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14.1 Introduction

The simplest bargaining situation is that of two persons who have to agree
on the choice of an outcome from a given set offeasible outcomes; in case
no agreement is reached, a specified disagreement outcome results. This
two-personpure bargaining problem has been extensively analyzed, start-
ing with Nash (1950).

When there are more than two participants, the n-person straightfor-
ward generalization considers either unanimous agreement or complete
disagreement (see Roth (1979)). However, intermediate subsets of the
players (i.e., more than one but not all) may also play an essential role in
the bargaining. One is thus led to an n-person coalitional bargaining
problem, where a set of feasible outcomes is specified for each coalition
(i.e., subset of the players). This type of problem is known as a game in
coalitional form without side payments (or, with nontransferable utility).
It frequently arises in the analysis of various economic and other models;
for references, see Aumann (1967, 1983a).

Solutions to such problems have been proposed by Harsanyi (1959,
1963, 1977), Shapley (1969), Owen (1972), and others. All of these were
constructed to coincide with the Nash solution in the two-person case.
Unlike the Nash solution, however, they were not defined (and deter-
mined) by a set of axioms.

Recently, Aumann (1983b) has provided an axiomatization for the
Shapley solution. Following this work, further axiomatizations were ob-
tained: for the Harsanyi solution by Hart (1983), and for a new class of
monotonic solutions by Kalai and Samet (1983). The purpose of this
chapter is to review and compare these three approaches.

The discussion is organized as follows. The mathematical model is
described in Section 14.2, and is followed by the definitions of the solu-
tions in Section 14.3. The axioms that determine these solutions are
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presented in Section 14.4, and Section 14.5 includes some general re-
marks together with a comparison of the solutions in terms of the axioms
of Section 14.4.

It should be emphasized that this chapter includes only a minimal
discussion of the various concepts; it is intended as a summary and a
directory to the existing literature on the subject. In particular, the reader
should consult the papers of Aumann (1983b), Hart (1983), and Kalai
and Samet (1983) for extensive presentations and comments.

14.2 The mathematical model

We start by introducing the notations. The real line is denoted IR.For a
finite set I, let III be the number of elements of I, and let IRI be the
III-dimensional euclidean space with coordinates indexed by the elements
of I (when I is the empty set cP,1R<f>contains just one element, namely, cP).
We will thus write x = (Xi)iEI E IRI and, for J C I, xJ = (Xi)iEJ E IRJ
(hence, x = Xl; note that we use the symbol C for weak inclusion). Some
distinguished vectors in IRI are: the origin 0 = (0,. . . , 0); and for every
J C I, its indicator IJ> with 1~= 1 ifi E J and 1~= 0 ifi ~ J.

For x and y in IRI, the inequalities x ~ y and x > yare to be understood
coordinatewise: Xi ~ yi and Xi > yi, respectively, for all i E 1. The non-
negative, the positive, and the nonpositive orthants oflRI(defined by the
inequalities x ~ 0, x > 0, and x:s; 0, respectively) are denoted IR~, IR~,
and IR~.For A and x in IRI,we write A . x for the real number ~ iEIAiXi
(their scalar product), and AX for that element oflRI given by (AX)i = AiXi

for all i E 1.
Let A be a closed subset oflRI; its boundary is denoted aA. For A in IRI,

the set AA is {Aa Ia E A}; for another closed subset B oflRI, A + B is the
closure of {a + b Ia E A,b E B}. Note that A - B will denote the set dif-
ference {x E A I x ~ B}.

A coalitional bargaining problem - c.b.p., for short - is an ordered pair
(N, V), where N is a finite set and V is a set-valued function that assigns to
every S C N a subset V(S) oflR s. The set N is the set of players; a subset S
of N is a coalition; and V is the characteristic junction.

