >n — k',
0

Ven—i!

S Ff((n - k)/2) Go = 2k'7n,n_€(k'7n)/2 F"*k'((n - k)/2)
Te((n—k)/2) ™ Ty x((n—k—=10)/2)
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Proof. (i) By (4.1),

Rf)(.f):akll’k /f(gg[g])duzakll,k /fo(zuz;)du, zuzaggg[g].

k! Lk Vk’,k

Denote
ai

as ] ) a1 € My e, a2 € My_pr ¢-

azgglagz[

Then 2, = aju, and one can write (use Lemma 2.1)

1

(413 (RAE = — m¢wmwiaw /nsmmmwm)

Vi & Vi &

where
! o Ik’ 0 —1 _ /P =9
@141 = 0yG¢ 0 0 g§ O¢ = 0,FTe0p = 0.

Now Lemma 2.5 yields the following equalities. In the case £ > k:

mﬁ@—“*k/u mmw/hsWWwwm
In the case £ < k:

Ok'—k,0 Ok,¢
(RF)(E) = ﬂ@ﬂwwﬂ/wsumm>
By (1.5) and (2.7), these equahtles 1mply (4. 11)

(ii) By (4.2), (R*¢) chp 92p"" g5, €0)dp. In our case (gzp~"g; " &0) =
wo(o,Prroq), 7= (gop™* g,c L¢0)*, and therefore

X -1 - - 0 0
(4.14) (R*¢)() = [ wo(oygep™" 9 "Presgrpg; oe)dp, Prey = :
0 0 0 In—k’
K
Multiplying matrices, we get

0 0 0 0
. o I 0 0 |ar
9 Preg e =10 0 I_. . 0 A,
0 0 0 0

so that the expression in brackets in (4.14) reads y'p ' Apy where y = g, loy € V4.
Let us represent y in the form (2.13). To this end we make use of Lemma 2.2 with £
replaced by n — k and & replaced by £. In new notation the assumptions of Lemma,
2.2 read 1 < £ < min (k,n — k), and we get

1/2
o vr
y= [ UQ(Ik —T)1/2 :| ) V1 € ank:,f: Vg € Vk,l:

I, O 0 0 _
r = yl|: Ok 0:|y:-[€_yl|:0 Ik]yZIe—Uégmioné)gwer

= I —opr'o,=1I; — s.
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Let
]\2[0 0

. . Opr— Y
0 I = ToZy, To= [ (k'—k)x(n—k') ] € Ve km—k-

n—k'

:| (n—k)X(n—k)
Then y'p~'Apy = r'/2v} p' Apvir'/? = r'/20} p' 5o & pvrir'/?, and (4.14) yields

(R*¢)() = / o (r'/2, p' ot purr/2)dp
K

1
(4.15) == — / wo(r 1/2u’1x0x0vlrl/2)dv1
e Va—k,e
(2.18) 1 Py . 1/2
= R po(A'EZ'A)dE, A=wvr'" €My ks
n—k,n—k’

This integral has the form (2.19), and Lemma, 2.5 gives the following equalities. In
the case n — k' < £:

I, .1

(R*)(2) = gt / |R[I|I, 1 — R%dR / po(r'/*uRu'r'/?)du.
n—k,n—k’
Vin—w

In the case n — k' > ¢:

X On—k' £ Ok' — s
(R9)(a) = gro ke / IRFIr - R go(R)AR

Owing to (1.5) and (2.7), these coincide with (4.12). O

Let us reformulate Theorem 4.2 for functions on Grassmannians (see (4.4), (4.5))
by taking into account (4.6) and Lemma 2.7(c). We suppose that F' and ¢ are £-
zonal integrable functions on Gy, and G, respectively, 1 <k < k' <n —1, and
keep on the same notation as in Theorem 4.2.

Theorem 4.3. (i) If1 < £ < min (k, k" — k), then there is a function Fy(s) on
(0, 1) such that F(n) *= Fy(o}Pr,o,) and

(4.16) (RF)(E) = ailS| 5+ 1[I Fo())(S), S = o}Preor.

(i) If1< ¢ <min(n— k', k k' —k), then there is a function oy (R) on (0,1;)
such that (€)= pg (04Preoy) and

(4.17) (R*@)(n) = &lr|~ >~ Rfipg (R)](r), r = o}Pryuoe.

Now we consider the general (not necessarily zonal) case. Let M} and M, be
averaging operators defined by (3.1) and (3.5). For fixed z € V,, 1, we denote

(4.18) p(s) = op ils| 7/ / Mapfrdy,  f1(z) = f(z7).
o(k)

If f is O(k) right-invariant, then (s) = |s|~/?M,1/2 f.



