Publication List for Elon Lindenstrauss

Updated on 2023-07-28

All my recent publications are available also on arXiv. For older papers, please refer to my old (and no longer maintained) publication page.

1.
Einsiedler, M., Lindenstrauss, E.: Rigidity of non-maximal torus actions, unipotent quantitative recurrence, and diophantine approximations, https://arxiv.org/abs/2307.04163, (2023)
2.
Lindenstrauss, E., Mohammadi, A., Wang, Z., Yang, L.: An effective version of the oppenheim conjecture with a polynomial error rate, https://arxiv.org/abs/2305.18271, (2023)
3.
Lindenstrauss, E., Mohammadi, A., Wang, Z.: Quantitative equidistribution and the local statistics of the spectrum of a flat torus, https://arxiv.org/abs/2305.18261, (2023)
4.
Lindenstrauss, E., Wei, D.: Time change for unipotent flows and rigidity, https://arxiv.org/abs/2301.02742, (2023)
5.
Lindenstrauss, E., Mohammadi, A.: Polynomial effective density in quotients of $\Bbb H^3$ and $\Bbb H^2\times\Bbb H^2$. Invent. Math. 231, 1141–1237 (2023). https://doi.org/10.1007/s00222-022-01162-5
6.
Lindenstrauss, E., Mohammadi, A., Wang, Z.: Polynomial effective equidistribution. C. R. Math. Acad. Sci. Paris. 361, 507–520 (2023). https://doi.org/10.5802/crmath.411
7.
Landesberg, O., Lee, M., Lindenstrauss, E., Oh, H.: Horospherical invariant measures and a rank dichotomy for Anosov groups. J. Mod. Dyn. 19, 331–362 (2023). https://doi.org/10.3934/jmd.2023009
8.
He, W., Lakrec, T., Lindenstrauss, E.: Equidistribution of affine random walks on some nilmanifolds. In: Avila, A., Rassias, M.Th., and Sinai, Y. (eds.) Analysis at large: Dedicated to the life and work of jean bourgain. pp. 131–171. Springer (2022)
9.
Lindenstrauss, E., Mohammadi, A., Wang, Z.: Effective equidistribution for some one parameter unipotent flows, https://arxiv.org/abs/2211.11099, (2022)
10.
He, W., Lakrec, T., Lindenstrauss, E.: Affine random walks on the torus. Int. Math. Res. Not. IMRN. 8003–8037 (2022). https://doi.org/10.1093/imrn/rnaa322
11.
Lindenstrauss, E.: Recent progress on rigidity properties of higher rank diagonalizable actions and applications. In: Dynamics, geometry, number theory—the impact of Margulis on modern mathematics. pp. 362–425. Univ. Chicago Press, Chicago, IL (2022)
12.
Einsiedler, M., Lindenstrauss, E.: Rigidity properties for commuting automorphisms on tori and solenoids. Ergodic Theory Dynam. Systems. 42, 691–736 (2022). https://doi.org/10.1017/etds.2021.74
13.
Landesberg, O., Lindenstrauss, E.: On Radon measures invariant under horospherical flows on geometrically infinite quotients. Int. Math. Res. Not. IMRN. 11602–11641 (2022). https://doi.org/10.1093/imrn/rnab024
14.
Einsiedler, M., Lindenstrauss, E., Mohammadi, A.: Diagonal actions in positive characteristic. Duke Math. J. 169, 117–175 (2020). https://doi.org/10.1215/00127094-2019-0038
15.
Lindenstrauss, E., Sarnak, P., Wilkinson, A.: Ratner’s work on unipotent flows and its impact. Notices Amer. Math. Soc. 66, 373–377 (2019)
16.
Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29, 1048–1109 (2019). https://doi.org/10.1007/s00039-019-00501-8
17.
Einsiedler, M., Lindenstrauss, E.: Joinings of higher rank torus actions on homogeneous spaces. Publ. Math. Inst. Hautes Études Sci. 129, 83–127 (2019). https://doi.org/10.1007/s10240-019-00103-y
18.
Einsiedler, M., Lindenstrauss, E.: Symmetry of entropy in higher rank diagonalizable actions and measure classification. J. Mod. Dyn. 13, 163–185 (2018). https://doi.org/10.3934/jmd.2018016
19.
Lindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: Variational principle. IEEE Trans. Inform. Theory. 64, 3590–3609 (2018). https://doi.org/10.1109/TIT.2018.2806219
20.
Kadyrov, S., Kleinbock, D., Lindenstrauss, E., Margulis, G.A.: Singular systems of linear forms and non-escape of mass in the space of lattices. J. Anal. Math. 133, 253–277 (2017). https://doi.org/10.1007/s11854-017-0033-4
21.
Brooks, S., Le Masson, E., Lindenstrauss, E.: Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. IMRN. 6034–6064 (2016). https://doi.org/10.1093/imrn/rnv337
22.
Lindenstrauss, E., Varjú, P.P.: Spectral gap in the group of affine transformations over prime fields. Ann. Fac. Sci. Toulouse Math. (6). 25, 969–993 (2016). https://doi.org/10.5802/afst.1518
23.