The interpretation is as follows. Let A be the set of all possible out-
comes. For each player i E N, let ui: A -+ IRbe his utility function. Fi-
nally, for every coalition S eN, let A(S) C A be the set of outcomes that
can be reached by S. Then, V(S) is the set of utility payoff vectors that are
feasible for S, namely,

V(S) = {(ui(a»iES E IRsIa E A(S)}.
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In game theory, such a pair (N, V) is called a game in coalitional (or,
characteristicfunction)form with nontransferable utility (or, without side
payments).

The set N of players will be fixed throughout this chapter; a c.b.p. will
thus be given by its characteristic function V. The space r:; r(N) of all
c.b.p.'s that we will consider consists of all members of Vthat satisfy the
following conditions:

(I) For every S C N, the set V(S) is
a. A non-empty subset of IRI,
b. Closed,
c. Convex,
d. Comprehensive (i.e., x E V(S) and x 2: y imply y E V(S».

We will also consider the following additional regularity conditions:

(2) The set V(N) is
a. Smooth (Le., V(N) has a unique supporting hyperplane at

each point of its boundary aV(N»,
b. Nonlevel (Le., x,y E aV(N) and x 2: y imply x = y).

(3) For every S eN, there exists x E IRNsuch that

V(S) X IR~-s c V(N) + {x}.

(4) ForeverySC Nand every sequence {Xm};;'-l C V(S) that is non-
decreasing (Le., xm+12: Xmfor all m 2: 1), there exists y E IRSsuch
that Xm :::;;Y for all m 2: 1.

Denote the set of all V in r that satisfy (2) by r 1, those that satisfy (4) by
r2, and those that satisfy (2) and (3) by r3'

Conditions (1) are standard. Condition (2b) is a commonly used regu-
larity condition, meaning that weak and strong Pareto-optimality coin-
cide for V(N). The smoothness of V(N) is an essential condition; (2a)
implies that, for every x E a V(N), there exists a unique normalized vector
A in IRNsuch that A . x 2: A . y for all y in V(N). Note that Amust be
positive (Le., AE IR~+)by (ld) and (2b). Condition (3) may be viewed as
an extremely weak kind of monotonicity: There exists some translate of
V(N) that includes all of the payoff vectors that are feasible for Sand
assign zero to the players outside S. Finally, (4) is a boundedness-from-
above condition. A thorough discussion on assumptions and their impact
can be found in Sections 9 and 10 in Aumann (1983b).

For a coalition S eN, an S-payoffvector is simply an element of IRs;
when S = N, it is a payoff vector.A collectionx =T(XS)SCNof S-payoff
vectors for all coalitions S is called a payoff configuration (thus,

. Xs = (X~)iES E IRs for all S eN). The space of payoff configurations
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II seNIR Swill be denoted X. In particular, the payoff configuration x with
xs = 0 for all S will be denoted O.

Note that every cob.p. V may be regarded as a (rectangular) subset of X,
namely, II seNV(S), Operations are thus always understood coalitionwise.
Hence, V + W is given by (V + W)(S) = V(S) + W(S) for all S c N;
Vc Wmeans V(S) C W(S)for all S; and aVis IIseNaV(S) c X. If Ais a
vector in IR~+, then AVis defined by

(AV)(S) = ASV(S) = {(AiXi)iESIx = (Xi)iES E V(S)}

(recall that As= (Ai)iESis the restriction of Ato IRt+). Moreover, for a
subset Y of X, we write AY for {(AsYs)seN IY= (Ys)seN E Y).

14.3 Solutions

In this section, we will define the three solutions ofHarsanyi, Shapley, and
Kalai and Samet. The following conditions will be considered, where V is
a coalitional bargaining problem; Ais a vector in IR~+; and for each S c N,
Xs E IRs is an S-payoffvector and C;sE IRa real number:

(5) Xs E aV(S),
(6) As . Xs ~ As . Y for all Y E V(S),
(7) Aix~ = ~ Tes,iETC;T for all i E S.

