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Abstract. Let ν be a probability measure on SLd(Z) satisfying the moment
condition Eν(‖g‖ε) < ∞ for some ε. We show that if the group generated by
the support of ν is large enough, in particular if this group is Zariski dense in
SLd, for any irrational x ∈ Td the probability measures ν∗n ∗ δx tend to the
uniform measure on Td. If in addition x is Diophantine generic, we show this
convergence is exponentially fast.

1. Introduction and Statement of the Main Results

Let Γ be a semigroup of d × d nonsingular integer matrices, and consider the
action of Γ on the torus Td. We assume throughout that the action is strongly
irreducible: there is no subtorus invariant under a finite index subsemigroup of Γ.

The strong irreducibility assumption in particular implies that Γ acts ergodi-
cally on Td (equipped with the Lebesgue measure m). Therefore the Γ-orbit of
Lebesgue almost every x ∈ Td is dense, and in an appropriate sense even becomes
equidistributed. However when Γ is cyclic there is a set of full Hausdorff dimension
of exceptional points x for which Γ.x fails to be dense.

When Γ is bigger the distribution of individual Γ-orbits can be expected to be
much more restrictive. An important result in this direction is due to Furstenberg
who showed for d = 1 (in which case Γ < Z×, and in particular abelian) that
if Γ is not virtually cyclic, Γ.x is dense for all irrational x ∈ T, and moreover
for any open U ⊂ T there are only finitely many rational points whose Γ-orbits
avoids U . This has been extended by Berend [1] to actions of abelian semigroups
of toral endomorphisms on Td. However, in both cases, while the orbit closure
of individual orbits are very restricted, there is some flexibility on how such an
orbit distributes; for example consider the orbit of x =

∑∞
k=1 2−k! ∈ T under the

semigroup Γ = 〈2, 3〉.
In this paper we consider the action of semigroups Γ which satisfy the following

three conditions:
(Γ-0) Γ < SLd(R),
(Γ-1) Γ acts strongly irreducibly on Rd,
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(Γ-2) Γ contain a proximal element: there is some g ∈ Γ with a dominant
eigenvalue which is a simple root of its characteristic polynomial.

Note that (Γ-1) is substantially stronger than the requirement we have already
imposed that Γ acts strongly irreducibly on Td. In particular, for d > 1 an
abelian semigroup never satisfies condition (Γ-1); indeed, the group generated by
a semigroup satisfying (Γ-1) is nonamenable. Assumption (Γ-2) is a technical
condition which is in particular satisfied when Γ is a Zariski dense semigroup of
SLd(Z) [16]. While a substantial part of the argument works without assumption
(Γ-0), without it simple counterexamples can be given to Theorem A below, similar
to the example above of a non-equidistributed orbit for the semigroup 〈2, 3〉.

Under these (and more general) conditions, R. Muchnik [26] and Guivarc’h-
Starkov [19] proved the analog of the theorems of Furstenberg and Berend, namely
that for any x ∈ Td with at least one irrational coordinate Γ.x is dense, and
moreover that there are only finitely many rational x whose orbit avoids a given
open neighborhood in Td.

We study the quantitative distribution properties of Γ-orbits. Since Γ is not
amenable we do this by considering a random walk on Γ.x corresponding to a
probability measure ν on Γ. We will assume that ν satisfies the moment condition

(1.1)
∑
g∈Γ

ν(g)‖g‖ε <∞ for some ε > 0.

Given a probability measure ν on Γ and a probability measure µ on Td the
convolution ν ∗ µ ∈ Td is

ν ∗ µ =
∑
g∈Γ

ν(g) g∗µ.

Furstenberg [14] has shown that under assumption (Γ-1) the top Liapunov expo-
nent defined by

λ1(ν) = lim
n→∞

1
n

log ‖g1g2 · · · gn‖ νZ+-a.s.

is positive. Assumption (Γ-2) guarantees that this Liapunov exponent is simple
[16,17]. Our main theorem is the following:

Theorem A. Let Γ < SLd(R) satisfy (Γ-1) and (Γ-2) above, and let ν be a
probability measure supported on a set of generators of Γ satisfying (1.1). Then
for any 0 < λ < λ1(ν) there is a constant C = C(ν, λ) so that if for a point x ∈ Td
the measure µn = ν(n) ∗ δx satisfies that for some a ∈ Zd \ {0}

|µ̂n(a)| > t > 0, with n > C · log(
2‖a‖
t

),

then x admits a rational approximation p/q for p ∈ Zd and q ∈ Z+ satisfying

(1.2)
∥∥∥∥x− p

q

∥∥∥∥ < e−λn and |q| <
(

2‖a‖
t

)C
.

This theorem has several corollaries:
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Corollary B. Let Γ and ν be as in Theorem A, and x ∈ Td \ (Q/Z)d. Then the
measures µn = ν∗n ∗δx converge to the Haar measure m on Td in weak-∗ topology.

This answers affirmatively a question of Guivarc’h in a private communication,
and should be contrasted with the example given above for the case of d = 1. We
also have the following more quantitative equidistribution results:

Corollary C. Let Γ and ν be as in Theorem A, x ∈ Td and µn = ν∗n ∗ δx. Then
there are c1, c2 depending only on ν so that the following holds:

(1) Assume x is Diophantine generic in the sense that for some M and Q

(1.3)
∥∥∥∥x− p

q

∥∥∥∥ > q−M for all integers q ≥ Q and p ∈ Zd.

Then for n > c1 logQ

max
b∈Zd,0<‖b‖<B

|µ̂n(b)| < Be−c2n/M

(2) Assume x 6∈ (Q/Z)d. Then there is a sequence ni →∞ along which

max
b∈Zd,0<‖b‖<ec2ni

|µ̂ni(b)| < e−c2ni

Our next corollary answers a question raised by Furstenberg in [12]. Recall
that a measure µ is said to be ν-stationary if ν ∗ µ = µ. If the support of ν
generates a semigroup Γ, any Γ-invariant probability measure is ν-stationary for
any probability measure ν on Γ, but the converse (even for a fixed ν) is not true
in general. Following Furstenberg ([12]), we say that an action Γ y X is ν-stiff if
any ν-stationary measures is Γ-invariant.

In his paper [12] Furstenberg shows that for carefully chosen ν on SLd(Z),
namely probability measures ν so that the corresponding stationary measure on
the boundary of SL(d,R) is absolutely continuous with respect to Lebesgue, the
action of SLd(Z) on Td is ν-stiff. He then suggests that this should be true for any
ν whose support generates SLd(Z). The following corollary of our main theorem
confirms Furstenberg’s insight:

Theorem D. Let Γ < SLd(R) be a semigroup satisfying (Γ-1) and (Γ-2) above,
and let ν be a probability measure supported on a set of generators of Γ satisfying
(1.1). Then any ν-stationary measure µ on Td is a convex combination of the Haar
measure on Td and atomic measures supported by rational points. In particular,
for such ν the action of Γ on Td is ν-stiff.

The results of this paper have been announced in [6]. Since then an alternative,
ergodic theoretic, approach to Theorem D was discovered by Y. Benoist and F.
Quint [2]. This approach has the advantage of being more general; in particu-
lar, Benoist and Quint have been able to prove Theorem D without making the
assumption (Γ-2). However their ergodic theoretic argument is not quantitative,
certainly not in the sense of Theorem A. It also does not give equidistribution of
ν∗n ∗ δx as in Corollary B.
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2. Deduction of corollaries from Theorem A

Is this short section, we deduce Corollaries B and C from Theorem A. The
deduction of Theorem D from Theorem A, or more precisely from the closely
related Proposition 3.1, is a given at the beginning of the next section.

Proof of Corollary B given Theorem A. Let x ∈ Td \ (Q/Z)d. Suppose that the
measures µn = ν∗n∗δx fail to converge to the Haar measure m. Then by Weyl’s
equidistribution criterion it follows that for some a ∈ Td \ {0} and some sequence
ni →∞

|µ̂ni(a)| > t > 0 for all i.
It follows from Theorem A that there is a sequence of approximations pi

qi
tending to

x with qi uniformly bounded — which of course is only possible if x is rational. �

Proof of Corollary C given Theorem A. We first prove assertion (1) of the corol-
lary. Let x be Diophantine generic in the sense of (1.3). Suppose that |µ̂n(b)| >
t/B for some b ∈ Zd with 0 < ‖b‖ < B. Then as long as

(2.1) t > 1
2e
−n/C

for C = C(ν, λ1/2) as in Theorem A, by (1.2) there are integers p, q so that∥∥∥∥x− p

q

∥∥∥∥ < e−λ1n/2 and |q| < (2t−1)C .

By (1.3), it follows that if n ≥ c1 logQ

(2.2) e−λ1n/2 > q−M > C ′t−MC .

It follows form (2.1) and (2.2) that

t ≤ C ′′max(e−n/C , e−λ1n/2MC),

establishing Corollary B, part(1).

Suppose now that for some x 6∈ (Q/Z)d part (2) of the corollary does not hold,
i.e. that for every n there is a bn ∈ Zd so that

|µ̂n(bn)| ≥ e−c2n, and ‖bn‖ < ec2n.

Then by Theorem A, as long as 2Cc2 < 1 and n is large enough there is a sequence
of rational numbers pn

qn
so that

(2.3)
∥∥∥∥x− pn

qn

∥∥∥∥ < e−λ1n/2 and |qn| < 2Ce2c2Cn.

