

Two(!) Good To Be ... Monotonic

Sergiu Hart

September 2024

CONFERENCE IN HONOR OF PHIL RENY

SERGIU HART (C) 2012 - p. 1

Two(!) Good To Be ... Monotonic

Sergiu Hart

Center for the Study of Rationality Dept of Economics Dept of Mathematics The Hebrew University of Jerusalem

hart@huji.ac.il

http://www.ma.huji.ac.il/hart

SERGIU HART (C) 2012 - p. 2

Joint work with

Phil Reny Department of Economics University of Chicago

Noam Nisan

Department of Computer Science Hebrew University of Jerusalem

Joint work with

Ran Ben Moshe

M.Sc., Department of Mathematics Hebrew University of Jerusalem

Yannai Gonczarowski

Department of Economics Department of Computer Science Harvard University

Sergiu Hart and Phil Reny "Revenue Maximization in Two Dimensions" (2010)

Sergiu Hart and Phil Reny "Revenue Maximization in Two Dimensions" (2010)

Sergiu Hart and Phil Reny

"Maximal Revenue with Multiple Goods: Nonmonotonicity and Other Observations" (2011; *Theoretical Economics* 2015)

www.ma.huji.ac.il/hart/abs/monot-m.html

Sergiu Hart and Phil Reny "Implementation of Reduced Form Mechanisms: A Simple Approach and a New Characterization" (2011; Economic Theory Bulletin 2015) www.ma.huji.ac.il/hart/abs/q-mech.html

Sergiu Hart and Phil Reny "Implementation of Reduced Form Mechanisms: A Simple Approach and a New Characterization" (2011; Economic Theory Bulletin 2015) www.ma.huji.ac.il/hart/abs/g-mech.html

 Sergiu Hart and Phil Reny
 "The Better Half of Selling Separately"
 (2016; ACM Trans on Economics and Computation 2019)

www.ma.huji.ac.il/hart/abs/srev.html

Sergiu Hart and Noam Nisan "Approximate Revenue Maximization with Multiple Items" (2012; *J Econ Theory* 2017)

www.ma.huji.ac.il/hart/abs/m-approx.html

Sergiu Hart and Noam Nisan "Approximate Revenue Maximization with Multiple Items" (2012; *J Econ Theory* 2017)

www.ma.huji.ac.il/hart/abs/m-approx.html

 Sergiu Hart and Noam Nisan
 "Selling Multiple Correlated Goods: Revenue Maximization and Menu-Size Complexity" (2013; *J Econ Theory* 2019)

www.ma.huji.ac.il/hart/abs/m-corr.html

Ran Ben Moshe, Sergiu Hart and Noam Nisan

"Monotonic Mechanisms for Selling Multiple Goods"

(2021)

www.ma.huji.ac.il/hart/abs/mech-monot.html

Ran Ben Moshe, Sergiu Hart and Noam Nisan

"Monotonic Mechanisms for Selling Multiple Goods" (2021)

www.ma.huji.ac.il/hart/abs/mech-monot.html

 Sergiu Hart and Noam Nisan
 "Two Good To Be ... Three" (TT) (in preparation)

Yannai Gonczarowski and Sergiu Hart "Buying Multiple Goods: Committing to Overbid" (TT) (in preparation)

● 1 SELLER

• 1 SELLER

SERGIU HART (C) 2012 - p. 10

• 1 SELLER

- ho 1 BUYER
- k goods (items)

• 1 Seller

- 1 BUYER
- k goods (items)

OBJECTIVE:

MAXIMIZE the **REVENUE** of the **SELLER**

• 1 SELLER

- ho 1 BUYER
- k goods (items)

● 1 SELLER

- ho 1 BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$

1 SELLER

- J BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good $2 = X_1 + X_2$)

1 SELLER

- J BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good $2 = X_1 + X_2$)
 - BUYER knows the value X

● 1 SELLER

- J BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good $2 = X_1 + X_2$)

 - **SELLER** does not know the value X

1 SELLER

- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good $2 = X_1 + X_2$)
 - **BUYER knows** the value X
 - **SELLER** does not know the value X
 - X distributed according to c.d.f. \mathcal{F} on \mathbb{R}^k_+

● 1 SELLER

- J BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$
 - additive valuation (good 1 and good $2 = X_1 + X_2$)
 - **BUYER knows** the value X
 - **SELLER** does not know the value X
 - X distributed according to c.d.f. \mathcal{F} on \mathbb{R}^k_+
 - SELLER knows the distribution \mathcal{F} of X

● 1 SELLER

- J BUYER
- k goods (items)
 - values of GOODS to BUYER : $X = (X_1, X_2, ..., X_k)$ (random variable)

• additive valuation (good 1 and good $2 = X_1 + X_2$)

- **BUYER knows** the value X
- **SELLER** does not know the value X
- X distributed according to c.d.f. \mathcal{F} on \mathbb{R}^k_+
- SELLER knows the distribution \mathcal{F} of X

• 1 SELLER

- ho 1 BUYER
- k goods (items)

● 1 SELLER

- J BUYER
- k GOODS (ITEMS)