The solutions are then defined as follows:

Definition 1. A payoff vector x E IRN is a H arsanyi (NTU) solution of a
c.b.po Vifthere exist AE IR~+, x = (xs)seNE XwithxN= x, and C;sE IR
for all S C N such that the following are satisfied:

Condition (5) for all S c N,
Condition (6) for S = N,
Condition (7) for all S c N.

Definition 2. A payoff vector x E IRN is a Shapley (NTU) solution of a
c.b.po V if there exist AE IR~+,x = (Xs)seN E X with XN = x, and C;sE IR
for all S C N such that the following are satisfied:

Condition (5) for all S C N,
Condition (6) for all S eN,
Condition (7) for S = N.

Definition 3. Let A be a vector in IR~+. A payoff vector x E IRN is the
Kalai and Samet A-egalitarian solution of a cob.p. V if there exist
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x= (XShCN E X with XN = X and C;sE IRfor all S eN such that the fol-
lowing are satisfied:

Condition (5) for all S C N,
Condition (7) for all S C N.

Note that Kalai and Samet define a class of solutions, parameterized by
A(which is thus exogenously given, besides V); moreover, each c.b.p. can
have at most one A-egalitarian solution (for every A; see the end of this
section). In both the Harsanyi and Shapley solutions, Ais endogenously
determined, and there may be no solution or more than one. When the Ai
are all equal (i.e., A= c 1N for some c E IR+), the corresponding Kalai and
Samet solution is called the symmetric egalitarian solution. The vector A
yields an interpersonal comparison of the utility scales of the players;
whether it is obtained from the bargaining problem itself, or it is an
additional datum of the problem, is thus an essential distinction (see also
Section 14.5).

The associated payoff configuration x = (XS)SCNspecifies for every co-
alition S a feasible (and even efficient, by condition (1» outcome xs. One
may view Xs as the payoff vector that the members of S agree upon from
their feasible set V(S); if coalition S "forms," then x~ is the amount that
player i (in S) will receive (note that these are contingent payoffs - if S
forms). Following Harsanyi, one may furthermore regard Xs as an optimal
threat of coalition S (against its complement N - S), in the bargaining
problem. More discussion on these interpretations can be found at the
end of section 5 in Hart (1983).

The three conditions (5), (6), and (7) may be interpreted as efficiency,
A-utilitarity, and A-equity (orfairness), respectively. Indeed, condition (5)
means that the S-payoff vector Xs is Pareto-efficient for the coalition S:
There is no vector y E IRs that is feasible for S(i.e., y E V(S» such that all
members of S prefer y to Xs (i.e., y> xs). Condition (6) means that Xs is
A-utilitarian for S, since it maximizes the sum ofthe payoffs for members
of S, weighted according to A,over their feasible set V(S). And, finally, the
weighted payoff AiX~of each member ofthe coalition S is the sum of the
dividends C;T that player i has accumulated from all subcoalitions T of Sto
which he belongs; because the dividend C;T is exactly the same for all
members of T (for each T), Xs is thus A-equitable or A-fair.

In the two-person simple bargaining problem, the Nash solution is
efficient, and for an appropriate vector A> 0, it is both A-utilitarian and
A-equitable. Both the Harsanyi and the Shapley solutions to the general
coalitional bargaining problem require efficiency (5) for all coalitions
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together with utilitarity (6) and equity (7) for the grand coalition N. They
differ in the condition imposed on subcoalitions (other than N and the
singletons): The Harsanyi solution requires equity, and the Shapley solu-
tion utilitarity. The Kalai and Samet solutions do not consider utilitarity
at all, but only equity (for all coalitions). Thus, the weights Ahave to be
given exogenously, whereas in the other two solutions they are deter-
mined by the conjunction of (6) and (7). Note further that, in the two-
person case, all of the egalitarian solutions (including the symmetric one)
differ from the Nash solution (they are the proportional solutions ofKa1ai
(1977)).