Since x is irrational, the sequence qn is not eventually constant, so there are
arbitrarily large n for which pn

qn
6= pn+1

qn+1
. But then by (2.3) applied for both

n, n+ 1 gives

2−2Ce−4Cc2(n+1) ≤ (qnqn+1)−1 ≤
∥∥∥∥pnqn − pn+1

qn+1

∥∥∥∥ ≤ 2e−λ1n/2,

which is a contradiction for large n if 8Cc2 < λ1.
�
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3. Outline of the proof

Given Q ∈ N let

RQ =
⋃
q≤Q

{
(
p1

q
, . . . ,

pd
q

) ∈ Td : p1, . . . , pd ∈ {0, . . . , q − 1}
}

denote the set of rational points on the torus with denominators q ≤ Q. For r > 0
let WQ,r =

⋃
x∈RQ Bx,r denote the r-neighborhood of RQ. We prove Theorem A

by establishing the following:

Proposition 3.1. Let Γ and ν be as in Theorem A, 0 < λ < λ1(ν). Then for
some constant C depending on ν, λ the following holds: for any probability measure
µ0 on Td, if µn = ν∗n ∗ µ0 has a non-trivial Fourier coefficient a ∈ Zd \ {0}

(3.1) |µ̂n(a)| > t, with 0 < t <
1
2

and n > C · log(
2‖a‖
t

),

then

(3.2) µ0(WQ,e−λ·n) > tC where Q =
(

2‖a‖
t

)C
.

By specializing to the case of µ0 = δx we get Theorem A, since

δx(WQ,e−λ·n) > 0 ⇐⇒
∥∥∥∥x− a

q

∥∥∥∥ < e−λn for some q ≤ Q.

Note that somewhat surprisingly Theorem A then implies a sharper form of Propo-
sition 3.1 with the estimate (3.2) on the mass of almost rational points replaced by
the sharper estimate µ0(WQ,e−λ·n) > C ′t. In the special case of µ = µ0 = µ1 = . . .
a ν-stationary probability measure, we can take n in Proposition 3.1 to be arbi-
trarily large, and deduce that for appropriate constant C

µ(RQ) ≥ tC for Q =
(

2‖a‖
t

)C
,

with a and t as in (3.1), giving a somewhat more quantitative version of Theo-
rem D.

We sketch the proof of Proposition 3.1. The proof consists of two phases:
(Ph-1) first one starts with a lower bound on a single Fourier coefficient of the

measure µn = ν∗n∗µ, namely |µ̂n(a)| > t, and deduce from this that for an
appropriately chosen m1 < n the measure µn−m1 has a rich set of Fourier
coefficients which are larger than a polynomial in t.

(Ph-2) In the second phase, this information on the set of big Fourier coefficients
of µn1for n1 = n−m1 is used to show that for another appropriately chosen
m2 < n1 the measure µn1−m2 gives a significant (polynomial in t) mass to
small balls around rationals of low denominator.

It is perhaps instructive to present a proof of a much simpler result with a some-
what similar structure:
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Proposition 3.2 (“Baby Case”). A probability measure µ on Td which is Γ-
invariant for Γ a finite index subgroup of SLd(Z) is a linear combination of Haar
measure and a purely atomic Γ-invariant measure.

In this setting one can use the following simple argument by Marc Burger [9].

• Assume that the Γ-invariant probability measure µ is not Haar measure.
Then µ has a non trivial Fourier coefficient:

|µ̂(a)| = t > 0 at some a ∈ Zd \ {0}.

Since µ̂(a) = ĝ∗µ(a) = µ̂(gtra), it follows that |µ̂(b)| = t0 > 0 for all b ∈
Γtra. For SLd(Z) and its finite index subgroups, any orbit Γtra ⊂ Zd \ {0}
has positive density in Zd.
• By Wiener’s Lemma this implies that µ has atoms. Indeed, evaluating
µ × µ(∆) = µ ∗ µ̌({0}) (where ∆ is the diagonal in Td × Td and the
convolution µ∗ µ̌ is the image of µ×µ under the projection (x, y) 7→ x−y)
in two ways one gets the identity

(3.3)
∑

x atom of µ

µ({x})2 = lim
N→∞

1
N

N∑
n=1

1
|Bn|

∑
b∈Bn

|µ̂(b)|2

whereBN =
{
a ∈ Zd : max1≤i≤d |ai| ≤ N

}
. It follows that any γ-invariant

probability measure µ on Td can be presented as a linear combination of
Haar measure and a purely atomic Γ-invariant measure.

In the context of Proposition 3.1 establishing the existence of enough “big” Fourier
coefficients for µn1 given that µn had at least one significant Fourier coefficient
is substantially more involved, and we get much less than positive density. Con-
sequently, in the second phase of the proof we will start with a weaker type of
information on µ than in the simple proof sketched above.

3.A. Phase I: Large scale structure of the set of large Fourier coefficients.
Starting from some a0 ∈ Zd \ {0} with |µ̂n(a0)| = t0 > 0 for sufficiently large n
depending on t0, a0, we shall prove that for t = tp0 and any m1 in the range
C(1 + log t0) < m1 < n (with p, C some constants depending on Γ, ν) the set of
t-“large” Fourier coefficients

(3.4) An−m1,t =
{
a ∈ Zd : |µ̂n1(a)| > t

}
is relatively “thick” in Zd, in the following sense.

Let N (E;M) denotes the covering number of E ⊂ Zd by M -balls. In the
simple proof of Proposition 3.2 the proportion of “large” Fourier coefficients in any
sufficiently large box was shown to be positive. In the context of Proposition 3.1
the most difficult part of the proof, which in precise form is given by Theorem 6.1
below, gives that there is a large N (with N

‖a0‖bounded above and below by an

exponential in m1) and an exponentially smaller M (more precisely, M
‖a0‖ will be in
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the range
(
N
‖a0‖

)1−κ1 < M
‖a0‖ <

(
N
‖a0‖

)1−κ2) so that the number of M -balls needed
to cover the intersection An1,t ∩ [−N,N ]d is large — namely

(3.5) N
(
An1,t

p
0
∩ [−N,N ]d;M

)
> tp0(N/M)d,

where p, κ1, κ2 > 0 are constants depending only on Γ and ν. Thinking of t0 as
fixed (which is the case needed to establish Corollary B), this gives a lower bound
on the covering number that is a positive proportion of the trivial upper bound.

To prove the key estimate (3.5), one starts with the identity

µ̂n(a0) =
∑
g

ν∗m(g)µn−m(gtra0)

to conclude that if |µ̂n(a0)| > t0, then

(3.6) ν∗m
{
g ∈ Γ :

∣∣µ̂n−m(gtra0)
∣∣ > t0/2

}
≥ t0/2.

In Proposition 6.2 below we deduce from (3.6), using the quantitative theory of
random matrix products, that once m1 is larger than some absolute constant,

(3.7) N
(
An1,t1 ∩ [−N1, N1]d;M1

)
> (N1/M1)α1 ;

where∗ n1 = n−m1, N1 = ‖a0‖ exp(3
2λm), M1 = ‖a0‖, t1 = t0/2, with λ the top

Liapunov exponent corresponding to ν (cf. Section 4).
For our proof it is crucial to improve the estimate (3.7) to the much sharper den-

sity type estimate (3.5). Equation (3.7) is equivalent to having an M1-separated
subset E ⊂ Zd ∩ [−N1, N1]d of cardinality |E| ≥ (N1/M1)α1 so that for every
a ∈ E we have |µ̂n1(a)| > t1; and decreasing the cardinality of E by a constant
factor we may assume

(3.8)

∣∣∣∣∣∑
e∈E

µ̂n1(a)

∣∣∣∣∣ > t1 |E| /2.

Similar to the way we used the identity µn = ν∗m1 ∗ µn1 in the proof of (3.7),
equation (3.8) implies that (for any chice of m < n1), for ν∗m-many g ∈ Γ, for
many e ∈ gtrE we have that |ν̂n1−m(e)| > t1/4; indeed, if

G =
{
g ∈ Γ :

∣∣{e ∈ gtrE : |µ̂n1−m(e)| > t1/4
}∣∣ > t1 |E| /4

}
then ν∗m(G) ≥ t1/4.

Our assumptions (Γ-0)–(Γ-2) on Γ guarantee that the top Liapunov exponent
for the random walk on SLd(Z) corresponding to ν is simple, which allows us
to approximate ν∗m-typical g by a composition of dilation (by a factor σ1(g) in
the range e(λ−ε)m ≤ σ1(g) ≤ e(λ+ε)m), a rotation, and a rank one projection,
say πg. The theory of random matrix products also gives us control over the
distribution on the direction of the null space of this projection. Therefore choosing

∗There is nothing special about 3
2
; any constant greater than one would do.
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M2 appropriately, we cannot distinguish with resolution M2 between the map
a 7→ gtra and this rank one transformation, e.g. in the sense that for any E′ ⊂ E

N
(
gtr(E′);M2

)
� N

(
σ1(g)πgtr(E′);M2

)
.

As long as m = m2 is sufficiently large (larger than some constant times |log t|),
this applies to most g ∈ G so that we can view gtr(E) as a rotated and dilated
rank one (random) projection of E.

If N2,M2,m2 are appropriately chosen, outside a set of g ∈ Γ of negligible
ν∗m-measure, gtr([−N1, N1]d) is contained in a rotated rectangular box of size
[−N2, N2] × [−M2,M2] × · · · × [−M2,M2]. If α1 were very close to d (say bigger
than some αhigh) we could use a variant on the Marstrand Projection Theorem, or
more precisely on an extension due to Falconer [13], to show that for many g ∈ G

N
(
gtrE;M2

)
� tp1(N2/M2),

and moreover that a similar inequality (with possibly a different implied constant,
still polynomial in t1) holds for any subset E′ ⊂ E with |E′| ≥ t1|E|/4. By
definition of G, one obtains that

N
(
An2,t1/4 ∩ g

tr([−N1, N1]d);M2

)
� tp1(N2/M2),

and with some further arguments employing the inherent additive structure of
Fourier coefficients of probability measures† get from this an estimate of the desired
form

N
(
An2,t1/4 ∩ [−N2, N2]d;M2

)
� tp

′

1 (N2/M2)d.