SELLER and **BUYER** :

 quasi-linear utilities (i.e., additive in monetary payments)

1 SELLER

- J BUYER
- k GOODS (ITEMS)

SELLER and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- **s** risk-neutral (i.e., linear in probabilities)

1 SELLER

- J BUYER
- k GOODS (ITEMS)

SELLER and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
 (or: linear in quantities)

1 SELLER

- J BUYER
- k GOODS (ITEMS)

SELLER and **BUYER** :

- quasi-linear utilities (i.e., additive in monetary payments)
- risk-neutral (i.e., linear in probabilities)
 (or: linear in quantities)

SELLER :

no value and no cost for the GOODS
A Simple Problem

• 1 SELLER

- ho 1 BUYER
- k GOODS (ITEMS)

A Simple Problem

• 1 Seller

- 1 BUYER
- k goods (items)

OBJECTIVE:

MAXIMIZE the **REVENUE** of the **SELLER**

ONE GOOD (k = 1):

ONE GOOD (k = 1):

Myerson 1981, Riley and Zeckhauser 1983,

SERGIU HART C 2012 - p. 13

ONE GOOD (k = 1):

SELLER posts a **PRICE** p

ONE GOOD (k = 1):

- SELLER posts a PRICE p
- BUYER chooses between:
 - get the good and pay p, or
 - get nothing and pay nothing

ONE GOOD (k = 1):

- **SELLER posts** a **PRICE** p
- BUYER chooses between:
 - get the good and pay p, or
 - get nothing and pay nothing
- p such that **REVENUE** $R = p \cdot \Pr[X > p]$ = $p \cdot (1 - \mathcal{F}(p))$ is **MAXIMAL**

ONE GOOD (
$$k=1$$
):

- **SELLER posts** a **PRICE** p
- BUYER chooses between:
 - get the good and pay p, or
 - get nothing and pay nothing
- p such that REVENUE $R = p \cdot \Pr[X > p]$ = $p \cdot (1 - \mathcal{F}(p))$ is MAXIMAL

$$\mathsf{Rev}(X) = \max_p p \cdot (1 - \mathcal{F}(p))$$

ONE GOOD (k = 1):

ONE GOOD (
$$k=1$$
):

SELLER and/or **BUYER** are **RISK-AVERSE** (rather than risk-neutral):

ONE GOOD (
$$k=1$$
):

SELLER and/or **BUYER** are **RISK-AVERSE** (rather than risk-neutral):

Tomer Siedner (2020)
"Optimal Selling With Risk-Averse Agents"
www.ma.huji.ac.il/hart/students.html#tomers

SERGIU HART ⓒ 2012 – p. 15

$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

 $p = 10 \rightarrow R = 10 \cdot 1 = 10$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11$$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \quad \longleftarrow$$

$$X \sim \begin{cases} 10 & \text{with probability } 1/2 \\ 22 & \text{with probability } 1/2 \end{cases}$$

$$p = 10 \rightarrow R = 10 \cdot 1 = 10$$

$$p = 22 \rightarrow R = 22 \cdot 1/2 = 11 \quad \longleftarrow$$

 $\mathsf{Rev}(X) = 11$ p = 22

SERGIU HART (C) 2012 - p. 15

l		

Two Goods (k = 2)

Two Goods

Two Goods (k = 2), Independent

sell separately:

Two Goods (k = 2), Independent

sell separately:
 PRICE = p_1 for good 1

 $\mathsf{PRICE} = p_2$ for good 2

Two Goods (k = 2), Independent

$$egin{array}{c} oldsymbol{X_1}, oldsymbol{X_2} \sim \left\{egin{array}{c} 10 \ 22 \end{array}
ight.$$

with probability 1/2with probability 1/2

SERGIU HART © 2012 - p. 17

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \ \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$
- **Solution** $\mathsf{Rev}(X_1) + \mathsf{Rev}(X_2) = 11 + 11 = 22$

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$
- **Solution** $\mathsf{Rev}(X_1) + \mathsf{Rev}(X_2) = 11 + 11 = 22$
- sell the two goods together ("bundle") for the price $p_{12} = 32$:

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$
- **Solution** $\mathsf{Rev}(X_1) + \mathsf{Rev}(X_2) = 11 + 11 = 22$
- sell the two goods together ("bundle") for the price $p_{12} = 32$:

$$\mathbf{R} = 32 \cdot 3/4 = 24 > 22$$

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$
- **Solution** $\mathsf{Rev}(X_1) + \mathsf{Rev}(X_2) = 11 + 11 = 22$
- sell the two goods together ("bundle") for the price $p_{12} = 32$:

$$R = 32 \cdot 3/4 = 24 > 22$$

- $X_1, X_2 \sim \left\{egin{array}{cc} 10 & ext{with probability 1/2} \ 22 & ext{with probability 1/2} \end{array}
 ight.$
- $\blacksquare \mathsf{Rev}(X_1) = \mathsf{Rev}(X_2) = 11$
- **Solution** $\mathsf{Rev}(X_1) + \mathsf{Rev}(X_2) = 11 + 11 = 22$
- sell the two goods together ("bundle") for the price $p_{12} = 32$:

$$R = 32 \cdot 3/4 = 24 > 22$$

General Mechanism

General Mechanism

OUTCOME:

OUTCOME:

• $q_i = \text{probability that BUYER gets good } i$

General Mechanism

OUTCOME:

 $q_i = ext{probability that BUYER}$ gets good i $q = (q_1, ..., q_k) \in [0, 1]^k$

General Mechanism

OUTCOME:

- $q_i = ext{probability that BUYER}$ gets good i $q = (q_1, ..., q_k) \in [0, 1]^k$
- s = payment from BUYER to SELLER ("REVENUE")
General Mechanism

OUTCOME:

- $q_i = ext{probability that BUYER}$ gets good i $q = (q_1, ..., q_k) \in [0, 1]^k$
- s = payment from BUYER to SELLER ("REVENUE")
- **PAYOFF** (utility) of **BUYER** when his valuation is $x = (x_1, ..., x_k)$:

General Mechanism

OUTCOME:

- $q_i = ext{probability that BUYER}$ gets good i $q = (q_1, ..., q_k) \in [0, 1]^k$
- s = payment from BUYER to SELLER ("REVENUE")
- **PAYOFF** (utility) of **BUYER** when his valuation is $x = (x_1, ..., x_k)$:

General Mechanism

OUTCOME:

- $q_i = ext{probability that BUYER}$ gets good i $q = (q_1, ..., q_k) \in [0, 1]^k$
- s = payment from BUYER to SELLER ("REVENUE")
- **PAYOFF** (utility) of **BUYER** when his valuation is $x = (x_1, ..., x_k)$:

MENU M: a **SET** of possible **OUTCOMES**

MENU M: a SET of possible OUTCOMES $M = \{(q, s)\} \subset [0, 1]^k imes \mathbb{R}$

MENU M: a SET of possible OUTCOMES $M = \{(q, s)\} \subset [0, 1]^k imes \mathbb{R}$

SELLER posts a MENU M

- $onumber \, {f SELLER} \, {f posts} \, {f a} \, {f MENU} \, M
 onumber \,$
- **BUYER chooses** one **outcome** in **Menu** M:

- $onumber \, {f SELLER} \, {f posts} \, {f a} \, {f MENU} \, M
 onumber \,$
- BUYER chooses one OUTCOME in MENU M:
 OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$

- $onumber \, {f seller \, {f posts} \, a \, {f Menu} \, M} \\$
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)

- $onumber \, {f seller \, {f posts} \, a \, {f Menu} \, M} \\$
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)
 - payoff of **BUYER**: $b(x) = q(x) \cdot x s(x)$

- $onumber \, {f s}$ SELLER posts a MENU M
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)
 - payoff of **BUYER**: $b(x) = q(x) \cdot x s(x)$

- $onumber \, {f SELLER} \, {f posts} \, {f a} \, {f MENU} \, M$
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)
 - payoff of **BUYER**: $b(x) = q(x) \cdot x s(x)$

The Revelation Principle:

- $onumber \, {f SELLER} \, {f posts} \, {f a} \, {f MENU} \, M
 onumber \,$
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)
 - payoff of **BUYER**: $b(x) = q(x) \cdot x s(x)$

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM**

- $onumber \, {f SELLER} \, {f posts} \, {f a} \, {f MENU} \, M
 onumber \,$
- **BUYER chooses** one **OUTCOME** in MENU M:
 - OUTCOME chosen by BUYER when his valuation is x: $(q(x), s(x)) \in M$
 - payoff of SELLER: s(x)
 - payoff of **BUYER**: $b(x) = q(x) \cdot x s(x)$

The Revelation Principle: Every mechanism is equivalent to a **MENU MECHANISM** ("direct mechanism")

 $q(x) \cdot x - s(x) \ge q(y) \cdot x - s(y)$ (for all x and y)

 $q(x) \cdot x - s(x) \ge q(y) \cdot x - s(y)$ (for all x and y)

Individual Rationality (IR) / Participation

Buyer

 $q(x) \cdot x - s(x) \ge q(y) \cdot x - s(y)$ (for all x and y)

Individual Rationality (IR) / Participation

 $q(x) \cdot x - s(x) \ge 0$ (for all x)

Maximize Revenue:

Maximize Revenue:

maximize

$$oldsymbol{R} = \mathrm{E}[oldsymbol{s}(oldsymbol{X})] = \int oldsymbol{s}(oldsymbol{x}) \mathrm{d} \mathcal{F}(oldsymbol{x})$$

SERGIU HART (C) 2012 - p. 21

Maximize Revenue:

maximize

$$egin{aligned} m{R} &= \mathrm{E}[m{s}(m{X})] = \int m{s}(m{x}) \mathrm{d} m{\mathcal{F}}(m{x}) \end{aligned}$$

subject to

(q, s) satisfies IC & IR

Revenue maximizing mechanisms:

1. post a price for each good separately

- 1. post a price for each good separately
- 2. post a price for the bundle

- 1. post a price for each good separately
- 2. post a price for the bundle
- 3. post prices for each good separately and for the bundle