RADON INVERSION ON GRASSMANNIANS 19

Lemma 4.4. Let 1<k <k <n—-1, a=(k'—k)/2. If 2k < k', then
L (K'/2)
L (k/2)
where I is the Gdrding-Gindikin fractional integral associated to the cone Py.

Proof. By (3.1), (4.1) and (3.6),

(MRf)@) = o [ / o (o | 5 ]) o
Vi

'k

(4.19) [r|* Y2 MRS = (I9)(r), r e (0,Iy),

(4.20) .

Ok’ k

/ (Mo ) (@)du

20 aw) =it | b | =at| b | =diu w= | O | e

If 2k < k', Lemma, 2.5 yields

R
M:Rf = % |R| (k’ k—1)/2 / |R _ 8|(k’—2k—1)/2|8|—1/2d8 / Msl/Z’yf d’Y
Ok k
0 O(k)

y (3.7), (4.16) and (1.5), this gives (4.19). O

Remark 4.5. For k = 1, the equality (4.19) is due to Helgason [H1], [H2]. The
proof presented above generahzes the argument from [Ru2, Lemma 2.8(i)] to the
matrix case. The obvious assumption k' > 2 in [H1], [H2] transforms to k' > 2k.
For k' < 2k, the fractional integral in (4.19) diverges.

The equality (4.19) points up the way to inversion formulae. First we have to
eliminate the artificial restriction k' > 2k.

Lemma 4.6. Let f € L'(Voi), ©(&) = (RAE), € € Gur, 1 <k <k <
n—1; k+k <n. Then

(n—k")/27) (K" —k—1)/2 7 r* Lr(k'/2) ((n—k)/2
(4.22) Iy [Is] Myl = (k/2)I ).

Proof. For k' > 2k, (4.22) follows immediately from (4.19) due to the semigroup
property of fractional integrals. Once the result is known, we shall prove it in the
maximal range of parameters. The idea is to use (2.2) twice, from right to left and
from left to right, with different parameters. Owing to (4.20) and (4.21), by Lemma
2.1 we have

MiRf = / Maof du =

Ok k

/ M31/2,U uf du
Ok k

k .k

(s=aja, ve Vk/,k)

M31/2v uOfd’l) Ug = [
Vit &

v

Ukl
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Thus the left hand side of (4.22) reads

1
ok Tr((n —k')/2)

/|r—s| n—k'—k— 1)/2|8|(k —k=1)/2 44 / M,1/2y uofdv-

Vk’ k
By (2.22) (with k ~ k' and £ ~ k), this expression can be written as

ok Tk |r|(n—k—1)/2

(4.23) / Maryuo f dy,

Okt k Onkt On—k' k Le((n — k') /2)

with A € 9, 1, such that A’A = r. Then we set

I
Y = Yo, v € SO(n), Z/0=[ 8 ]eVn,ku

and integrate in «y. Since youo € V1 we have

(4.24) / Muaryuo f dy = i / M aryyouo fdy = Un—k / My, f dz.
n,k’ SO(n) Jk
Now we plug (4.24) in (4.23) and apply (2.22) again (with £ = k). This gives (4.22).

The conditions for k, k', and n in the lemma agree with those needed for application
of (2.22). d

In a similar way one can extend the range of parameters in Theorems 4.2, 4.3.

Theorem 4.7. Let f(x) and p(£) be £-zonal integrable functions on Vy i, and Gy g
respectively; 1 <k < k' <n—1,1<{¢ < min(k,n —k'). Suppose that f is O(k)
right-invariant, and set

s=opxz'oy, S=o,Preoy, r=IL—s, R=I-3S, al:[?]
a.€.

(i) There exist functions fo(s) and Fo(S) on (0,1I;) such that f(x)

(R) (&) *= Fo(S), and
e L (K )2) L,

(4.25) IS KD Ry(S)] = ((k//2)) 1 |5 26D o (5))

(ii) There exist functions po(R) and ®o(r) on (0,1;) such that p(€) *= o(R),
(R*p)(z) *= ®o(r), and

k/2( p|(n—k—f—1)/2 (( k)/2) ¥ 2| R| ¥ - 1/2,

Proof. (i) By Lemma 2.7(b), f(z) can be wrtitten as fo(s). Owing to (4.13), for
any v € Vi ¢, Lemma 2.1 yields