The argument sketched above is carried in Section 6.C below, and the resulting
proposition is given by Proposition 6.5 below. Unfortunately, we have little control
over α1 which is determined by properties of the random walk corresponding
to ν on SL(d,R). To handle the main case where α1 < αhigh we need to use
arithmetic combinatorics: a projection result [5, Thm. 5] of the first author
(based on techniques developed in the context of the Discretized Ring Conjecture
[4]). Roughly stated, this theorem asserts that given a sufficiently rich set of
lines D ⊂ Pd−1 and a (sufficiently non-degenerate) set E ⊂ [0, 1]d of “dimension”
α there exist (many) lines θ ∈ D so that the projection πθ(E) of E to θ has
“dimension” > (α+αinc)/d. This bootstrap step is the content of Proposition 6.3.

A complication in the proof of both Proposition 6.3 and Proposition 6.5 is that
to employ the respective (discretized) projection theorem one needs finer control
on the set to be projected than simply its covering number by Mi-balls. This is
taken care of by zooming-in on a portion of the set Ati,ni ∩ [−Ni, Ni] in which
there is greater regularity, and recentering this window using Cauchy-Schwartz,
cf. Lemma 6.7.

†Essentially, the Cauchy-Schwartz inequality.
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3.B. Phase II: Granulation structure of µ0 on the torus.
The information on the Fourier coefficients of a measure µ0 for which a Fourier
coefficient µ̂n(a) is significant that has been obtained in Phase I of the proof (with
µn = ν∗n ∗ µ0 as before, and n sufficiently large depending on ‖a‖ and the size
of |µ̂n(a)|) can be translated to a statement about the measure µ0 itself (and
more generally about the measures µn−m for m large enough) using the following
elementary harmonic analysis proposition in the spirit of Wiener’s Lemma:

Proposition 3.3 (cf. Proposition 7.5). If a probability measure µ on Td satisfies
(3.5) for some N > M then there exists a set X ⊂ Td of 1/M -separated points in
Td with

µ

(⋃
x∈X

Bx, 1
N

)
> tp

′

0 .

Using this harmonic analytic fact, the outcome of the first stage of the proof is
that for m1 � log(‖a‖/t0), the measure µn1 = µn−m is granulated in the following
sense (cf. Proposition 7.1): for some constants 1 < L1 < L2 and κ > 0 there is
some ρ ∈ (L−m2 , L−m1 ) and the finite set X ⊂ Td so that

(1) X is r = ρ1−κ-separated;
(2) µn1

(⋃
x∈X Bx,ρ

)
> tC .

This is not yet what we want. So we continue with the strategy of successively
sacrificing some convolution powers of ν (i.e., increasing m to m′ > m) in exchange
for more precise information on µn−m′ .

The two conditions (1)–(2) above on µn−m and X guarantee in particular that
tO(1) of the mass of µn−m is concentrated in balls of radius ρ whose measure is
rather large, namely ≥ tO(1)ρ1−κ.

Thanks to the separation condition, we can improve this estimate (cf. Propo-
sition 7.2) and show that for appropriate m′ (also � log(‖a‖ /t)) there is a set
X ′ of cardinality at most that of X so that µn−m′(

⋃
x∈X′ Bx,ρN ) ≥ tON (1) for an

arbitrary N .
At this stage we can rectify the unknown balls

{
Bx,ρN : x ∈ X ′

}
to be centered

at rational points of controlled denominator. The reason for that is that as

µn−m′(Bx,ρN ) =
∑
g

ν∗`(g)µn−m′−`(g−1Bx,ρN ),

if µn−m′(Bx,ρN ) is big, for many g with
∥∥g−1

∥∥ of controllable size (roughly e−λd`,
with λd the bottom Liapunov exponent of ν) the measure of the “shifted” balls
µn−m′−`(g−1Bx,ρN ) has to be big — so many g in fact that as µn−m′−` is a prob-
ability measure there should be a lot of intersections between these shifted balls.
These nontrivial intersections can be used to show that x is much closer to a ra-
tional of controlled denominator than what can be expected of a random point in
Td. This rough scheme is carried out by Proposition 7.3.

Using the extra information obtained, one can proceed similarly to the first
step mentioned above (i.e. Proposition 7.2) but with essentially no loss of mass
(Proposition 7.4) and obtain the desired conclusion, i.e. Proposition 3.1.
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4. Random Matrix Products

4.A. Notations. Let G be a topological group; in this paper the discrete group
Γ or the torus Td. On the set Prob(G) of all probability measures on G (for
G = Td the measures are assumed to be Borel regular) one defines operations
of convolution: ν1, ν2 7→ ν1 ∗ ν2, and of a reflection ν 7→ ν̌, by pushing forward
ν1×ν2 under the product map (g1, g2) 7→ g1 ·g2, and pushing ν by the inverse map
g 7→ g−1, respectively. For n ∈ N we write ν∗n for the nth convolution power of ν
with itself. This should be distinguished from the product ν×n defined on Gn.

Similarly, if G y X is a continuous action on a topological space, for ν ∈
Prob(G) and µ ∈ Prob(X) the convolution ν ∗ µ ∈ Prob(X) is the pushforward
of ν × µ under the action map G × X → X. For Γ y Td and ν ∈ Prob(Γ),
µ ∈ Prob(Td) we have

ν ∗ µ =
∑
g∈Γ

ν(g) · g∗µ, where g∗µ(E) = µ(g−1E).

For µ ∈ Prob(Td) the Fourier coefficients are

µ̂(a) =
∫

Td
ea(x) dµ(x) where ea(x) = e2πi〈a,x〉 (a ∈ Zd, x ∈ Td).

The Fourier transform intertwines Γ-actions on Td and on Zd = T̂d according to

ĝ∗µ(a) = µ̂(gtra).

In a metric space (such as Zd, Rd, Pd−1, Td) we denote by Bx,r = {y : d(x, y) ≤ r}
the closed r-ball around x, and by Nbdr(E) the (closed) r-neighborhood of a set
E.

For a set E denote by

N (E; r) = inf

{
n : ∃x1, . . . , xn s.t. E ⊂

n⋃
i=1

Bxi,r

}

the covering number of E by r-balls (these covering numbers will be used for finite
subsets of Zd with a large r, and for subsets of Pd−1 and Td with small r > 0).

Linear algebra. Throughout the paper we use the standard inner product
〈x, y〉 =

∑d
1 xiyi, the Euclidean norm ‖x‖2 = 〈x, x〉 on Rd, and the operator

norm ‖g‖ = max ‖gx‖/‖x‖ on matrices g ∈ GLd(R). For x ∈ Rd \ {0}, x̄ = Rx
denotes the corresponding point in the projective space Pd−1. We equip Pd−1 with
the metric given by

dang (x̄, ȳ) = sin (angle(x̄, ȳ)) =
‖x ∧ y‖
‖x‖ · ‖y‖

.
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For g ∈ GLd(R) denote by σ1(g) ≥ σ2(g) ≥ · · · ≥ σd(g) > 0 the singular values of
g. In the polar decomposition we have

g = U

 σ1(g)
. . .

σd(g)

 V with U, V orthogonal.

For g ∈ GLd(R) let ρ(g) = σ2(g)/σ1(g). If ρ(g) < 1 let

θ(g) = Uē1 ∈ Pd−1.

This is the direction of the long axis of the g image of the round ball
{
x ∈ Rd : ‖x‖ ≤ 1

}
.

Denote by H(g) the hyperplane of vectors with “shorter stretch”

H(g) =
{
z̄ ∈ Pd−1 : V z ∈ Span(e2 + · · ·+ ed)

}
⊂

{
z̄ ∈ Pd−1 : ‖gz‖ ≤ σ2(g)‖z‖

}
Note that θ(g) describes the direction of the image of the “long vector”, under
g : Rd → Rd, while H(g) refers to the source of the shorter ones.

Lemma 4.1. For g ∈ GLd(R) with ρ(g) < 1.
(1) H(g) = θ(gtr)⊥.
(2) For any 0 6= z ∈ Rd,

‖g‖ · ‖z‖ · dang (z̄, H(g)) ≤ ‖gz‖ ≤ ‖g‖ · ‖z‖ · (ρ(g) + dang (z̄, H(g))).

(3) dang (gz̄, θ(g)) < ρ(g)/dang (z̄, H(g)) for any 0 6= z ∈ Rd.
(4) If g = hk with ρ(g) < 1 and 2ρ(h) < ‖g‖/(‖h‖ · ‖k‖) then

dang (θ(g), θ(h)) < 2ρ(h) · ‖h‖ · ‖k‖
‖g‖

.

Proof. (1) is immediate from the definitions.

(2) Write z = ‖z‖ · (tx+ sy) with x̄ ∈ H(g)⊥, ȳ ∈ H(g), ‖x‖ = ‖y‖ = 1. Then
|t| = dang (z̄, H(g)), while

‖z‖ · ‖g‖ · |t| ≤ ‖gz‖ = ‖z‖ ·
√
t2‖gx‖2 + s2‖gy‖2 ≤ ‖z‖ · (|t|‖g‖+ |s|σ2(g)).

(3) Assume ‖z‖ = 1 and write z = tx + sy as in (2). We have θ(g) = gx̄ and
‖g‖ = ‖gx‖ and ‖gz‖ ≥ ‖g‖ · |t|. Also gx ∧ gz = gx ∧ (tgx + sgy) = s(gx ∧ gy).
Hence

dang (gz̄, θ(g)) =
‖gz ∧ gx‖
‖gz‖ · ‖gx‖

≤ |s| · ‖gy‖ · ‖gx‖
‖g‖ · |t| · ‖gx‖

≤ ‖gy‖
‖g‖ · |t|

.