- 1. post a price for each good separately
- 2. post a price for the bundle
- 3. post prices for each good separately and for the bundle
- 4. post prices for various lotteries

- 1. post a price for each good separately
- 2. post a price for the bundle
- 3. post prices for each good separately and for the bundle
- 4. post prices for various lotteries
 - 1 3: deterministic mechanisms
 - 4: probabilistic mechanisms

- 1. post a price for each good separately
- 2. post a price for the bundle
- 3. post prices for each good separately and for the bundle
- 4. post prices for various lotteries

Revenue maximizing mechanisms:

- 1. post a price for each good separately
- 2. post a price for the bundle
- 3. post prices for each good separately and for the bundle
- 4. post prices for various lotteries

Thanassoulis 2004, Pycia 2006, Manelli & Vincent 2006, 2007, 2012 Pavlov 2011, Hart & Reny 2010, 2012, ...

Multiple Goods, I.I.D. Uniform

Multiple Goods, I.I.D. Uniform

$X_1, X_2, ..., X_k \sim \text{Uniform} [0, 1], \text{ i.i.d.}$

Multiple Goods, I.I.D. Uniform

$$X_1, X_2, ..., X_k \sim ext{Uniform} [0, 1], ext{ i.i.d.}$$

$$\checkmark k = 1$$
: Menu $= \{0, \ x_1 - rac{1}{2}\}$
$$X_1, X_2, ..., X_k \sim ext{Uniform } [0, 1], ext{ i.i.d.}$$

• $k = 1$: MENU = $\{0, x_1 - rac{1}{2}\}$
• $k = 2$: MENU = $\{0, x_i - rac{2}{3}, x_1 + x_2 - rac{4 - \sqrt{2}}{3}\}$

$$X_1, X_2, ..., X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$$

$$k = 1: \text{MENU} = \{0, x_1 - \frac{1}{2}\}$$

$$k = 2: \text{MENU} = \{0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\}$$

$$k = 3: \text{MENU} = \{0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\}$$

$$\{0, x_i - \frac{3}{4}, x_i + x_j - \frac{6 - \sqrt{2}}{4}, x_1 + x_2 + x_3 - s\}$$

$$\begin{split} X_1, X_2, \dots, X_k &\sim \text{Uniform } [0, 1], \text{ i.i.d.} \\ \bullet \ k &= 1 \text{: MENU} = \{0, \ x_1 - \frac{1}{2}\} \\ \bullet \ k &= 2 \text{: MENU} = \{0, \ x_i - \frac{2}{3}, \ x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\} \\ \bullet \ k &= 3 \text{: MENU} = \\ \{0, \ x_i - \frac{3}{4}, \ x_i + x_j - \frac{6 - \sqrt{2}}{4}, \ x_1 + x_2 + x_3 - s\} \\ \text{where } s &= \frac{9}{4} - \frac{\sqrt{6}}{4} \cos(\frac{1}{3}\arctan(\frac{\sqrt{2} + 1}{\sqrt{2} - 1})) \\ &\quad -\frac{3\sqrt{2}}{4}\sin(\frac{1}{3}\arctan(\frac{\sqrt{2} + 1}{\sqrt{2} - 1})) \end{split}$$

SERGIU HART (C) 2012 - p. 23

$$X_1, X_2, ..., X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$$

• $k = 1$: MENU = $\{0, x_1 - \frac{1}{2}\}$
• $k = 2$: MENU = $\{0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\}$
• $k = 3$: MENU = $\{0, x_i - \frac{3}{4}, x_i + x_j - \frac{6 - \sqrt{2}}{4}, x_1 + x_2 + x_3 - s\}$
where $s \approx 1.2257... = \text{solution of 3rd}$
degree equation with coefficients in $\mathbb{Q}[\sqrt{2}]$

$$X_1, X_2, ..., X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$$

$$k = 1: \text{ MENU} = \{0, x_1 - \frac{1}{2}\}$$

$$k = 2: \text{ MENU} = \{0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\}$$

$$k = 3: \text{ MENU} = \{0, x_i - \frac{3}{4}, x_i + x_j - \frac{6 - \sqrt{2}}{4}, x_1 + x_2 + x_3 - s\}$$

$$X_1, X_2, ..., X_k \sim \text{Uniform } [0, 1], \text{ i.i.d.}$$

$$k = 1: \text{ MENU} = \{0, x_1 - \frac{1}{2}\}$$

$$k = 2: \text{ MENU} = \{0, x_i - \frac{2}{3}, x_1 + x_2 - \frac{4 - \sqrt{2}}{3}\}$$

$$k = 3: \text{ MENU} = \{0, x_i - \frac{3}{4}, x_i + x_j - \frac{6 - \sqrt{2}}{4}, x_1 + x_2 + x_3 - s\}$$

Manelli & Vincent 2006, Hart & Reny 2010, Giannakopoulos & Koutsoupias 2014, Daskalakis, Deckelbaum & Tzamos 2017

SERGIU HART ⓒ 2012 - p. 24

Valuations ("willingness to pay") of BUYER increase

Valuations ("willingness to pay") of BUYER increase

⇒ Maximal revenue of SELLER increases

Valuations ("willingness to pay") of BUYER increase ⇒ Maximal revenue of SELLER increases

Proof for k = 1.