Lindenstrauss, E., Varjú, P.P.: Random walks in the group of Euclidean isometries and self-similar measures. Duke Math. J. 165, 1061–1127 (2016). https://doi.org/10.1215/00127094-3167490
24.
Gutman, Y., Lindenstrauss, E., Tsukamoto, M.: Mean dimension of $\Bbb{Z}^k$-actions. Geom. Funct. Anal. 26, 778–817 (2016). https://doi.org/10.1007/s00039-016-0372-9
25.
Lindenstrauss, E., Saxcé, N. de: Hausdorff dimension and subgroups of SU(2). Israel J. Math. 209, 335–354 (2015). https://doi.org/10.1007/s11856-015-1221-5
26.
Einsiedler, M., Lindenstrauss, E.: On measures invariant under tori on quotients of semisimple groups. Ann. of Math. (2). 181, 993–1031 (2015). https://doi.org/10.4007/annals.2015.181.3.3
27.
Lindenstrauss, E., Margulis, G.: Effective estimates on indefinite ternary forms. Israel J. Math. 203, 445–499 (2014). https://doi.org/10.1007/s11856-014-1110-3
28.
Lindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: An example. Israel J. Math. 199, 573–584 (2014). https://doi.org/10.1007/s11856-013-0040-9
29.
Brooks, S., Lindenstrauss, E.: Joint quasimodes, positive entropy, and quantum unique ergodicity. Invent. Math. 198, 219–259 (2014). https://doi.org/10.1007/s00222-014-0502-7
30.
Brooks, S., Lindenstrauss, E.: Non-localization of eigenfunctions on large regular graphs. Israel J. Math. 193, 1–14 (2013). https://doi.org/10.1007/s11856-012-0096-y
31.
Lindenstrauss, E., Shapira, U.: Homogeneous orbit closures and applications. Ergodic Theory Dynam. Systems. 32, 785–807 (2012). https://doi.org/10.1017/S0143385710000842
32.
Lindenstrauss, E., Wang, Z.: Topological self-joinings of Cartan actions by toral automorphisms. Duke Math. J. 161, 1305–1350 (2012). https://doi.org/10.1215/00127094-1593290
33.
Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: The distribution of closed geodesics on the modular surface, and Duke’s theorem. Enseign. Math. (2). 58, 249–313 (2012). https://doi.org/10.4171/LEM/58-3-2
34.
Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits and Duke’s theorem for cubic fields. Ann. of Math. (2). 173, 815–885 (2011). https://doi.org/10.4007/annals.2011.173.2.5
35.
Bourgain, J., Furman, A., Lindenstrauss, E., Mozes, S.: Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus. J. Amer. Math. Soc. 24, 231–280 (2011). https://doi.org/10.1090/S0894-0347-2010-00674-1
36.
Lindenstrauss, E.: Equidistribution in homogeneous spaces and number theory. In: Proceedings of the International Congress of Mathematicians. Volume I. pp. 531–557. Hindustan Book Agency, New Delhi (2010)
37.
Brooks, S., Lindenstrauss, E.: Graph eigenfunctions and quantum unique ergodicity. C. R. Math. Acad. Sci. Paris. 348, 829–834 (2010). https://doi.org/10.1016/j.crma.2010.07.003
38.
Einsiedler, M., Lindenstrauss, E.: Diagonal actions on locally homogeneous spaces. In: Homogeneous flows, moduli spaces and arithmetic. pp. 155–241. Amer. Math. Soc., Providence, RI (2010)
39.
Bourgain, J., Lindenstrauss, E., Michel, P., Venkatesh, A.: Some effective results for  × a × b. Ergodic Theory Dynam. Systems. 29, 1705–1722 (2009). https://doi.org/10.1017/S0143385708000898
40.
Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits on homogeneous spaces. Duke Math. J. 148, 119–174 (2009). https://doi.org/10.1215/00127094-2009-023
41.
Einsiedler, M., Lindenstrauss, E.: On measures invariant under diagonalizable actions: The rank-one case and the general low-entropy method. J. Mod. Dyn. 2, 83–128 (2008). https://doi.org/10.3934/jmd.2008.2.83
42.
Lindenstrauss, E., Mirzakhani, M.: Ergodic theory of the space of measured laminations. Int. Math. Res. Not. IMRN. Art. ID rnm126, 49 (2008). https://doi.org/10.1093/imrn/rnm126
43.
Bourgain, J., Furman, A., Lindenstrauss, E., Mozes, S.: Invariant measures and stiffness for non-abelian groups of toral automorphisms. C. R. Math. Acad. Sci. Paris. 344, 737–742 (2007). https://doi.org/10.1016/j.crma.2007.04.017
44.
Lindenstrauss, E.: Some examples how to use measure classification in number theory. In: Equidistribution in number theory, an introduction. pp. 261–303. Springer, Dordrecht (2007)
45.