Now (3) follows, because ‖gy‖ ≤ σ2(g) and |t| = dang (z̄, H(g)).

(4) Choose a unit vector x ⊥ H(g), denote z = kx and write

z = ‖z‖ · (ty + sw) with y ∈ H(h)⊥, w ∈ H(h), ‖y‖ = ‖w‖ = 1.
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Thus dang (z̄, H(h)) = |t|. We have

‖g‖ = ‖gx‖ = ‖hz‖, ‖z‖ = ‖kx‖ ≤ ‖k‖ =⇒ ‖hz‖
‖z‖

≥ ‖g‖
‖k‖

.

But ‖hz‖2 ≤ ‖z‖2(t2σ1(h)2 + σ2(h)2s2) because w ∈ H(h). Hence

‖g‖
‖h‖ · ‖k‖

≤ ‖hz‖
‖h‖ · ‖z‖

≤
√
t2 + ρ(h)2s2 ≤

√
t2 + ρ(h)2.

Denoting by c the LHS, we get dang (z̄, H(h)) = |t| ≥
√
c2 − ρ(h)2. Since θ(g) =

gx̄ = hz̄, estimate (3) gives

dang (θ(g), θ(h)) = dang (hz̄, θ(h)) ≤ ρ(h)√
c2 − ρ(h)2

<
2ρ(h)
c

under the assumption 2ρ(h) < c. �

4.B. Random walks. Let ν be a probability measure on SLd(R) such that

(4.1)
∫

log ‖g‖ dν <∞

The Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λd of ν are defined through the limits
of the following sub-additive sequences:

λ1 = lim
n→∞

∫
1
n

log ‖g‖ dν∗n(g),
k∑
i=1

λi = lim
n→∞

∫
1
n

log ‖ ∧k g‖ dν∗n(g).

Equivalently, λi describes the asymptotic of
∫
n−1 · log σi(g) dν∗n(g), where σi are

the singular values; in particular, σ1(g) = ‖g‖. The convergence holds not only on
average, but also a.e. and in L1: if (g1, g2, . . . ) are chosen independently according
to ν then, using Kingman’s subadditive ergodic theorem, with probability one and
in L1(ν∞) a long random product has polar decomposition

gn · · · g2g1 = U

 eλ1n+o(n)

eλ2n+o(n)

. . .

V

with U and V orthogonal.

Theorem 4.2 ([17], [16]). Let ν be a probability measure on SLd(R) with (4.1)
and so that the group 〈supp(ν)〉 satisfies conditions (Γ-0)–(Γ-2) of p. 1. Then the
top Lyapunov exponent is simple:

λ1 > λ2

In particular, λ1 > 0.

If 〈supp(ν)〉 is irreducible on Rd then ([15]) for any fixed x ∈ Rd\{0} for ν∞-a.e.
sequence (g1, g2, . . . )

1
n

log ‖gn · · · g1x‖ = λ1

and, denoting hn = gn · · · g1, the angular distance dang (hnx̄, θ(hn))→ 0.
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We shall need exponential estimates for various rates of convergence in the above
stated limits. Such estimates are known under an assumption slightly stronger
than (4.1), namely:

(4.2)
∫
‖g‖ε dν(g) <∞ for some ε > 0.

Theorem 4.3 (Large deviations). Let ν ∈ Prob(SLd(R)) satisfy (4.2). Then for
any ω > 0 there is ρω > 0 and m0(ω) so that for m ≥ m0(ω)

ν∗m
{
g :

∣∣∣∣λ1 −
1
m

log(‖gx‖ / ‖x‖)
∣∣∣∣ > ω

}
< e−ρω ·m ∀x ∈ Rd−1 \ {0}

ν∗m
{
g :

∣∣∣∣λi − 1
m

log σi(g)
∣∣∣∣ > ω

}
< e−ρω ·m (i = 1, . . . , d)

.

Proof. The first inequality follows from [3, Thm. V.6.1] and the remarks following
the proof regarding uniformity in x; the second inequality is [3, Thm. V.6.2]. �

Theorem 4.4 (Exponential Estimates). Let ν ∈ Prob(SLd(R)) satisfy (4.2) and
conditions (Γ-0)–(Γ-2) of p. 1. Then for any c1 > 0 and some c2 > 0 there exist
c3 > 0 and m0 ∈ N so that for all x̄, ȳ ∈ Pd−1 each of the following subsets of Γ:

(1) {g ∈ Γ : dang (gx̄, ȳ) > e−c1·m},
(2)

{
g ∈ Γ : dang

(
gx̄, ȳ⊥

)
> e−c1·m

}
(3) {g ∈ Γ : dang (gx̄, θ(g)) < e−c2·m}

has ν∗m-probability > 1− e−c3·m for m ≥ m0.

Proof. We first establish (3). By Theorem 4.3, there is some ρ1 > 0 so that with
probability > 1− e−ρ1m,

(4.3)

∣∣∣∣ 1
m

log σ1(g)− λ1

∣∣∣∣ < λ1 − λ2

12∣∣∣∣ 1
m

log σ2(g)− λ2

∣∣∣∣ < λ1 − λ2

12
.

In the notations of Lemma 4.1, the above two inequality implies that ρ(g) <

e−5(λ1−λ2)m/6, hence by (3) of that lemma, at least one of the following two equa-
tions holds:

dang (gx̄, θ(g)) < e−(λ1−λ2)m/2(4.4)

dang (x̄, H(g)) < e−(λ1−λ2)m/3.(4.5)

But if (4.5) holds, by Lemma 4.1.(2)

(4.6)
log(‖gx‖ / ‖x‖) ≤ 1 + max(log σ1(g)−m(λ1 − λ2)/3, log σ2(g))

≤ 1 + (2λ1 + λ2)/3
.

By Theorem 4.3, (4.6) occurs with probability < e−ρ2m for some positive ρ2 and
m > m0, so dang (gx̄, θ(g)) < e−(λ1−λ2)m/2 outside a set of ν∗m-measure ≤ e−ρ1m+
e−ρ2m, establishing (3) with c2 = (λ1 − λ2)/2.
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We now turn to the proof of assertion (2). This also relies on Theorem 4.3, but
applied to the random walk corresponding to the measure ν̃ defined by ν̃(g) =
ν(gtr). The measure ν̃ also satisfies conditions (4.2) and conditions (Γ-0)–(Γ-2)
above and moreover has the same the Lyapunov exponents as ν. Writing

g = U

 σ1(g)
. . .

σd(g)

 V with U, V orthogonal.

and recalling that by definition θ(g) = Ue1, we have that if (4.4) holds

dang

(
gx, y⊥

)
≥ dang

(
θ(g), y⊥

)
− dang (gx, θ(g))

≥ dang

(
e1, (U try)⊥

)
− e−(λ1−λ2)m/2

≥
∥∥gtry

∥∥ / ‖y‖ − σ2(g)
σ1(g)

− e−(λ1−λ2)m/2.

By Theorem 4.3, with probability ≥ 1− e−ρ3m∥∥gtry
∥∥ / ‖y‖ − σ2(g)
σ1(g)

≥ 2e−min(c1,(λ1−λ2)/2)m,

hence dang

(
gx, y⊥

)
≥ 2e−c1m with probability ≥ 1 − e−ρ1m − e−ρ2m − e−ρ3m,

establishing (2).
Assertion (1) is a trivial consequence of (2). �

4.C. Some further estimates. In this subsection we shall establish some basic
estimates that will be used in the following sections.

Given a point x̄ and a set D in Pd−1 let

Γx̄→D = {g ∈ Γ : gx̄ ∈ D} , Γθ(g)∈D = {g ∈ Γ : θ(g) ∈ D} .

Lemma 4.5 (Basic estimate of distribution of directions). There exist τ > 0 and
m0 so that for any r in the range

e−m < r < e−m0 ,

one has

ν∗m(Γx̄→V ) < rτ , ν∗m(Γθ(g)∈V ) < rτ .

for any x̄ ∈ Pd−1 and an r-neighborhood of a hyperplane V = Nbdr(ȳ⊥).

Proof. Given r > 0 let V (r) = Nbdr(ȳ⊥), and choose k ∈ N with

e−k−1 < r ≤ e−k.
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Asuming k > m0 for m0 as in Theorem 4.4 applied with c1 = 1, by part (2) of
that theorem

ν∗m(Γx̄→V (r)) ≤ ν∗m(Γx̄→V (e−k) =
∫
ν∗k(Γhx̄→V (e−k) dν∗(m−k)(h)

≤
∫
e−c2k dν∗(m−k)(h) = e−c5·k

< (er)c3 ,

with c3 as in Theorem 4.4.
To estimate ν∗m(Γθ(g)∈V (r)) set r1 = max(r, e−c2m). Then

ν∗m(Γθ(g)∈V (r)) ≤ ν∗m(Γθ(g)∈V (2r1)) + ν∗m(dang (gx̄, θ(g))).

The first of these is ≤ (2er1)c3 ; the second, by part (3) of Theorem 4.4, is ≤ rc31 .
It follows that

ν∗m(Γθ(g)∈V (r)) ≤ 2(2er1)c3 ≤ Cr(min(1,c2)c3).

Setting e.g. τ = min(c3, c2c3)/2 the lemma follows oncem0 is sufficiently large. �

Given a set F = {x̄1, . . . , x̄d} ⊂ Pd−1 a quantitative measure of the extent to
which these lines are in general position is given by the volume spanned by unit
vectors in these directions:

vol(x̄1, . . . , x̄d) =
|x1 ∧ · · · ∧ xd|
‖x1‖ · · · ‖xd‖

.