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1. For every y > x:

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1. For every y > x: $q(x) x - s(x) \ge q(y) x - s(y)$ (IC: $x \Rightarrow y$)

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1. For every y > x: $q(x) x - s(x) \ge q(y) x - s(y)$ (IC: $x \nleftrightarrow y$) $q(y) y - s(y) \ge q(x) y - s(x)$ (IC: $y \nleftrightarrow x$)

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1. For every y > x: $q(x) x - s(x) \ge q(y) x - s(y)$ (IC: $x \nleftrightarrow y$) $q(y) y - s(y) \ge q(x) y - s(x)$ (IC: $y \nleftrightarrow x$) $\Rightarrow q(y)(y - x) \ge q(x)(y - x)$ (add)

Valuations ("willingness to pay") of **BUYER** increase ⇒ Maximal revenue of SELLER increases **Proof for** k = 1. For every y > x: q(x) x - s(x) > q(y) x - s(y) $(\mathsf{IC}: x \nrightarrow y)$ $(\mathsf{IC}: y \nrightarrow x)$ q(y) y - s(y) > q(x) y - s(x) $\Rightarrow q(y)(y-x) \geq q(x)(y-x)$ (add) $(\boldsymbol{y} > \boldsymbol{x})$ $\Rightarrow q(y) > q(x)$

Valuations ("willingness to pay") of **BUYER** increase ⇒ Maximal revenue of SELLER increases **Proof for** k = 1. For every y > x: q(x) x - s(x) > q(y) x - s(y) $(\mathsf{IC}: x \nrightarrow y)$ $(\mathsf{IC}: y \nrightarrow x)$ q(y) y - s(y) > q(x) y - s(x) $\Rightarrow q(y)(y-x) \geq q(x)(y-x)$ (add) (y > x) $\Rightarrow q(y) > q(x)$ $(\mathsf{IC}: x \nrightarrow y)$ s(y) - s(x) > (q(y) - q(x)) x

Valuations ("willingness to pay") of **BUYER** increase ⇒ Maximal revenue of SELLER increases **Proof for** k = 1. For every y > x: q(x) x - s(x) > q(y) x - s(y) $(\mathsf{IC}: x \nrightarrow y)$ $(\mathsf{IC}: y \nrightarrow x)$ q(y) y - s(y) > q(x) y - s(x) $\Rightarrow q(y)(y-x) \geq q(x)(y-x)$ (add) $(\boldsymbol{y} > \boldsymbol{x})$ $\Rightarrow q(y) > q(x)$ $(\mathsf{IC}: x \nrightarrow y)$ $s(y) - s(x) \ge (q(y) - q(x)) x$ $\Rightarrow s(y) - s(x) > 0$

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1. For every y > x:

$$\Rightarrow \ s(y) - s(x) \geq 0$$

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1.

- Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1.
- $y > x \Rightarrow s(y) \ge s(x)$
- Every IC mechanism has monotonic s

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1.

• $y > x \Rightarrow s(y) > s(x)$

- Every IC mechanism has monotonic s
- Revenue of every IC mechanism is monotonic w.r.t. to BUYER valuations

Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1.

- $y > x \Rightarrow s(y) \ge s(x)$
- Every IC mechanism has monotonic s
- Revenue of every IC mechanism is monotonic w.r.t. to BUYER valuations
- Maximal revenue is monotonic w.r.t.
 BUYER valuations

- Valuations ("willingness to pay") of BUYER increase \Rightarrow Maximal revenue of SELLER increases Proof for k = 1.
- $y > x \Rightarrow s(y) \ge s(x)$
- Every IC mechanism has monotonic s
- Revenue of every IC mechanism is monotonic w.r.t. to BUYER valuations
- Maximal revenue is monotonic w.r.t.
 BUYER valuations
- Proof for k > 1?

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE (moreover: unique maximizer; robust)

Non-Monotonic Mechanism

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE (moreover: unique maximizer; robust)

Non-Monotonic Mechanism

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

- There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE (moreover: unique maximizer; robust)
- There exist 2-good valuations X, Y s.t.
 - $Y \ge X$ and $\mathsf{Rev}(Y) < \mathsf{Rev}(X)$

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

- There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE (moreover: unique maximizer; robust)
- There exist 2-good valuations X, Y s.t.
 - $Y \ge X$ and $\mathsf{Rev}(Y) < \mathsf{Rev}(X)$
 - $(Y \ge X)$: first-order stochastic dominance)

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

- There exist 2-good valuations X for which this mechanism MAXIMIZES REVENUE (moreover: unique maximizer; robust)
- There exist 2-good valuations X, Y s.t.
 - $Y \ge X$ and $\mathsf{Rev}(Y) < \mathsf{Rev}(X)$
 - $(Y \ge X)$: first-order stochastic dominance)

Hart & Reny 2015

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

 $egin{aligned} & X_lpha \sim \left\{ egin{aligned} & (10,0) & ext{w/probability 1/4} \ & (0,20) & ext{w/probability 1/4} - lpha \ & (20,20) & ext{w/probability } lpha \ & (20,30) & ext{w/probability 1/2} \end{aligned}
ight.$