In general, some of the coordinates of A may be zero (and thus
AE ~~ - {O}instead of AE ~~+); the simplifying assumption (2b) rules
out this for the Harsanyi and the Shapley solutions (by (6) for S = N); for
the egalitarian solutions, the positivity of A is part of the definition.

The three definitions have been stated in order to facilitate comparison
among the solutions. For alternative (and more constructive) definitions,
we need the following.

A transferable utility game (TV game, for short) consists of a finite set
of players N and a real function v that assigns to each coalition S C N
its worth v(S), with v(~) = O. The Shapley (1953) value of such a TV
game (N,v) is a payoff vector x E ~N, which will be denoted
Sh(N,v) = (Shi(N,v))iENo It is defined by a set of axioms, and it equals the
vector of average marginal contributions of each player to those preceding
him in a random order of all the players.

Using this concept, one can rewrite the condition "there exist real
numbers ~T E ~ for all T c S such that (7) is satisfied for all T c S" as:

(8) AiX~ = Shi(S,V), where v(T) = AT . xT= ~iETAix~forall TC S.

We then obtain the following.

Definition ]'. A payoff vector x E ~NisaHarsanyi solution ofac.b.p. V
if there exist AE ~~+ and x = (XS)SCN E X with xN = x such that condi-
tions (5) and (8) are satisfied for all S eN and condition (6) is satisfied for
S=N.

Definition]'. A payoff vector x E ~NisaShapleysolutionofacobop. Vif
x E V(N) and there exists AE ~~+ such that

AiXi = Shi(N,v),

where v(S) = max{ AS . y lyE V(S)} for all S C N.

L



Axiomatic approaches to coalitional bargaining 311

(Note that (6) implies (5) and that the TV game v in (8) coincides with v
defined previously.)

Definition 3'. Let AE IR~+. A payoff vector x E IRNis the Kalai and
Samet A-egalitarian solution of a c.b.p. V if there exists x = (XS)SCNE X
with XN = x such that conditions (5) and (8) are satisfied for all S eN.

How are the solutions of a given c.b.p. V constructed? In the case of the
Shapley solution, for each AE IR~+, one computes the TV game v;.by

viS) = max{As . y lyE V(S)}

for all S c N, and then obtains its Shapley TV value Sh(N,v;.). If the payoff
vector x = (Xi)iEN given by Xi = Shi(N,v;.)j Ai for all i E N belongs to
V(N), then x is a Shapley solution of V.

The Kalai and Samet A-egalitarian solution (for a given AE IR~+) is
obtained as follows. Inductively on the lattice of all subsets S of N, we
define

~S = max{t E IRIzs(t) E V(S)},

where zs(t) = (ZW))iES E IRs is given by

. 1 ~zs(t) =
Ai

(t +
""

~ T)
TcS
T+S
iET

Ifwe put

Xs = zs(~s),

then XN is the A-egalitarian solution of V.
Finally, to obtain the Harsanyi solution, we compute the A-egalitarian

solutionx(A) for each A E IR~+; then, x = X(A) is a Harsanyi solution of V
whenever A . X(A) = max{A . y lyE V(N)}.

Thus, both the Harsanyi and the Shapley approaches require essen-
tially a fixed-point construction, whereas the Kalai and Samet approach
does not (again, Ais exogenously given there). It is now clear that each Vin
r has at most one A-egalitarian solution, and precisely one (for each A)if V
belongsto r 2 .

14.4 Axiomatizations

In this section, we will present an axiomatization for each one of the three
solutions defined previously. By axiomatization is meant a set of axioms

. that uniquely characterize the corresponding solution.
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As is usually the case, there are various ways of choosing an appropriate
set of axioms. We will follow here the choices made by each author in the
papers we review. This will enable us to exhibit a large number of axioms
emphasizing a variety of reasonable principles for solving coalitional
bargaining problems.