This quantity is symmetric in the arguments, but can be computed as

vol(x̄1, . . . , x̄d) =
d∏
i=2

dang (xi,Span(x1, . . . , xi−1)) .

Hence, denoting

u(x̄1, . . . , x̄d) = min
1≤j≤d

dang (xj ,Span(x1, . . . , x̂j , . . . xd))

we have
u(x̄1, . . . , x̄d)d ≤ vol(x̄1, . . . , x̄d)) ≤ u(x̄1, . . . , x̄d).

Lemma 4.6 (General position). For some p <∞, c0 and s0 > 0 depending on ν,
one has

(ν∗m)×d
{
~g ∈ Γd : vol(θ(g1), . . . , θ(gd)) > sp

}
> 1− s.

and
(ν∗m)×d

{
~g ∈ Γd : vol(θ(gtr

1 ), . . . , θ(gtr
d )) > sp

}
> 1− s.

for e−cm < s < s0

Proof. Let r = d−1 · s1/τ . Given any arbitrary g1 ∈ Γ the ν∗m-probability that

dang (θ(h), θ(g1)) > r

is at least 1− rτ (Theorem 4.4). For the same reason given any g1, g2:

ν∗m {h : dang (θ(h), θ(g1)⊕ θ(g2)) > r} > 1− rτ .
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Continuing this argument we deduce that the set{
~g ∈ Γd : dang (θ(gi), θ(g1)⊕ · · · ⊕ θ(gi−1)) > r, i = 2, . . . , d

}
has (ν∗m)×d-measure at least

(1− rτ )d−1 > 1− (d− 1)rτ > 1− s.
On the other hand every d-tuple in the set above has

vol(θ(g1), . . . , θ(gd)) > rd

If p is large enough, sp < rd = d−dsd/τ .
To deduce the second estimate, one may apply the same arguments to the

random walk generated by ν̃, with ν̃ the transpose to ν as in p. 14. �

5. Two notions of coarse dimension

Given a subset Ã of B0,1 ⊂ Rd, there are several ways one can try to estimate
its dimension, or more precisely, in our case, its dimension at scale r. One simple
way is via covering numbers: we can consider Ã to be of “coarse dimension”
≥ α at scale r if N

(
Ã; r

)
≥ r−α. Another, more restrictive definition of “coarse

dimension ≥ α” is via the following:

Definition 5.1. A measure ρ on a set B is said to be (C,α)-regular at scale r on
B if for any x ∈ A, s ≥ r

ρ(Bx,s) < C
( s

diamB

)α
.

Thus another plausible definition of “coarse dimension” of a finite set A would
be that A supports some probability measure ρ which is (C,α)-regular at scale r
on A for some absolute constant C.

The following lemma allows us to relate the two notions:

Lemma 5.2. For any ε > 0 there are constants Cε, C ′ε > 0 such that for every
s, α with 2ε < s < α and r < 1, if Ã ⊂ B0,1 ⊂ Rd satisfies

N
(
Ã; r

)
≥ rα

then there is a point x ∈ B0,1 and a probability measure ρ supported on Ã ∩ Bx,rβ

which is (Cε, α− s)-regular on Bx,C′εrβ at scale r for β = d−α+ε
d−α+s−ε .

Proof. Let T be a large integer (which will eventually be determined by ε), and
k1 = d− log2(r)/T e. Without loss of generality we shall assume that every cube
of size 2−k1T intersects Ã in at most one point.

Consider

Q =
{

(x1, . . . , xd) : ∃ 1 ≤ i ≤ d,∃ 0 ≤ k ≤ k1 so that 2kTxi ∈ Z + [0, 2−T ]
}
.

Then as Q is a subset of Rd of density at most

1− (1− d2−T )k1
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there is a translate Ã+ ξ of Ã so that∣∣∣(Ã+ ξ) \ Q
∣∣∣ ≥ (1− d2−T )k1

∣∣∣Ã∣∣∣ ≥ C(1)r−α+ε/2

as long as T is large enough (depending only on d, ε) for some constant C(1)

(depending on d, T and ε). Let Ã0 = (Ã+ ξ) \ Q.
We shall call a cube of the form [n12−kT , (n1 + 1)2−kT )× · · · × [nd2−kT , (nd +

1)2−kT ) for (n1, . . . , nd) ∈ Zd a 2−kT -cube. By definition of Ã0, for any 0 ≤ k ≤ k1,
and any two distinct 2−kT -cubes I1, I2 intersecting Ã0, the distance between I1∩Ã0

and I2 ∩ Ã0 is at least 2−(k+1)T (this is precisely the purpose of removing points
of Q from an appropriate shift of Ã).

It will be convenient to start by extracting from Ã0 a large subset Ã1 with
tree-structure (similar to but simpler than that used in [4, 5]). By this we mean
that there are integers R1, . . . , Rk1 with 1 ≤ Rk ≤ 2T so that if Ak denotes the
collection of 2−kT -cubes intersecting Ã1, then each 0 ≤ k < k1, each 2−kT -cube
I ∈ Ak contains precisely Rk+1 cubes in Ak+1. By successively trimming the set
Ã0 one easily shows that if T is large enough (also depending only on ε), one can
find such a subset Ã1 ⊂ Ã0 with tree-structure so that

∣∣∣Ã1

∣∣∣ ≥ C(2)r−α+ε.

Indeed, to obtain this trimmed set Ã1, consider all 2−(k1−1)T cubes intersecting
Ã0, and find Rk1 so that the number of these cubes containing between Rk1 and
2Rk1 of the 2−k1T -cubes is maximized. Throw away all points of Ã0 which are not
contained in such a 2−(k1−1)T -cube. Suppose Q is one of the remaining 2−(k1−1)T -
cubes, and that exactly nQ of the 2k1T -subcubes in Q have nonempty intersection
with Ã0. We throw away all points of Ã0 in nQ − Rk1 of these 2k1T -subcubes so
that precisely Rk1 subcubes in with nonempty intersection with Ã0 remain in Q.
Now consider all 2−(k1−2)T -cubes intersecting the surviving set, and choose Rk1−1

in a similar way, etc.
If T is large enough

k1∑
`=1

log2R` = log2

∣∣∣Ã1

∣∣∣ ≥ −(α− ε) log2 r ≥ (α− ε)T (k1 − 1)

the first equality being a consequence of the fact that no 2−k1T -cube can contain
more than one point of Ã1.

Set

Mi = min
i<k≤k1

1
k − i

k∑
`=i+1

log2R`.

Let 1 ≤ k2 < k1 be the smallest integer for which Mk2 > (α − s + ε)T if such
exists; otherwise set k2 = k1. Then a standard covering argument gives that there
is some k2 ≤ k ≤ k1 so that

k∑
`=1

log2R` ≤ k(α− s+ ε)T
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hence using the trivial bound R` ≤ 2dT we get the inequality

k2(α− s+ ε)T + (k1 − k2)dT ≥ (α− ε)T (k1 − 1)

and

k2 ≤ k1
d− α+ ε

d− α+ s− ε
+O(1)

(explicitly, the O(1) term is (α− ε)/(d− α+ s− ε)).
Now let I be any 2−k2T -cube intersecting Ã1, and let ρi be the normalized

counting measure on Ã1 ∩ I as above. Then as Mk2 ≥ (α − s + ε)T for any
2−`T -cube J ⊂ I for k2 ≤ ` ≤ k1

ρI(J) =
∏̀

`′=k2+1

R−1
`′ ≤ 2−(`−k2)(α−s+ε)T

and ρI is a (Cε, α − s)-regular measure on I at scale r, for a suitably chosen
constant Cε; note also that I is a cube of diameter C ′εr

β for β = k2/k1 = d−α+ε
d−α+s−ε .

�

Lemma 5.3. Let ρ be a (C,α)-regular probability measure at scale r on B ⊂ Rd.
Then for any ε > 0 there is a r-separated subset A ⊂ supp ρ so that the uniform
measure on A (i.e. µA = 1

|A|
∑

a∈A δa) is (Cε, α− ε)-regular at scale r on B.

Proof. For simplicity of notations, we may assume without loss of generality that
diamB = 1. Choose randomly a sequence a1, a2, . . . , aL ∈ supp ρ with L = r−(α−ε)

with each ai chosen i.i.d. according to ρ.
For any r ≤ s < 1 partition B into s−d-cubes of size s; the probability that any

of these cubes contain at least N points of {a1, . . . , aL} for N > Lsα is at most

(5.1) s−d

∑
n≥N

(
L

n

)
snα

 r ≤ 2s−d
(Lsα)N

N !
.

Choosing N = max(2d
ε , 3Ls

α−ε), and using the trivial inequality N ! > (N/3)N

valid for all N > 1, we see that

(5.1) ≤ 2s−d+εN ≤ 2sd.

As 2
∑∞

k=1 10−kd < 1, with positive probability for all k, no cube of size 10−k will
contain more than max(2d

ε , 3L10−k(α−ε)) points of the set {a1, . . . , aL}. Apply this
to k0 = d| log10(1/r)e, and obtain an r separated subset A ⊂ {a1, . . . , aL} of size
|A| ≥ εL

2d so that for any 10−`-cube Q with ` < k0,

|Q ∩A| ≤ 6dε−1L10−k(α−ε) ≤ 12d2ε−2 |A| 10−k(α−ε)

establishing the lemma. �

Closely related to the notion of (C,α)-regular measures introduced in Defini-
tion 5.1 is the notion of α-energy of a measure ρ, denoted by Eα(ρ), which we
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define for a compactly supported measure ρ on Rd and α < d by:

Eα(ρ) =
∫

Rd

∫
Rd

dρ(x) dρ(y)
|x− y|α

.