SERGIU HART (C) 2012 - p. 30

$$\mathsf{MENU} = \{\mathbf{0},\, x_1 - \mathbf{10},\, x_2 - \mathbf{20},\, x_1 + x_2 - \mathbf{40}\}$$

$$egin{aligned} X_lpha \sim \left\{egin{aligned} (10,0) & ext{w/probability 1/4} \ (0,20) & ext{w/probability 1/4} - lpha \ (20,20) & ext{w/probability } lpha \ (20,30) & ext{w/probability 1/2} \end{aligned}
ight.$$

$$\mathsf{Rev}(X_{lpha}) = 27.5 - lpha \quad (0 \le lpha \le 1/12)$$

When the willingness to pay of **BUYER** increases:

When the willingness to pay of **BUYER** increases:

How large can the loss in revenue be?

When the willingness to pay of **BUYER** increases:

How large can the loss in revenue be?

Is there a way for SELLER to avoid this loss in revenue?

Non-Monotonicity Loss

$$oldsymbol{\lambda} \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

$$oldsymbol{\lambda} \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

 $(0 \leq \lambda \leq 1)$

$$\lambda \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

 $(0 \leq \lambda \leq 1)$

• 1 good: $\lambda = 1$

SERGIU HART C 2012 - p. 32

$$\lambda \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

 $(0 \leq \lambda \leq 1)$

- 1 good: $\lambda = 1$
- **9** 2 or more goods: $\lambda = 0$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

For every $\varepsilon > 0$ there are random valuations X and Y in $[0, 1]^k$ such that

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

For every $\varepsilon > 0$ there are random valuations X and Y in $[0, 1]^k$ such that

 $Y \geq X$ $\mathsf{Rev}(Y) < arepsilon \cdot \mathsf{Rev}(X)$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

For every $\varepsilon > 0$ there are random valuations X and Y in $[0, 1]^k$ such that

 $Y \geq X$ $\mathsf{Rev}(Y) < \varepsilon \cdot \mathsf{Rev}(X)$

Hart & Nisan (2023)

$$egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

$$\checkmark Z := \sum_i X_i$$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_i X_i$$

• $Y := (Z, ..., Z)$

SERGIU HART (C) 2012 - p. 34

$$egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

• $Z := \sum_i X_i$ • $Y := (Z, ..., Z) \ge X$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_{i} X_{i}$$

• $Y := (Z, ..., Z) \ge X$
• $\mathsf{Rev}(Y) = \mathsf{Rev}(Z, ..., Z) = k \cdot \mathsf{Rev}(Z)$

SERGIU HART (C) 2012 - p. 34

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_i X_i$$

• $\mathsf{Rev}(Y) = \mathsf{Rev}(Z, ..., Z) = k \cdot \mathsf{Rev}(Z)$ = $k \cdot \mathsf{Rev}(\sum_i X_i) = k \cdot \mathsf{BRev}(X)$

SERGIU HART (C) 2012 - p. 34

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_i X_i$$

- $\mathsf{Rev}(Y) = \mathsf{Rev}(Z, ..., Z) = k \cdot \mathsf{Rev}(Z)$ = $k \cdot \mathsf{Rev}(\sum_i X_i) = k \cdot \mathsf{BRev}(X)$
- Take X s.t. $\mathsf{BREV}(X) < (\varepsilon/k) \cdot \mathsf{REV}(X)$

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_i X_i$$

- $\mathsf{Rev}(Y) = \mathsf{Rev}(Z, ..., Z) = k \cdot \mathsf{Rev}(Z)$ = $k \cdot \mathsf{Rev}(\sum_i X_i) = k \cdot \mathsf{BRev}(X)$
- Take X s.t. BREV(X) < $(\varepsilon/k) \cdot \text{REV}(X)$ (Hart & Nisan 2013 and Briest & al 2010)

$$egin{aligned} egin{aligned} \lambda &= \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)} = 0 \end{aligned}$$

•
$$Z := \sum_i X_i$$

- $\mathsf{Rev}(Y) = \mathsf{Rev}(Z, ..., Z) = k \cdot \mathsf{Rev}(Z)$ = $k \cdot \mathsf{Rev}(\sum_i X_i) = k \cdot \mathsf{BRev}(X)$
- Take X s.t. $BREV(X) < (\varepsilon/k) \cdot REV(X)$ (Hart & Nisan 2013 and Briest & al 2010)
- $\Rightarrow \mathsf{Rev}(Y) < \varepsilon \cdot \mathsf{Rev}(X)$

Non-Monotonicity Loss

Non-Monotonicity Loss

 $oldsymbol{\lambda} := \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$
$$\lambda := \inf_{Y \ge X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

INDEPENDENT goods:

$$oldsymbol{\lambda} \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

INDEPENDENT goods:

$$onumber k=2 \qquad \lambda \geq 0.62 \quad \left(rac{\sqrt{e}}{\sqrt{e}+1}
ight)$$

$$oldsymbol{\lambda} \, := \, \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

INDEPENDENT goods:

 $onumber k=2 \qquad \lambda \geq 0.62$

$$\left(rac{\sqrt{e}}{\sqrt{e}+1}
ight)$$

 $\left(\frac{e}{e+1}\right)$

 $\checkmark k=2$ regular $\lambda \geq 0.73$

$$\lambda := \inf_{Y \geq X} rac{\mathsf{Rev}(Y)}{\mathsf{Rev}(X)}$$

INDEPENDENT goods:

 $onumber k=2 \qquad \qquad \lambda \geq 0.62$

$$\left(\frac{\sqrt{e}}{\sqrt{e}+1}\right)$$

• k=2 regular $\lambda \geq 0.73$

 $\left(\frac{e}{e+1}\right)$

• For every $Y \ge X$: • $\mathsf{Rev}(Y) \ge \mathsf{SRev}(Y) \ge \mathsf{SRev}(X)$

• For every $Y \ge X$: • $\mathsf{REV}(Y) \ge \mathsf{SREV}(Y) \ge \mathsf{SREV}(X)$ • $\mathsf{REV}(Y) \ge \mathsf{BREV}(Y) \ge \mathsf{BREV}(X)$

• For every Y > X: • $\mathsf{Rev}(Y) > \mathsf{SRev}(Y) \ge \mathsf{SRev}(X)$ • $\mathsf{Rev}(Y) > \mathsf{BRev}(Y) > \mathsf{BRev}(X)$ $\max\{\mathsf{SRev}(X),\mathsf{BRev}(X)\}$ $\Rightarrow \lambda >$ $\mathsf{Rev}(X)$

• For every
$$Y \ge X$$
:
• $\mathsf{Rev}(Y) \ge \mathsf{SRev}(Y) \ge \mathsf{SRev}(X)$
• $\mathsf{Rev}(Y) \ge \mathsf{BRev}(Y) \ge \mathsf{BRev}(X)$
 $\Rightarrow \lambda \ge \frac{\max\{\mathsf{SRev}(X), \mathsf{BRev}(X)\}}{\mathsf{Rev}(X)}$
• $k = 2$: Hart & Reny 2016/2019

 $rac{\mathsf{SRev}(X)}{\mathsf{Rev}(X)} \geq 0.62, \, rac{\mathsf{SRev}(X)}{\mathsf{Rev}(X)} \geq 0.73 \, (\mathrm{regular})$

• For every
$$Y \ge X$$
:
• $\operatorname{Rev}(Y) \ge \operatorname{SRev}(Y) \ge \operatorname{SRev}(X)$
• $\operatorname{Rev}(Y) \ge \operatorname{BRev}(Y) \ge \operatorname{BRev}(X)$
 $\Rightarrow \lambda \ge \frac{\max\{\operatorname{SRev}(X), \operatorname{BRev}(X)\}}{\operatorname{Rev}(X)}$
• $k = 2$: Hart & Reny 2016/2019
 $\frac{\operatorname{SRev}(X)}{\operatorname{Rev}(X)} \ge 0.62, \frac{\operatorname{SRev}(X)}{\operatorname{Rev}(X)} \ge 0.73 \text{ (regular)}$
• $k \ge 2$: Babaioff & al 2014
 $\frac{\max\{\operatorname{SRev}(X), \operatorname{BRev}(X)\}}{\operatorname{Rev}(X)} \ge 1/6$

SERGIU HART (C) 2012 - p. 37

Theorem. There exists a mechanism μ such that $R(\mu;Y) \geq \mathsf{GRev}(X)$ for every $Y \geq X$.

SERGIU HART © 2012 - p. 37

Theorem. There exists a mechanism μ such that

 $R(\mu;Y) \geq \mathsf{GRev}(X)$

for every $Y \geq X$.

Proof. MINIMAX theorem (assume: X integrable)

SERGIU HART © 2012 - p. 37

GREV = guaranteed Revenue

Theorem. There exists a mechanism μ such that

 $R(\mu;Y) \geq \mathsf{GRev}(X)$

for every $Y \geq X$.

Proof. MINIMAX theorem (assume: X integrable)

Guaranteed Revenue

$\mathsf{GREV}(X) := \inf_{Y \ge X} \mathsf{REV}(Y)$

Guaranteed Revenue for 2 Goods

$\mathsf{GREV}(X) := \inf_{Y \ge X} \mathsf{REV}(Y)$

For k = 2:

SERGIU HART © 2012 - p. 38

Guaranteed Revenue for 2 Goods

$$\mathsf{GREV}(X) := \inf_{Y \ge X} \mathsf{REV}(Y)$$

For k = 2:

• GREV(X) = MONREV(X) = the maximal revenue obtainable from X using *monotonic* mechanisms

Guaranteed Revenue for 2 Goods

$$\mathsf{GREV}(X) := \inf_{Y \ge X} \mathsf{REV}(Y)$$

For k = 2:

- GREV(X) = MONREV(X) = the maximal revenue obtainable from X using*monotonic*mechanisms
- For X with finite support: GREV(X) is computed by Linear Programming, using the *"conical grid"* generated by X

Non-Monotonicity: Questions

Non-Monotonicity: Questions

Non-Monotonicity: Questions

When the willingness to pay of **BUYER** increases:

How large can the loss in revenue be?