The first solution studied will be the Shapley solution, according to
Aumann's (1983b) pioneering paper. For every c.b.p. V in r, let A( V)
denote the set of Shapley solutions of V; A( V) is thus a (possibly empty)
subset of ~ N.

Let r4 denote the set of all c.b.p.'s in r3 that possess at least one Shapley
solution (i.e., r4 = {V E r I V satisfies (2), (3), and A(V) =1=lj>}).The set-
valuedfunctionA from r 4 to ~ Nwill be called the Shapley function. The
following axioms will characterize it.

AD. <I>is a non-empty-set-valued function from r4 to ~N.

(For each VE r4, <I>(V)is a nonempty subset of~N.)

AI. <I>(V)c aV(N) for all VE r4'

(Efficiency: Every solution must be Pareto-efficient [for the grand
coalition].)

A2. <I>(AV)= A<I>(V)for all AE ~~+ and VE r4'

(Scale covariance: If the payoffs of the players are resealed independently,
all solutions will be resealed accordingly.)

A3. If U = V + W, then <I>(U):)«I>(V)+ <I>(W»n aU(N) for all
U,v,WE r4'

(Conditional additivity: If x E <1>(V) is a solution of V,y E <1>(W) is a
solution of W, and z = x + Y is efficient for U = V + W, then z is a
solution of U[i.e., z E <I>(U)].)

A4. If V(N) C W(N) and V(S) = W(S) for all S =1=N, then
<I>(V):) <I>(W)n V(N) for all V, WE r4'

(Independence of irrelevant alternatives: If V is obtained from W by re-
stricting the feasible set of the grand coalition, then any solution of Wthat
remains feasible in V will be a solution of Vas well.)

For the next axiom, we define a class of c.b.p.'s usually referred to as

Il
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unanimity games. For every nonempty TeN and every real number c,
let UT,cbe the TV game given by uriS) = c if S::J T and UT,c(S)= 0
otherwise; then, U TiS) = (x E IRS

I ~ rES Xi :S UriS)} for all S c N

A5. <I>(UT,I)= {IT/ITI} for all Tc N, T=I=cpo

(Unanimity games: UT:1models the situation where each coalition Scan
arbitrarily divide amo~g its members the amount 1, if it contains all the
players of T - or nothing, otherwise. This c.b.p. has a unique solution,
where the members of Treceive equal shares (1/1TJ),and the other players
zero.)

Theorem A (Aumann (1983b». There exists a unique function <I>satis-
fying AO through A5; it is the Shapley function A.

We continue next with the Harsanyi solution, according to Hart
(1983). We will consider here not only the payoff vector x = XN of the
grand coalition, but rather the full payoff configuration x = (XS)SCN' Let
H( V) stand for the set of all x = (XS)SCN E X associated with a Harsanyi
solution of a c.b.p. V; that is, x = (XS)SCNE H(V) if there exists A E IR~+
such that conditions (5) and (8) are satisfied for all S C N and condition
(6) is satisfied for S = N; see definition 2'). The set-valued function H
fromr 1 to X will be called the Harsanyi function; we will refer to
x = (XShCNE H( V) as a Harsanyi solution of V (rather than just to XN)'
Note that H(V) may well be an empty set for some VEri, Consider now
the following axioms.

BO. 'Pis a set-valued function from r1 to X

(For each VEri, '1'(V) is a subset of X)

Bi. 'I'(V) c aVfor all VE r1.

(Efficiency: Every solution x = (XShCNE H( V) must be Pareto-efficient
for all coalitions: Xs E aV(S) for all S eN)

B2. 'I'(A.V) = A'I'( V) for all A E IR~+ and VEri,

. (Scale covariance: If the payoffs of the players are resealed independently,

all solutions will be resealed accordingly.)

B3. If U = V + W, then '1'(U) ::J('I'(V) + '1'(W» n au for all
U,v,WE r1.
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(Conditional additivity: If x = (XS)SCN E '1'(V) is a solution of V,
Y= (YS)SCNE <1>(W) is a solution of W, and z = x + y is efficient for
U = V + W [i.e., Zs E a V(S) for all S eN], then Z is a solution of U [i.e.,
z E '1'(U)].)