RNHE = / Fo(SY 20 uu/vSY?)du

Ok’ k
Vier Ik

/ fo( Sl/2v'u0u vSY?)dv = Fy(s), ug = [ 'g“ ] € Ve k
Ukl
Vir 4

(2.18)
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Hence by (2.22) (with k replaced by k'), the left hand side of (4.25) can be written
as

1
op e Te((n —k')/2)

t
/|t_S|(n—k’_e—l)/z|S|(kl_e_1)/2ds/fo(sl/zvluouavslﬁ)dv

0 Vk’,l

¢ (n—t—1)/2
(4.27) 2 one [t

/ fo(A'yugugy' A)dy

Ok’ £ On,k! On—k' £ Fg((n - k‘l)/Z)V
n, k!

provided k' + ¢ < n, A € M, A’/A =1t € P;. As in (4.24), the integral in
(4.27) can be replaced by (op,k /on k) an , fo(A'22' A)dz and transformed by (2.22).
Proceeding as in the proof of Lemma 4.6, we get (4.25).

(ii) Existence of g satisfying ¢(£) = ¢g(R) follows from Lemma 2.7(c) provided
¢ < min (k',n — k'). By (4.15), R*p has the form ®¢(r), and by (2.22) (with k
replaced by n — k), the left hand side of (4.26) is represented as

|k D2 (kD) 2 / 00 (r/2 0! Fo it o172 dvs

Va—k,e

1 t
e | "
On—k,eLe(k/2) J

azm) - el [ty
‘ On—ktO0nn—k O'k’grf(k/Q) %o YZoZgy Y

non—k

where A € 9, ¢, A'A =t provided £ < min (k,n — k). The integral [, _, canbe
written as ’

(4.29) Tnn—k / wo(A'zz' A)dz.
On,n—k'
v,

n,n—k’

We plug (4.29) in (4.28) and apply (2.22) (with k replaced by n — k', 1 < £ <
min (k¥',n — k')). This gives (4.26). O

Theorem 4.7 can be easily reformulated for f(z) and (R*p)(z) replaced by the
corresponding functions on Gy, ;. This will give an extension of Theorem 4.3.

Having (4.22), (4.25) and (4.26), we can play with fractional integrals in both
sides by making use of their semigroup property. Note that it was not poosible
in (4.19), (4.11) and (4.12), because these equalities were derived with inevitable
additional restrictions.

Corollary 4.8. Let 2 € Vo, €€ G, 1<k <k <n-1, a= (k' —-k)/2
and m € N.

() If f(z) € L' Vo), (&) = (RF)(E), k+ k' <n, then form > (k' —1)/2,

Ty (k'/2

(4.30) sl M) = T T
1 being the function (4.18).

(i) If f € L' (Vo) and o € L' (G, 1) are £-zonal, 1 < £ < min (k,n — k'), and
f is O(k) right-invariant (i.e. f = fo(s), ¢ = @o(R), Rf = Fo(S), R*p = ®o(r);
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see Theorem 4.7), then form > a+ (£ —1)/2,

- s Ty (K'/2) ——
4.31 Mo (k'—¢ 1)/2F — 4 m (k—t—1)/2
( 3 ) + [|S| 0(5)] Fg(k‘/Q) + [|5| fO(s)]:
Ty((n — k)/2)
Te((n —k)/2)
Proof. Equalities (4.30)-(4.32) follow from (4.22), (4.25) and (4.26) if we apply
Ijr"_("_k)ﬂ (on Py) to (4.22), If_("_k)/Q (on Py) to (4.25), and Ijr"_k /2 (on Py)
to (4.26). If m is not big enough, the action of these operators is treated in the
sense of distributions (see Sec. 2.2). The resulting equalities (4.30)-(4.32) still
hold pointwise almost everywhere (on (0, I};) for (4.30), and on (0, I;) for (4.31),
(4.32)), because fractional integrals in these equalities are well defined and represent

(4.32) I elr| D e ()] = IR D0 (R)].

integrable functions. |
Proof of Theorem 1.2. By (4.33) and (4.18),

— Ly (k/2 mym—a a— *
439 w0 =M = P DR ).

Note that owing to Remark 3.6, 1(r) behaves like |r|~'/2 as |r| = 0, and therefore
(unlike the case k = 1) we cannot differentiate (4.30) pointwise, even if f is smooth.
Thus we have to invoke distributions. The equalities (1.13), (1.14) follow by Lemma
3.4. |

In a similar way we get the following inversion formulae for the Radon transform
and its dual in the /-zonal case:

431)  fols) = %wr“—f—””ww“[|S|“’—‘—””Fo(s)](s),
(4.35)
oo(R) = S ZED/2) by nk 1) /2 pm pma (bt 24 ()] ().

