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The following combinatorial problem, which arose in game theory, is solved here: To
find a set of vertices of a given size (in the ncube) which has a maximal number of inter-
connecting edges.

1. The combinatorial problem

Let C, denote the n-dimensional cube, and let V = V(C,)) be the set of
its vertices.

Forany S, 7C V, let E(S. T) denote the set of all edges connecting S
and T, and let E(S) stand for E(S, S). For any finite set 4, let |4} be the
number of elementis in 4.

Let k be a given integer, I < k < 2",

Problem 1.1. Maximize |1(S)] subject to the condition |S] = k.
Problem 1.2. Minimize |E(S, V' \ S)| subject to the condition |Si = k.

We will denote the maximum of Problem 1.1 by f,,(x) and the mini-
mum of Problem 1.2 by g, (k).

Problem 1.2 arose in game theory in connection with the Banzhaf
value (see Section 3). The intuitive meaning of the two problems is as
follows. In Problem 1.1, one is looking for a “‘closely knit” set of verti-
ces of a given size, i.e., a set with a maximal number of inter-connecting
edges. As for Problem 1.2, the object is to minimize the number of ex-
ternal connections, again for a set of ver:ices of a given size.

The two problems are equivalent, in ithe following sense.
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158 S. Hart [ The edges of the n-cube

Proposition 1.3. Let nand k satisfy 0 < k < 27. Then a set S with |S| = k
is a solution to Problem 1.1 if and only if it is a solut; wn to Problem 1.2.
Moreover,

2o (k) +g,(k)=n-k.

Proof. Let S be any set of k vertices of the n-cube. Then the total num-
ber of edges ‘ emanating” from the members of § is n - k; hence

AESN+|ES, VANSi=n-k,

from which the propositfon follows immediately.

For any non-negative integer i, let 4(i) denote the sum of its binary
digiis, i.e., the number of ones there.

We will now define a class of sets of vertices which will solve these
two problems. The definition will be by induction on the number of
elements of the set.

The set S with |S] = k is good if

(Mk=1,or

(i) 27 < k< 2*! and there is an (» + 1)<dimensional cube C,,, and a
partition of it into two vertex-disjoint r-dimensional cubes C! and C?,
such that S is the union of a good set of k — 2 vertices from C} and of
the set of all 2’ vertices of C2.

E.g., if the vertices of C,, - > denoted as 0, 1, 2, ..., 2" —1 in the usual
way (i.e., an edge connects two vertices if and only if their correspond-
ing numbers differ in the binary representation by exactly one digit),
then {0, 1,...,k — 1} is a good set of k vertices.

Theorem 1.4. Forany n and k satisrving 0 < k < 2",
k-1
L) =fky=2 h(),

i=1

and rhe maxirmum is achieved for all good sets S with |S| = k.

Theorem 1.5. For any n and k satisfying 0 < k < 27,
g,(ky=n k- 2f(k),

and the minimum is achieved for all good sets § with |S] = k.
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Remark 1.6. (i) The two theorems are equivalent by Proposition 1.3;
hence we will prove only Theorem 1.4 (in the next section).
(ii) The maximum in Problem 1.1 is independent of n.

2. Proof of the theorems

We define inductively the function F on the set of positive integefs

F(1)=0,
FK)= max (F(mY+ F(k —m)+m).
0<m<k/(2

Proposition 2.1. Let k be a positive integer, and let 2" < k < 2"*1. Then
(i) the maximura in the definition of F(k) is achieved at m = k —
(i) F(k) = 2“ ‘ h(i).

We first have io prove the follcwing lemmas.

Lemma 2.2. Forallj2 0,12 1,
-1 j*i-1

2 hi) < 23 ni) .

:=0

Proof. On both sides we have the sum of the binary digits of / consecutive
integers. The kth digit appears periodically as 2% zeroes and 2% ones. Hence
the minimum number of orncs is attained when beginning with 0, which

is true for all k, and hence proves the lemma.

Lemma 2.3. Forall 0<;j< 2", 13 0,

M

2 e E h(i) .

i=2n- 11 i=j-1-1

Proof. The proof is the same as for the previous lemma, maximizing here
the number of ones.

Lemma 2.4. Forall r > 0,
2r -1

20 h()=r-2"1.
i=0
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Proof. Each of the r binary digits is equal to one for exactly 2"~ numbers.

Proof of Proposition 2.1. For & = 1 the proposition holds.

Let k = 2" +5, where 0 < s < 2, and assume that we have proved (i)
and (ii) for all integers less than k.

First, we will prove {i), 1.e., for any 0 < m < {1k we have te show that

() Feny+ Ftk —m)+m< Fs5)+ F(2) +5 .