B4. IfVc w,then'l'(V)::J'I'(W)n V for all V,WEr!.

(Independence of irrelevant alternatives: If V is obtained from W by re-
stricting the feasible set of some coalition(s), then any solution of Wthat
remains feasible in V will be a solution of Vas well:x= (XS)SCN E '1'(W)
and Xs E V(S) C W(S) for all S eN imply x E 'I'(V).)

B5. '1'(UT,e)= {z(T,c)} = {zs(T,C))SCN} for all TeN, T =I=~, and all
c E IR,where zS<T,c) = clTIITI if S::J Tand zs(T,c) = 0 otherwise.

(Unanimity games: UTe models the situation where each coalition Scan
arbitrarily divide amo~g its members the amount c if it contains all the
players of T - or nothing, otherwise. This c.b.p. has a unique solution
Z;5 z(T,c); the S-payoffvector Zs of a coalition Sthat contains Tassigns
equal shares (ell TI) to all members of T and zero to the rest; if S does not
contain T, everyone gets zero.)

B6. If 0 E av, then 0 E 'I'(V).

(Inessential games: A c.b.p. is called zero inessential if 0 E aV(S) for all
S c N, that is, if the zero payoff vector is efficient for all coalitions. This
means that for all coalitions, 0 is feasible, whereas no positive vector is
feasible. In particular, V({i}) = {xi E lR{i}Ixi:5 a}. For such a game,
where there is nothing to bargain on, the payoff configuration zero is a
solution.)

Theorem B (Hart (1983)). There exists a unique function 'I'satisfying
BOthrough B6; it is the Harsanyi function H.

It is remarkable that the two solutions of Shapley and Harsanyi are
determined by very similar sets of axioms. The main difference lies in the
range: payoff vectors for the former versus payoff configurations for the
latter (see Section 5 in Hart (1983) for further discussion of this subject).

We come now to the class of Kalai and Samet solutions. For every
AE IR~+, let EA be the function from r2 into IRNthat assigns to each
V E r 2its A-egalitariansolution E A(V). We will refer to E Aas the A-egali-
tarian function. Consider now the following axioms, according to Kalai
and Samet (1983).
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CO. F is a function from r2 into ~N.

315

As usual, we will write F(V)=(Fi(V))iENE~N and FT(V)=
(pi(V))iET E ~ T for all TeN. Given a c.b.p. V, a coalition TeN is a
carrier of Vif V(S) = V(S n T) X ~~-T for all S eN.

Cl. If Tis a carrier of V, then FT(V) E aV(T) for all VE r2 and TeN.

(Carrier: The solution is Pareto-efficient for any carrier of V.) This axiom
implies both an efficiency axiom and a dummy axiom (where any player
outside a carrier is a dummy). Note that if T is a carrier of V, then any
T' :J T (in particular T' = N, for all V) is also a carrier, and thus
FT'(V) E aV(T').

Given a c.b.p. V, let V+ denote its individually rational restriction,
defined as follows:

tJi = max{x Ix E V({i})} for all i E N,

V+(S) = {x E V(S) IXi ~ tJi for all i E S},

for S C N. Note that V+does not belong to r (it does not satisfy compre-
hensiveness nor possibly nonemptiness [see (1) in Section 14.2]). A c.b.p.
V is individually rational monotonic (monotonic in Kalai and Samet
(1983)) if for all S eN and i $. s.

V+(S U {i}) :J V+(S) X V+({i}).

In such a c.b.p., the contribution of a player is never detrimental, so long
as only individually rational outcomes are considered. Note that
V+({i)) = {tJi},and repeated applications of the preceding inclusion imply
tJs E V+(S) C V(S) for all S C N.