Lindenstrauss, E., Venkatesh, A.: Existence and Weyl’s law for spherical cusp forms. Geom. Funct. Anal. 17, 220–251 (2007). https://doi.org/10.1007/s00039-006-0589-0
46.
Einsiedler, M., Lindenstrauss, E.: Joinings of higher-rank diagonalizable actions on locally homogeneous spaces. Duke Math. J. 138, 203–232 (2007). https://doi.org/10.1215/S0012-7094-07-13822-5
47.
Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2). 163, 165–219 (2006). https://doi.org/10.4007/annals.2006.163.165
48.
Einsiedler, M., Lindenstrauss, E.: Diagonalizable flows on locally homogeneous spaces and number theory. In: International Congress of Mathematicians. Vol. II. pp. 1731–1759. Eur. Math. Soc., Zürich (2006)
49.
Lindenstrauss, E.: Adelic dynamics and arithmetic quantum unique ergodicity. In: Current developments in mathematics, 2004. pp. 111–139. Int. Press, Somerville, MA (2006)
50.
Einsiedler, M., Katok, A., Lindenstrauss, E.: Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. of Math. (2). 164, 513–560 (2006). https://doi.org/10.4007/annals.2006.164.513
51.
Lindenstrauss, E.: Rigidity of multiparameter actions. In: Israel J. Math. pp. 199–226 (2005)
52.
Lindenstrauss, E., Schmidt, K.: Symbolic representations of nonexpansive group automorphisms. In: Israel J. Math. pp. 227–266 (2005)
53.
Lindenstrauss, E.: Invariant measures for multiparameter diagonalizable algebraic actions—a short survey. In: European Congress of Mathematics. pp. 247–256. Eur. Math. Soc., Zürich (2005)
54.
Lindenstrauss, E., Schmidt, K.: Invariant sets and measures of nonexpansive group automorphisms. Israel J. Math. 144, 29–60 (2004). https://doi.org/10.1007/BF02984405
55.
Kleinbock, D., Lindenstrauss, E., Weiss, B.: On fractal measures and Diophantine approximation. Selecta Math. (N.S.). 10, 479–523 (2004). https://doi.org/10.1007/s00029-004-0378-2
56.
Lindenstrauss, E.: Recurrent measures and measure rigidity. In: Dynamics and randomness II. pp. 123–145. Kluwer Acad. Publ., Dordrecht (2004)
57.
Ledrappier, F., Lindenstrauss, E.: On the projections of measures invariant under the geodesic flow. Int. Math. Res. Not. 511–526 (2003). https://doi.org/10.1155/S1073792803208114
58.
Bourgain, J., Lindenstrauss, E.: Entropy of quantum limits. Comm. Math. Phys. 233, 153–171 (2003). https://doi.org/10.1007/s00220-002-0770-8
59.
Einsiedler, M., Lindenstrauss, E.: Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids. Electron. Res. Announc. Amer. Math. Soc. 9, 99–110 (2003). https://doi.org/10.1090/S1079-6762-03-00117-3
60.
Lindenstrauss, E., Peres, Y., Schlag, W.: Bernoulli convolutions and an intermediate value theorem for entropies of K-partitions. In: J. Anal. Math. pp. 337–367 (2002)
61.
Lindenstrauss, E., Weiss, B.: On sets invariant under the action of the diagonal group. Ergodic Theory Dynam. Systems. 21, 1481–1500 (2001). https://doi.org/10.1017/S0143385701001717
62.
Lindenstrauss, E.: On quantum unique ergodicity for $\Gamma\backslash\Bbb H\times\Bbb H$. Internat. Math. Res. Notices. 913–933 (2001). https://doi.org/10.1155/S1073792801000459
63.
Lindenstrauss, E.: p-adic foliation and equidistribution. Israel J. Math. 122, 29–42 (2001). https://doi.org/10.1007/BF02809889
64.
Lindenstrauss, E.: Pointwise theorems for amenable groups. Invent. Math. 146, 259–295 (2001). https://doi.org/10.1007/s002220100162
65.
Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115, 1–24 (2000). https://doi.org/10.1007/BF02810577
66.
Lindenstrauss, E.: Indistinguishable sceneries. Random Structures Algorithms. 14, 71–86 (1999). https://doi.org/10.1002/(SICI)1098-2418(1999010)14:1<71::AID-RSA4>3.0.CO;2-9
67.
Lindenstrauss, E., Meiri, D., Peres, Y.: Entropy of convolutions on the circle. Ann. of Math. (2). 149, 871–904 (1999). https://doi.org/10.2307/121075
68.
Lindenstrauss, E.: Measurable distal and topological distal systems. Ergodic Theory Dynam. Systems. 19, 1063–1076 (1999). https://doi.org/10.1017/S0143385799133911
69.
Lindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math. 227–262 (1999)
70.
Lindenstrauss, E.: Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc. 5, 82–90 (1999). https://doi.org/10.1090/S1079-6762-99-00065-7
71.
Lindenstrauss, E.: Lowering topological entropy. J. Anal. Math. 67, 231–267 (1995). https://doi.org/10.1007/BF02787792