Le((n—k)/2)
These equalities hold under assumptions of Corollary 4.8(ii) and follow from (4.31),
(4.32). The formula (4.36) was exhibited in Theorem 1.1(ii).

REFERENCES

[B1] S. Bochner, Group invariance of Cauchy’s formula in several variables, Ann. of Math.,
45 (1944), 686-707.

[B2] , Bessel functions and modular relations of higher type and hyperbolic differen-
tial equations, Comm. Sem. Math. de ’Univ. de Lund, Tome Supplementaire dedié a
Marcel Riesz (1952), 12-20.

[C] F. Chatelin, Eigenvalues of matrices, John Wiley & Sons. Inc., New York, (1993).

[FK] J. Faraut, and A. Kordnyi, Analysis on symmetric cones, Clarendon Press, Oxford,
(1994).

[G] F.R. Gantmacher, The theory of matrices, Vol. 1, Chelsea Publ. Company, New York,
(1959).

[Ga] G.L. Garding, The solution of Cauchy’s problem for two totally hyperbolic linear dif-

ferential equations by means of Riesz integrals, Ann. of Math. 48 (1947), 785-826.
[GGS] I.M. Gel'fand, M.I. Graev, and Z.Ja. Sapiro, A problem of integral geometry connected
with a pair of Grassmann manifolds, Dokl. Akad. Nauk SSSR, 193, No. 2, (1970),
892-896.
[Gi] S.G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys, 19, No. 4,
(1964), 1-89.



[VK

RADON INVERSION ON GRASSMANNIANS 23

F.B. Gonzalez, On the range of the Radon transform on Grassmann manifolds, J.
Funct. Anal. (in press).

P. Goodey, Radon transforms of projection functions, Math. Proc. Camb. Phil. Soc.,
123 (1998), 159-168.

E.L. Grinberg, Radon transforms on higher rank Grassmannians, J. Differential Ge-
ometry 24 (1986), 53-68.

, Cosine and Radon transforms on Grassmannians, Preprint, 2000.

K.I. Gross, and R.A. Kunze, Bessel functions and representation theory, I, J. Funct.
Anal., 22 (1976), 73-105.

S. Helgason, The totally geodesic Radon transform on constant curvature spaces, Con-
temp. Math., 113 (1990), 141-149.

, The Radon transform, Birkh3user, Boston, Second edition, (1999).

C. Herz, Bessel functions of matriz argument, Ann. of Math., 61 (1955), 474-523.

E. Hewitt, and K.A. Ross, Abstract harmonic analysis, Vol. I, Springer, Berlin, (1963).
A.T. James, Normal multivariate analysis and the orthogonal group, Ann. Math.
Statist., 25 (1954), 40-75.

T. Kakehi, Integral geometry on Grassmann manifolds and calculus of invariant dif-
ferential operators, J. Funct. Anal., 168 (1999), 1-45.

R.J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons. Inc., New
York, (1982).

E.E. Petrov, The Radon transform in spaces of matrices and in Grassmann manifolds,
Dokl. Akad. Nauk SSSR, 177, No. 4 (1967), 1504-1507.

The Radon transform in spaces of matrices, Trudy seminara po vektornomu i
tenzornomu analizu, M.G.U., Moscow, 15 (1970), 279-315 (Russian).

M. Riesz, L’intégrale de Riemann-Liouville et le probléme de Cauchy, Acta Math., 81
(1949), 1-223.

The analytic continuation of the Riemann-Liouville integral in the hyperbolic
case, Canad. J. of Math., 13 (1961), 37-47.

B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure
and Applied Mathematics, 82, Longman, Harlow, (1996).

, Inversion formulas for the spherical Radon transform and the generalized cosine
transform, Advances in Appl. Math. (to appear).

, Helgason-Marchaud inversion formulas for Radon transforms, Proc. Amer.
Math. Soc. (to appear).

C.L. Siegel, Uber die analytische theorie der quadratische Formen, Ann. of Math., 36
(1935), 527-606.

R.S. Strichartz, Harmonic analysis on Grassmannian bundles, Trans. Amer. Math.
Soc., 296 (1986), 387-409.

A. Terras, Harmonic analysis on symmetric spaces and applications, Vol. II, Springer,
Berlin, (1988).

N. Ja. Vilenkin, and A. V. Klimyk, Representations of Lie groups and Special functions,
Vol. 2, Kluwer Academic publishers, Dordrecht, (1993).

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122, U.S.A.
E-mail address: grinberg@math.temple.edu

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM 91904, ISRAEL
E-mail address: boris@math.huji.ac.il