C2. If V is individually rational monotonic, then F( V) ~ tJ for all
VEr2.

(Individual rationality: The solution is individually rational (i.e.,
pi(V) ~ tJi for all i EN), provided that every player always contributes
nonnegatively to all coalitions he may join.)

Given a nonempty coalition TeN and a payoff vector a E ~N with
. ai = 0 for all i $. T, let AT be the c.b.p. defined by

A
_

{
{as} + ~~ if S:J T,

T - ~~ otherwise.

C3. If F(AT) = a, then F(V + AT)= F(V) + a for all VE r2.
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(Translation invariance: If the payoffs of each member i of T in each
coalition that contains Tare translated by a i, and moreover the vector a is

acceptable (meaning that the solution of the c.b.p. ATis precisely a), then
the solution of the new c.b.p. will be translated by a; note that the c.b.p.
W= V+ATisgivenby W(S) = V(S) + {as}forS:J TandW(S) = V(S)
otherwise.)

C4. IfTcNissuchthat V(S) = W(S)foralIS+ Tand V(T)C W(T),
then FT(V) s FT(W) for all V,WE r2.

(Monotonicity: If the feasible set of some coalition T is enlarged (and all
the other feasible sets remain unchanged), then the payoff of each
member of T does not decrease.)

On the space of c.b.p. 's, consider the product of the Hausdorfftopolo-
gies for all S C N: A sequence {Vm}:'-l converges to Vif, for each S c N,
the sequence (Vm(S)}:'-1 of subsets of IRs converges in the Hausdorff
topology to V(S).

C5. The function Fis continuous on r2.

(Continuity: Ifa sequence (Vm}:'-l inr2 converges to VE r2, then£i(Vm)
converges to Fi(V) for all i E N)

Theorem C (Kalai and Samet (1983)). A function F satisfies axioms CO
through C5 if and only if there exists AE IR~+ such that F = EA is the
A-egalitarian function.

Thus, each EA (for A E IR~+) satisfies CO through C5; moreover, those are
the only functions to do so.

This completes the presentation of the three axiomatic systems. We
note again that we have considered here only one of the various ways of
characterizing the three solutions; there are other combinations of the
postulates given (and others) that could do as well.

14.5 Discussion

This last section will include some remarks on the solutions presented
earlier, together with a comparison of their properties in terms of the
axioms presented in Section 14.4.

The basic assumption underlying all the approaches is that the only
information available is the characteristic function of the coalitional bar-
gaining problem. Thus, nothing is given on the extensive form of the
bargaining process: how the players are discussing, who talks to whom,
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whether there are procedures for making proposals - or threats - and for
rejecting them, for making coalitions, and so on. The solutions thus
cannot depend on such data; moreover, any particular assumptions of
this kind must necessarily be ad hoc. This implies that the solutions
proposed must be based on rather general principles, which should hold in
all situations described by the same characteristic function. The Nash
solution in the two-person case is an example of such an axiomatic ap-
proach applied to the characteristic-function form. (See Sections 5
through 7 in Aumann (1983a) for further discussion on this point; and see
Binmore (1983) for an "extensive-form" approach to three-person coali-
tional bargaining.)

The solutions discussed in this chapter are of two types. The Harsanyi
and Shapley solutions depend only on the cardinal representation of the
utility of each player separately. Thus, if a positive linear transformation
is applied to some player's payoffs, the same transformation applies to the
solutions as well (for rescaling, see axioms A2 and B2). The Kalai and
Samet solutions are different. If only one player's utility is rescaled, the
solution may change completely. Only joint resealing of the utilities of all
players leads to the same change in the solution as well. In the former two
solutions, independent rescaling is allowed; here, only common rescaling.
Formally, for every i E N, let Ii:IR-IR be a positive linear transformation
given by Ii(x) = aix + hi, where ai > 0 and bi are real constants. For each
c.b.p. V, let W= I(V) be the transformed c.b.p., namely,

W(S) = {/(x) = (li(Xi»ies E IRs Ix = (xi);es E V(S)}

for all S c N. If a payoff vector x E IRN is a Harsanyi or a Shapley solution
of V, then the payoff vector I(x) E IRNis a Harsanyi or a Shapley solution,
respectively, of W = I(V). Let AE IR~+; if a payoff vector x E IRN is the
Kalai and Samet A-egalitarian solution of V, and moreover all the a i are
identical (i.e., ai = a for all i EN), then the payoff vector I(x) is the
A-egalitarian solution of W = I(V).