If ρ is (C,α+ ε)-regular on a set B at all scales, then

Eα(ρ) = α

∫∫
µ(Bx,r)
rα+1

dµ(x) dr ≤ C(diamB)−α−εαε−1.

The energy Eα(ρ) can be given also in terms of the Fourier transform of ρ, up to
an implicit constant that tends to ∞ as α→ d (cf. [25, 12.12])):

(5.2) Eα(ρ) �
∫

Rd
|ρ̂(ξ)|2 (1 + |ξ|)α−d dξ.

If Eα(ρ) <∞ then any set of positive ρ measure has Hausdorff dimension ≥ α (for
this and further information about α-energy, see [25]) .

A simple way to adapt this notion to our “coarse” setup, where we do not care
about the details of how ρ behaves at scales smaller than r is to smoothen it
by convolving with an appropriate kernel. Let Φ be a fixed radially symmetric
nonnegative smooth function on Rd with ‖Φ‖1 = 1 supported on B0,1, and set for
r > 0

Φr(x) = r−dΦ(r−1x).

Then instead of using the possibly atomic measure ρ, we can consider its smoothed
version ρ′ = ρ ∗ Φr. In particular, if ρ is (C,α + ε)-regular at scale r on a subset
B ⊂ Rd then

Eα(ρ ∗ Φr)� C(diamB)−α−εαε−1

with the implicit parameter depending only on d and the choice of Φ.

6. Structure of the set of t-large Fourier coefficients

Fix some probability measure µ0 ∈ Prob(Td) and consider the sequence

µn = ν∗n ∗ µ0

and the following sets of “large” coefficients

At,n =
{
b ∈ Zd : |µ̂n(b)| > t

}
.

Our goal in this section is to obtain the following result:

Theorem 6.1. There exist constants κ1 > κ2 > 0, L2 > L1 > 1, p, C < ∞
depending on ν only, so that if for some t0 ∈ (0, 1/2)

(6.1) |µ̂n0(a0)| ≥ t0
then for any m > C(1 + |log t0|) one has

N
(
Atp0,n0−m1

∩ B0,N ;M
)
> tp0 ·

(
N

M

)d
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for some m1 ≤ m, N in the range Lm1 < N
‖a0‖ < Lm2 , and M in the range(

N
‖a0‖

)1−κ1

< M
‖a0‖ <

(
N
‖a0‖

)1−κ2

.

The proof of Theorem 6.1 involves the following steps.

Proposition 6.2 (Initial dimension). There exist αini, C1 > 0 depending only on
ν so that for any measure µ0 on Td, if µn = ν∗n ∗µ0 satisfies for n = n0, t0 < 1/2
that

|µ̂n0(a0)| > t0 > 0

then for any integer m with

n0 > m ≥ C1(1 + |log(t0)|)

it holds that

(6.2) N
(
At0/2,n0−m ∩ B0,N ;M

)
≥ (N/M)αini

for N = exp(3λ1m/2) ‖a0‖ ,M = ‖a0‖.

Proposition 6.3 (Improving the large scale dimension). Given αini > 0 and
αhigh < d there exists αinc, c2, C > 0 (depending on ν) so that if for some 1/2 >
t > 0, 1 ≤M < N with

(6.3) log(N/M) > c2 log(1/t) and n ≥ c2 log(N/M)

it holds that

N (At,n ∩ B0,N ;M) >
(
N

M

)α
for some αini ≤ α ≤ αhigh,

then there are m,M ′, N ′ with

m ≤ c2 log(N/M) N ′ ≤ N(N/M)c2 (N ′/M ′) ≥ (N/M)1/c2

so that

(6.4) N
(
At,n−m ∩ B0,N ′ ;M ′

)
>

(
N ′

M ′

)α+αinc

for t′ = Ct4d.

Iterating this proposition we obtain:

Corollary 6.4 (of Proposition 6.3). Given αini > 0 and αhigh < d there exists
c3, C3 > 0 so that if for some 1/2 > t > 0, 1 ≤ M < N with log(N/M) >
c3 log(1/t) and n ≥ c3 log(N/M) it holds that

(6.5) N (At,n ∩ B0,N ;M) >
(
N

M

)αini
,

then there are m,M ′, N ′ with

m ≤ c3 log(N/M) N ′ ≤ N(N/M)c3 (N ′/M ′) ≥ (N/M)1/c3
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so that

(6.6) N
(
At′,n−m ∩ B0,N ′ ;M ′

)
>

(
N ′

M ′

)αhigh
for t′ = tC3.

Proposition 6.5 (High dimension to positive density at large scales). There exist
αhigh, c4, κ4 > 0 depending only on ν and q4 depending on d with the following
properties. Assume that for some 1/2 > t > 0, 1 ≤ M < N with log(N/M) >
c4 log(1/t) and n ≥ c4 log(N/M) it holds that

N (At,n ∩ B0,N ;M) >
(
N

M

)αhigh
.

then there are m,M ′, N ′ with

m ≤ c4 log(N/M) N ′ ≤ N(N/M)c4 (N ′/M ′) ≥ (N/M)1/c4

such that

N
(
At1,n−m ∩ B0,N ′ ;M ′

)
> c−1

4 tκ4
1

(
N ′

M ′

)d
for t1 = c−1

4 tq4.

Let us deduce Theorem 6.1 from the above propositions.

Proof. Suppose |µ̂n0(a0)| ≥ t0. Then by Proposition 6.2 there are αini, c1 so that

N
(
At0/2,n0−m1

∩ B0,N1 ;M1

)
≥ (N1/M1)αini

for N1 = exp(3λ1m1/2) ‖a0‖, M1 = ‖a0‖ provided n0 ≥ m1 ≥ C1(1 + |log t0|).
Let αhigh < d be as in Proposition 6.5, and c3, C3 as in Corollary 6.4, for the

already chosen values of αini, αhigh. Then if

log(N1/M1) =
m1λ1

2
> c3(1 + |log(t0/2)|)(6.7)

n0 −m1 > c3 log(N1/M1)(6.8)

there are m2 ≤ c3 log(N1/M1) and N2,M2 with

N2 < N1(N1/M1)c3
N2

M2
≥ (N1/M1)1/c3

so that

N (At2,n0−m1−m2 ∩ B0,N2 ;M2) >
(
N2

M2

)αhigh
with t2 = (t0/2)C3 .

As long as

log(N2/M2) > c4(1 + log(t2))(6.9)

n0 −m1 −m2 ≥ c4 log(N2/M2)(6.10)

we can apply Proposition 6.5 and conclude that for some N3,M3 with

m3 ≤ c4 log(N2/M2) N3 ≤ N2(N2/M2)c4 (N3/M3) ≥ (N2/M2)1/c4
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so that

N (At3,n0−m1−m2−m3 ∩ B0,N3 ;M3) > c−1
4 tκ4

3

(
N3

M3

)d
with t3 = (t2)q4 , proving the theorem.

�

6.A. Initial Dimension and Regularity: proof of Proposition 6.2.

Proof of Proposition 6.2. Let ω = λ1/4, and C1 > 2 a large constant to be deter-
mined later. For any fixed m > C1(1 + |log(t0)|) set

N = e(λ1+2ω)m ‖a0‖ , R = e(λ1−2ω)m ‖a0‖ .
Let t′ = t0

2 and n′ = n0 −m. Consider the following sets:

Glen =
{
g ∈ Γ : e(λ1−ω)·m < ‖g‖ = ‖gtr‖ < e(λ1+ω)·m

}
,

Gstat =
{
g ∈ Γ :

∣∣µ̂n′(gtra0)
∣∣ ≥ t′ = t0

2

}
,

Gang =

{
g ∈ Γ : dang (ā0, H(g)) = dang

(
θ(g), a⊥0

)
>

(
t0
8

)1/τ
}
,

G = Glen ∩ Gstat ∩ Gang.
By Theorem 4.3 there is ρω > 0 so that (assuming m > mω)

ν∗m(Glen) > 1− e−ρω ·m.
Our choice of C1 should guarantee m > mω and

e−ρω ·m <
t0
8
.

There exists m1 so that for m > m1 Lemma 4.5 gives

ν∗m(Gang) > 1− t0
8
.

Finally, the fact that µn0 = ν∗m ∗ µn′ gives

ν∗m(Gstat) >
t0
2
.

Therefore
ν∗m(G) >

t0
2
− t0

8
− t0

8
=
t0
4
.

Since ‖gtr‖ = ‖g‖, and dang

(
x̄, H(gtr)

)
= dang

(
θ(g), x̄⊥

)
, by Lemma 4.1 (2) every

g ∈ G ⊂ Gang ∩ Glen has

‖gtra0‖ ≥ ‖gtr‖ · ‖a0‖ · dang

(
ā, H(gtr)

)
> e(λ1−ω)m‖a0‖ ·

(
t0
8

)1/τ

.

If m > (ω · τ)−1 · log(8/t0), which is true for large C1, then the the RHS above is
bigger than R. it is also clear that if g ∈ Glen,

∥∥gtra0

∥∥ < N . So we get

R < gtra0 < N (g ∈ G)
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while gtra0 ∈ At′,n′ for any g ∈ G ⊂ Gstat. Thus for any g ∈ G we have

gtra0 ∈ A := At′,n′ ∩ (B0,N \ B0,R) =
{
R < ‖b‖ ≤ N : |µ̂n′(b)| > t′

}
.

Let D be the projection of A to Pd−1. Then

ν∗m
{
g : gtrā0 ∈ D

}
≥ t0

4
and

N
(
D; e−(λ1−2ω)m

)
≤ N (A; ‖a0‖) .