Non-Monotonicity: Answers

- How large can the loss in revenue be?
 - **Extremely large !** (almost all revenue)

Non-Monotonicity: Answers

- How large can the loss in revenue be?
 - **Extremely large !** (almost all revenue)
- Is there a way for SELLER to avoid this loss in revenue?

Non-Monotonicity: Answers

- How large can the loss in revenue be?
 - **Extremely large !** (almost all revenue)
- Is there a way for SELLER to avoid this loss in revenue?
 - No way ! (?)

ex ante:

ex ante:

SELLER chooses mechanism $\mu = (q, s)$

ex ante:

SELLER chooses mechanism $\mu = (q, s)$

ex ante:

- SELLER chooses mechanism $\mu = (q, s)$
- ex post (X realized):
- **BUYER** payoff $= b(X) = q(X) \cdot X s(X)$

ex ante:

- SELLER chooses mechanism $\mu = (q, s)$
- ex post (X realized):
- BUYER payoff $= b(X) = q(X) \cdot X s(X)$
- SELLER payoff = E[s(Y)]

ex ante:

BUYER announces $Y \ge X$

and *commits* to act according to Y

 $\,\,$ SELLER chooses mechanism $\mu=(q,s)$

- BUYER payoff $= b(X) = q(X) \cdot X s(X)$
- SELLER payoff = E[s(Y)]

Committing to Overbid

SELLER chooses mechanism $\mu = (q, s)$

- BUYER payoff $= b(X) = q(X) \cdot X s(X)$
- SELLER payoff = E[s(Y)]

Committing to Overbid

- BUYER payoff $= b(X) = q(X) \cdot X s(X)$
- SELLER payoff = E[s(Y)]

Committing to Overbid

• SELLER payoff = E[s(Y)]
Committing to Overbid

SELLER payoff = $\mathrm{E}[\tilde{s}(Y)]$

Committing to Overbid

SERGIU HART (C) 2012 - p. 40

•	
	0.3
	0.3

Prob

0.4

SERGIU HART (C) 2012 - p. 41

- 0.3 (10, 0)
- 0.3 (10, 20)
- 0.4 (20, 30)

Prob
$$X$$
 $b(X)$

- 0.3 (10,0) 0
- 0.3 (10, 20) 0
- 0.4 (20, 30) 10

 $\mu=$ unique optimal mechanism for X: MENU = $\{0,\,x_1-10,\,x_2-20,\,x_1+x_2-40\}$ REV(X)=25

ProbXb(X)0.3(10,0)00.3(10,20)00.4(20,30)10

SERGIU HART (C) 2012 - p. 42

Prob	$oldsymbol{X}$	b(X)	Y
0.3	(10, 0)	0	(10, 0)
0.3	(10, 20)	0	(12, 20)
0.4	(20,30)	10	(20,30)

Prob	$oldsymbol{X}$	$\boldsymbol{b}(\boldsymbol{X})$	$oldsymbol{Y}$	$ ilde{m{b}}(m{Y} m{X})$
0.3	(10, 0)	0	(10, 0)	0
0.3	(10, 20)	0	(12, 20)	0
0.4	(20, 30)	10	(20, 30)	20

 $ilde{\mu}=$ unique optimal mechanism for Y: MENU $\tilde{}=\{0,\,x_1-10,\,x_1+x_2-30\}$ REV(Y)=24

Prob	X	$\boldsymbol{b}(\boldsymbol{X})$	Y	$ ilde{m{b}}(Y X)$
0.3	(10, 0)	0	(10, 0)	0
0.3	(10, 20)	0	(12, 20)	0
0.4	(20, 30)	10	(20, 30)	20

Prob	X	b(X)	Y	$ ilde{m{b}}(Y X)$
0.3	(10, 0)	0	(10, 0)	0
0.3	(10, 20)	0	(12, 20)	0
0.4	(20, 30)	10	(20, 30)	20

COMMITMENT TO Y IS PROFITABLE FOR X: $\tilde{b}(Y|X)$ DOMINATES b(X)

BUYER commits to higher valuations

Committing to Overbid: Example BUYER commits to higher valuations BUYER : no types lose and some types gain (according to the original valuations)

Gonczarowski & Hart 2024

When the willingness to pay of **BUYER** increases:

How large can the loss in revenue be?

- How large can the loss in revenue be?
 - **Extremely large !** (up to entire revenue)

- How large can the loss in revenue be?
 - **Extremely large !** (up to entire revenue)
- Is there a way for SELLER to avoid this loss in revenue?

- How large can the loss in revenue be?
 - **Extremely large !** (up to entire revenue)
- Is there a way for SELLER to avoid this loss in revenue?
 - No way !

Two(!) Good To Be ... Monotonic

Two(!) Good To Be ... Monotonic

Working with Phil is as exciting and **NON-MONOTONIC** as it can get !

Working with Phil is as exciting and **NON-MONOTONIC** as it can get !

Thank you, Phil

SERGIU HART (C) 2012 - p. 46