According to Shapley's (1983) classification, the Harsanyi and Shapley
solutions are both of category CARDN, whereas the egalitarian solutions
are of category CARDN, The interpersonal comparison of utility is ob-
tained endogenously in the former, and it is exogenously given in the
latter.

We conclude this paper with a comparison of the three solutions via the
axioms presented in Section 14.4. Table 14.1 points out for each solution

. function which axioms it satisfiesand which it does not. The domain is r 1

for the Shapley and the Harsanyi functions, and r2 for the Kalai and
Samet functions. Note that axioms A 1through A5 regard the solution as a
set-valued function that assigns a subset of IRNto each c.b.p. (possibly
empty, since we consider r1 and not r4); similarly for axioms B1 through
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Table 14.1.

Solution function

Axiom Shapley Harsanyi Kalai and Samet

Al (efficiency) Yes Yes Yes
A2 (scale) Yes Yes Noa
A3 (additivity) Yes Nob Nob

A4 (irrelevant alternatives) Yes Yes Yes
A5 (unammity games) Yes Yes No'

BI (efficiency) Yes Yes Yes
B2 (scale) Yes Yes Noa

B3 (additivity) Yes Yes Yes
B4 (irrelevant alternatives) Yes Yes Yes
B5 (unanimity games) NOd Yes No'
B6 (inessential games) No' Yes Yes

CI (carrier) Yes Yes Yes
C2 (individual rationality) Yes Yes Yes
C3 (translation) No! No! Yes
C4 (monotonicity) Nog Nog Yes
C5 (continuity) NOh Noh Yes

The instances where axioms are satisfied ("yes" in the table) follow easily

from theorems A, B, and C, and straightforward arguments (see also
Section 5 in Hart (1983) and Section 8 in Kalai and Samet (1983».
a If.A. = c1N for some c E IR+, then "yes."
bLet N={l,2,3), U= UN,a, and W= U{l,2},l; let V(S) = UN,I(S) for
S*-{1,2} and V({1,2})={XEIR{l,2)lx1+2x2s;Q and 2x1+X2S;3}.
Then, W = V + U; each of the three games W, V, and U has a unique
Harsanyi solution, namely, z = (!,!,O), x = (1,1,1), and y = (0,0,0), re-
spectively; and z *- x + y. Furthermore, the symmetric egalitarian solu-
tion coincides with the Harsanyi solution for each of the three games.."Yes" for the symmetric egalitarian solution.
d See proposition 5.4 and axiom B5 in Hart (1983)..See example 5.6 in Hart (1983).

!"No" already in the two-person case (the Nash solution): LetN = {l,2},
a = (2,1), T= N, V({i}) = IR!!},and V(N) = {x E IRNIXl + x2 s; 2}; the
Nash (= Shapley = Harsanyi) solutions of AN, V, and V + AN are,
respectively, (2, I), (1, I), and (2.5,2.5).
g

See Sections 1 and 2 in Kalai and Samet (1983).
h Upper-semi-continuity only: If Xm is a solution of Vm for every m ~ I,

xm -+ x, and Vm -+ V, then x is a solution of V (recall condition (2b) in
Section 14.2).
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B6, with the range being the subsets of X (the set of payoff configurations).
Axioms Cl through C5 refer to a (point-valued) function into IRN, al-
though they can be extended in a straightforward manner to apply to a
set-valued function.
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