It follows that

ν∗m
{
g : gtrā0 ∈ D

}
≤ N

(
D; e−(λ1−2ω)m

)
· max
ȳ∈Pd−1

ν∗m
{
g : dang

(
gtrā0, ȳ

)
< e−(λ1−2ω)m

}
≤ N

(
D; e−(λ1−2ω)m

)
e−τ

′m.

For some τ ′ > 0 depending only on ν. It follows that

N (A; ‖a0‖) ≥
t0
4
eτ
′m ≥ eτ ′m/2

if C1 is large enough. �

6.B. Bootstrap of large scale dimension: proof of Proposition 6.3.

A central step in the proof of Theorem 6.1 is the bootstrap procedure, which
allows us to increase the large-scale “dimension” of the set of large Fourier coeffi-
cients from α to α+αinc. in order to show this we employ the following projection
theorem due the first author which implicitly can be found in [4], and are proved
explicitly in [5].

Theorem 6.6 ([5, Thm. 5]). For any α0, κ > 0 and d ≥ 2 there are α∆, ε, r0 > 0
such that such that the following holds for 0 < r < r0 and α0 < α < d−α0: Let η
be a probability measure on Pd−1 s.t.

(6.11) max
ȳ

η(V (y⊥, ρ)) < ρκ if r < ρ < rτ0

Let E ⊂ [0, 1]d be a r-separated set with |E| > r−α and a non-concentration
property

max
x
|E ∩ Bx,ρ| < ρκ|E| if r < ρ < rτ0 .

Then there exist D ⊂ Pd−1 and E′ ⊂ E with

η(D) > 1− rε |E′| > rε|E|

So that
N
(
πθ(E′′); r

)
> r−(α+α∆)/d

whenever θ ∈ D and E′′ ⊂ E′ satisfies |E′′| > r2ε|E|.
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Lemma 6.7. For any ε > 0, there is a Cε > 0 so that the following holds. Let µ
be a measure on Td and

At(µ) =
{
b ∈ Zd : |µ̂(b)| > t

}
.

Assume that for some N > M,α

N (At(µ) ∩ B0,N ;M) ≥
(
N

M

)α
.

Then there is a M < N ′ < N with

log
N ′

M
>

(
d− α+ ε

d− α+ 8ε

)
log

N

M

so that At2/4(µ)∩B0,N ′ contains a subset which is (Cεt−2, α−10ε)-regular at scale
M .

Proof. By Lemma 5.2, there is a point x ∈ B0,N so that A ∩ Bx,N ′ supports a
probability measure ρ which is (Cε, α− 9ε)-regular measure at scale M with

N ′

M
=
(
N

M

) d−α+ε
d−α+8ε

.

Replacing Cε by 4Cε we may assume all b ∈ supp ρ satisfies that µ̂(b) lie in a single
quadrant of C, and hence ∣∣∣∣∣∑

b

ρ(b)µ̂(b)

∣∣∣∣∣ ≥ t√
2
.

By Cauchy-Schwartz:∑
b,b1

µ̂(b− b1)ρ(b)ρ(b1) =
∫

Td

∣∣∣∣∣∑
b

e(b · x)ρ(b)

∣∣∣∣∣
2

dx

≥

∣∣∣∣∣
∫

Td

∑
b

e(b · x)ρ(b) dx

∣∣∣∣∣
2

=

∣∣∣∣∣∑
b

µ̂(b)ρ(b)

∣∣∣∣∣
2

≥ t2

2

hence

(6.12) ρ ∗ ρ(At2/4(µ)) ≥ t2

4
.

Let ρ2 be the probability measure ρ ∗ ρ|At2/4(µ). As ρ was (4Cε, α− 9ε)-regular on

Bx,N ′ , the measure ρ ∗ ρ is (2d+2Cε, α− 9ε)-regular on B0,2N ′ , hence by (6.12)

ρ2 is (2d+4Cεt
−2, α− 9ε)-regular on B(0, 2N ′) .

By Lemma 5.3, there is some

Ã ⊂ supp ρ2 ⊂ At2/4(µ) ∩ B0,N ′
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which is M -separated and (C ′εt
−2, α− 10ε)-regular on B0,N ′ . �

Lemma 6.8. Given αini > 0 and αhigh < d there exists αinc, c6, C > 0 (depending
on ν) so that if for some 1/2 > t > 0, 1 ≤M < N with

(6.13) log(N/M) > c6 log(1/t) and n ≥ c6 log(N/M)

it holds that

N (At,n ∩ B0,N ;M) >
(
N

M

)α
for some αini ≤ α ≤ αhigh,

then there are m,M ′, N ′ with M ′ ≥M
m ≤ c6 log(N/M) N ′ ≤ N(N/M)c6 (N ′/M ′) ≥ (N/M)1/c6

and ξ ∈ Pd−1 so that if R denotes the “rectangle” B0,N ′ ∩ NbdM ′(ξ)

(6.14) N
(
At′,n−m ∩R;M ′

)
>

(
N ′

M ′

)(α+2αinc)/d

for t′ = Ct4.

Proof. Let α∆ be as in Theorem 6.6 for α0 = κ = min(αini, d − αhigh)/2. By
Lemma 6.7 applied with ε = α∆/20, there is an M < N1 < N with

log(N1/M) > c log(N/M)

and an M -separated subset

A ⊂ At2/4,n ∩ B0,N1

which is (Ct−2, α− α∆/2)-regular at scale M on B0,N1 ; in particular

|A| > C−1t2
(
N1

M

)α−α∆/2

.

Both the constants c and C depend only on αini and αhigh (and α∆ which is
determined by these two quantities).

Let ω > 0 be small (specifically, we require that ω < min(λ1 − λ2, λ1, α∆)/20)
and let m be the smallest integer so that

e(λ1−λ2−2ω)·m >
N1

M
.

Let n′ = n−m and set M ′, N ′ by
(m1) N ′ = e(λ1+ω)·m ·N1,
(m2) M ′ = e(λ1−ω)·m ·M ,

then also
(m3) M ′ ≤ e(λ2+ω)·m ·N1 ≤M ′.

assuming the constant c6 in (6.13) is sufficiently large, we will have that m is
greater or equal to the constant m0(ω) in Theorem 4.3. Invoking that theorem,
we conclude that the set

Glen =
{
g ∈ Γ : |λi −

1
m

log σi(g)| < ω for i = 1, 2
}
.
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satisfies

(6.15) ν∗m(Glen) > 1− e−ρω ·m

Conditions (m1)–(m3) imply that for any g ∈ Glen

gtr(B0,N1) ⊂ B0,N ′ ∩ NbdM ′(ξ) with ξ = θ(gtr),

i.e. the linear transformation gtr maps the ball B0,N1 into a cylinder of length 2N ′

and base of radius M ′.
Let η ∈ Prob(Pd−1) denote the distribution of θ(g) where g ∈ Γ is distributed

according to ν∗m, i.e., η(Θ) = ν∗m {g ∈ Γ : θ(g) ∈ Θ}. Lemma 4.5 provides the
regularity of η as in condition (6.11) of Theorem 6.6.

Let E = N−1
1 · A ⊂ B0,1 ⊂ Rd and r = M/N1. Theorem 6.6, applied for

r = M/N ′ and ε = α∆/10, gives us a set E′ ⊂ E with |E′| > rα∆/10 |E| and
Θ ⊂ Pd−1 with η(Θ) > 1− rα∆/10 so that
(6.16)
N
(
πθ(E′′); r

)
≥ r−(α+ 1

2
α∆)/d ∀E′′ ⊂ E′, θ ∈ Θ with

∣∣E′′∣∣ > rα∆/10
∣∣E′∣∣ .

Let B = N1E
′ and

Gproj = {g ∈ Γ : θ(g) ∈ Θ} .
We have

(6.17) ν∗m(Gproj) = η(Θ) > 1− rα∆/10.

Since b ∈ B ⊂ A ⊂ At2/4,n, we have that |µ̂n(b)| > 1
4 t

2 for all b ∈ B; by reducing
B slightly we may also assume that |B|−1

∣∣∑
b∈B µ̂n(b)

∣∣ ≥ 1
8 t

2. Using the identity
µn = ν∗m ∗ µn′ (recall that n′ = n −m) and the Cauchy-Schwartz inequality we
may conclude that

∑
g∈Γ

ν∗m(g) · 1
|B|

∑
b∈B
|µ̂n′(gtrb)|2 ≥

∣∣∣∣∣∣ 1
|B|

∑
g∈Γ

∑
b∈B

ν∗m(g)µ̂n′(gtrb)

∣∣∣∣∣∣
2

=

∣∣∣∣∣ 1
|B|

∑
b∈B

µ̂n(b)

∣∣∣∣∣ > 2−6t4

and therefore the set

Gstat =

{
g ∈ Γ :

1
|B|

∑
b∈B
|µ̂n′(gtrb)|2 > 2−7t4

}
has

(6.18) ν∗m(Gstat) > 2−7t4.

Note that for each g ∈ Gstat the set

(6.19) Bg =
{
b ∈ B : |µ̂n′(gtrb)|2 > 2−8t4

}
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has |Bg| > 2−8t4 · |B|. Let G = Glen ∩ Gproj ∩ Gstat. From (6.18), (6.17) and (6.15)
we have

ν∗m(G) > 2−7t4 − rα∆/10 − e−ρω ·m > 2−8t4, where r =
M

N1
.

assuming rα∆/10, e−ρω ·m < 2−9t4 which is guaranteed by taking c6 large enough.
Moreover, for any g ∈ G we have that |Bg| > 2−8t4 · |B| and (assuming as we

may that 2−8t4 > rα∆/10) by (6.16)

N (πξ(Bg);M) ≥ r−(α+ 1
2
α∆)/d with ξ = θ(gtr);

note that by definition of Bg,

(6.20) gtr(Bg) ⊂ A t2

16
,n′
.