Case 1: m <s. Using the induction hypothesis we get that (1) is equiv-
alent to

-1 pA k-m-1
Z h(i) + E h(iy + b)Y h(i+m<
=4 i=2r
p LI |

2 h(i) + E h(i) + Z h(i)+s ,

or
k-m-1 51
E h(i}y~ (s - m)< E h(i) .
i=27
But h(i) ~ 1 =h(i — 2y forall 2" < i < 2™, hence we have to prove that
s-m-1 s-1
2 W< 2 hG),
=0 i=m

which is true by Lemma 2.2.
Case2: s<m< 2! AsinCase 1, we get from (1),

m-1 27}
Z h()+(m -5 < 2 h(i) .
=s i=2"-m+s

Since i(iy+ 1 =h(i+ 2V foralli< 2"}, andm — 1 < 271, it follows
from Lemma 2.3 that the mequahty holds in this case tco.
Case3: 2 V< m< k. Let m' =m - 2" 1; then the left-hand side of
(1) is equal to
2’—1 1 27‘ 1 -1
23 h(i) + E (h(i) + 1)+ E (i)
5~ m’ 1

+ _EO (W) + 1) + (' + 277Ny,
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By Lemma 2.4 and the induction hypothesis we get

(r-1)- 24 Fon"Y+m' +(r — 1248 F(c s’V 4c_ s+ m' 41 =
a -~ & \ess J s ‘Y B J deer &8 W e g v O XL L § § L

=(F(m')+ Fs—m)+u'y+r- 2145,
But0<m'<}sandr-2"-!=F(2"j (by Lemma 2.4); hence
Fim)+ Ftk -m)+ m< F(s)+ FQ2") + 5,

which is (1).
Hence (i) is proved, and (ii) follows immediately using Lemma 2.4,

Proof of Theorem 1.4. Let C} _, and C2_, be a partition of C,, into two
vertex-disjoint (n — 1)-dimensional cubes. Let S C V(C,), § =S n V(C,_,)
fori=1,2, k=8, k' =15). Since each vertex of C,‘,,l is connected in

C, to exactly one vertex of C2_,, we get

(2) LE(S) < |E(SYI +1E(S?) + min(k!, k2).

Assume by induction that the theorem is true for cubes of dimension
less than n; then

E(S) <€ F(4Y) + F(k?) + min(k!, k%),
and from the definition of F we get

{EWS) < F(%),
hence
1, (k) < F(k) .

If S is a good set for k, where 2" < k < 2'*! then from the definition
of a good set and applying the same arguments as above, we get

LE(S)I = |E(S 0 V(CH) + IES N VICE) + (k —2)

=Fk -2N+FQN+k -2 =F(k),

which proves the theorem.
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3. Application to game theory

Let (N, v) be an n-person simple game, i.e., N ={1, 2, ..., 1} is the set of
players,and v : 2N . 70, 1} is the characteristic function (v(@) = 0).

The player i i« a swing for the coalition SC N, i € S, if u(S) = 0 and
WS U {i}) = 1. The number of coalitions for which / is a swing is acioted
by n;, and n = L., ,. The Banzhaf value (or index) of the player i is
then §3; = n;/7 .

The work done on this concept (see [1]) has raised some problems
about the total number of swings 7.

A coalition S is winning if v(S) = 1 and losing if u(S) = 0. Let &, de-
note the number of winn’ng coalitions and k; the number of losing coali-
tions in the (simple) game (N, v); then

k, +k =20

Corollary 3.%. Let (N, v) be n simple game, and let k = k,, or k = k;. Then
k-1

i=2k-n-2 _E‘h(z‘).
i=

roof. Represent each coalition as a vertex of the cube C,; then obvious-
ly n > g,(k) and the result follows from Theorem 1.5.

Next, let p = 7/(n - 2"1). Then p is the probability of a swing, where
each pair of coalitions differing by exactly one player has the same pro-
bability 1/(n - 2"-1).

Let n> 2, and let k = min(k,,,, k,); then 2" < k < 2! for some
r<n - 2. Asbefore, m =k — 2", and we get from Proposition 2.1,

7 >g (k)=k-n - 2F(k)
=m-n+2 -n - 20Fm)+ F{Z)+ m)
=8,(2) g, ,(m)
> gn(2"}‘ =(n-r)-2.

But r < logyk and 2" > 1 k; hence

U 1 [k k
= —>= (=) - [-108, (<)) .
TN (2") ( o2 (2"))
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Since k/2" is eq '»! cither to &, /2" or to k,/2" =1 -k, /2", i.e., k/2" is
the proportion of winning or losing coalitions in the game, we have the
following corollary.

Corollary 3.2. Let (N, v,) be a sequence of simple games forn = 1,2, ...
with IN, | = n. If the proportion of winning coalitions has a limit other
than Q or 1 as n - <, then

P
1/n c.

’

where p,, is the probability of a swing in the nth game, and ¢ is a positive
constant (depending on the sequence but not on r).

This corollary implies that p, cannot decrease faster than 1/n.

Added in proof. We thank Prof. M. Perles for pointing out the following
relevant references to the combinatorial problem: L.H. Harper, Optimal
assignments of numbers to vertices, J. SIAM 12 (1964) 131--135; A.J.
Bernstein, Maximally conne:.:ted arrays on the n-cube, SIAM J. Appl.
Math. 15 (1967) 1485--1489. ‘
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