Since also g ∈ Glen, gtr(Bg) ⊂ B0,N ′ ∩ NbdM ′(ξ) and

N
(
gtr(Bg);M ′

)
≥ N (πξ(Bg);M) ,

which in view of (6.20) implies (6.14). �

Lemma 6.9. Let 1/2 > t1 > 0,M1 < N1 and n1 satisfy

(6.21) n1, log(N/M) > c7 log(1/t1)

with c7 depending on ν. Let ξ ∈ Pd−1 and let R be the “rectangle” R = B0,N1 ∩
NbdM1(ξ). Then there are m2,M2, N2 with

m2, |log(N1)− log(N2)| , |log(M1)− log(M2)| ≤ c7 log(1/t1)

so that for t2 = (t1/8)2d

(6.22) N (At2,n1−m2 ∩ B0,N2 ;M2) ≥ c−1
7 tκ7

1 N (At1,n1 ∩R;M1)d

where κ7 also depends only on ν.

Proof. Let ω = (λ1 − λ2)/10, and let m2 be such that the sets

Glen =
{
~g ∈ Γd : |λi −

1
m2

log σi(gj)| < ω for i = 1, 2 and j = 1, . . . , d
}

Gang =
{
~g ∈ Γd : dang

(
ξ,H(gtr

j )
)
≥ 2e−ωm2 for j = 1, . . . , d

}
Gvol =

{
~g ∈ Γd : vol(θ(gtr

1 ), . . . , θ(gtr
d )) >

(
t1
8

)2dp
}

(p as in Lemma 4.6)

satisfy

(6.23) min((ν∗m2)d(Glen), (ν∗m2)d(Gang), (ν∗m2)d(Gvol)) ≥ 1− 1
6(t1/4)2d.

By Lemma 4.6 and Theorem 4.3 and Theorem 4.4 one can find such m2 with
m2 < τ1 |log t1| for some constant τ1. In particular if the constant c7 of (6.21) is
sufficiently large, n2 = n1 −m2 > 0, which we shall assume henceforth.

Let E ⊂ At1,n1 ∩R be such that
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(E1) for every b, b′ ∈ E

dang

(
ξ,

b− b′

|b− b′|

)
≤ e−ωm2

(E2)
∣∣∑

b∈E µ̂n1(b)
∣∣ ≥ 1

2 t1 |E|.

Clearly, by (6.28) one can find such E so that

|E| ≥ ce−dωm2N (At1,n1 ∩R;M1)

where c is some constant depending only on d. Note that in order to satisfy (E2)
one can e.g. take E so that {µ̂n1(b) : b ∈ E} lie in a single quadrant of C.

Write G(x) = |E|−1∑
g ν
∗m2(g)

∑
b∈E egtrb(x). Then

2−2dt2d1 ≤

∣∣∣∣∣ 1
|E|

∑
b∈E

µ̂n1(b)

∣∣∣∣∣
2d

=

∣∣∣∣∣ 1
|E|

∑
g

∑
b∈E

ν∗m2(g)µ̂n2(gtrb)

∣∣∣∣∣
2d

=
∣∣∣∣∫ G(x) dµn2(x)

∣∣∣∣2d ≤ ∫ |G(x)|2d dµn2(x)

=
1

|E|2d
∑
· · ·
∑

g1,...,g2d

ν∗m2(g1) . . . ν∗m2(g2d)·

·
∑
· · ·
∑

b1,...,b2d∈E
µ̂n2(gtr

1 b1 + · · ·+ gtr
d bd

− gtr
d+1bd+1 − · · · − gtr

2db2d).

(6.24)

Set Σ(g1,...,gd)(~b) =
∑d

i=1 g
tr
i bi. Fix (gd+1, . . . , g2d) ∈ Glen and bd+1, . . . , b2d ∈ E

with
(6.25)

|E|−d
∣∣∣∣∣∣
∑
· · ·
∑

g1,...,gd

ν∗m2(g1) . . . ν∗m2(gd)
∑
~b∈Ed

µ̂n2(Σ(g1,...,gd)(~b)− b)

∣∣∣∣∣∣ ≥
(
t1
4

)2d

where b = gtr
d+1bd+1 + · · · + gtr

2db2d. Such a choice exists in view of the estimate
(6.23) on the measure of Glen and (6.24).

Set

Gstat =

~g ∈ Γd : |E|−d
∣∣∣∣∣∣
∑
~b∈Ed

µ̂n2(Σ~g(~b)− b)

∣∣∣∣∣∣ > 1
2

(
t1
4

)2d
 .

In view of (6.25), (ν∗m2)d(Gstat) ≥ 1
2(t1/4)2d, hence by (6.23) the set G = Gstat ∩

Gvol ∩ Glen ∩ Gang is nonempty. Let t2 = (t1/8)2d.

We claim that if
tp2e

(λ1−2ω)m2 > 4de(λ2+ω)m2

then for any ~g ∈ G,

(6.26) N
(
At2,n2 ∩ (Σ~g(Ed)− b);M2

)
≥ t2 |E|d
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with M2 = 1
4 t
p
2e

(λ1−2ω)m2M1; note that ~g, (gd+1, . . . , g2d) ∈ Glen and E ⊂ B0,N1

imply
Σ~g(Ed)− b ⊂ B0,N2 where N2 = 2

√
de(λ1+ω)m2N1.

As

(6.27) |E| ≥ ce−dωm2N
(
At′,n1 ∩R;M1

)
It follows form (6.26) and (6.27) that

N (At2,n2 ∩ B0,N2 ;M2) ≥ c′t2e−d
2ωm2N

(
At′,n1 ∩R;M1

)d
,

establishing Lemma 6.9 assuming the claim (6.26).

We now turn to proving (6.26). Let ξi = θ(gtr
i ) for i = 1, . . . , d. We shall use

the following auxiliary expression, which is meant to approximate Σ~g(~b):

Σ∗~g(~b) =
d∑
i=1

πξi(g
tr
i bi),

where we consider πξi as a rank one map Rd → Rd whose image is in the vector
space spanned by ξi. Indeed, for ~g ∈ Glen∥∥∥Σ~g(~b)− Σ∗~g(~b)

∥∥∥ ≤ e(λ2+ω)m2
∑
i

‖bi‖ .

Let ~b(i) = (b(i)1 , . . . , b
(i)
d ) (i = 1, 2) be two distinct points in Ed; assume they

differ in the jth coordinate b(i)j . Write bj = b
(1)
j − b

(2)
j as b′j + b′′j with b′′j ∈ H(gj)

and b′j ⊥ b′′j . As E is M1-separated, ‖bj‖ ≥ M1. Then dang (ξ, bj/ ‖bj‖) < e−ωm2

(cf. (E1)), hence as ~g ∈ Gang

dang

(
bj
‖bj‖

, H(gj)
)
≥ dang

(
ξ,H(gtr

j )
)
− dang

(
bj
‖bj‖

, ξ

)
≥ e−ωm2

and ∣∣b′j∣∣ ≥ e−ωm2 |bj | ≥ 1
2e
−ωm2M1.

In these notations, πξj (g
tr
j bj) = gtr

j b
′
j , and it follows that∥∥πξj (gtr

j bj)
∥∥ ≥ 1

2e
(λ1−2ω)m2 ‖bj‖ .

Then as ~g ∈ Gvol∥∥∥Σ∗~g(~b
(1) −~b(2))

∥∥∥ ≥ vol(Σ~g(~b(1) −~b(2)), ξ1, . . . , ξj−1, ξj+1, . . . , ξd)

=
∥∥πξj (gtr

j bj)
∥∥ vol(ξ1, . . . , ξd)

≥ 1
2 t
p
2e

(λ1−2ω)m2 ‖bj‖ .
Hence ∥∥∥Σ~g(~b(1) −~b(2))

∥∥∥ ≥ 1
2 t
p
2e

(λ1−2ω)m2 ‖bj‖ − de(λ2+ω)m2 ‖bj‖

under the assumption this last expression is

≥ 1
4 t
p
2e

(λ1−2ω)m2 ‖bj‖ ≥ M2
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for which it follows that Σ~g(Ed) is M2-separated and (6.26) is proved, concluding
the proof of Lemma 6.9. �

Proof of Proposition 6.3. Apply Lemma 6.8 to find N1,M1,m1, n1 = n−m1 with

m1 ≤ c6 log(N/M) N1 ≤ N(N/M)c6 (N1/M1) ≥ (N/M)1/c6

and a ξ ∈ Pd−1 so that

(6.28) N (At1,n1 ∩R;M1) >
(
N1

M1

)(α+2αinc)/d

(t1 = Ct4)

with R = B0,N1 ∩ NbdM1(ξ). Now apply Lemma 6.9 to find m2, n2 = n1 −
m2,M2, N2 with

m2, |log(N1)− log(N2)| , |log(M1)− log(M2)| ≤ c7 log(1/t1)

so that

N (At2,n2 ∩ B0,N2 ;M2) ≥ c7t
κ7
1 N (At1,n1 ∩R;M1)

> c7t
κ7
1

(
N1

M1

)α+2αinc

with t2 = (t1/8)2d. Note that by choosing c2 of (6.3) to be large enough guarantees
that (6.21) holds. Moreover, if this constant c2 is large enough,

c7t
κ7
1

(
N1

M1

)α+2αinc

>

(
N2

M2

)α+αinc

establishing Proposition 6.3.
�

6.C. From high dimension to positive density: proof of Proposition 6.5.

Underlying (and motivating) the proof of Proposition 6.5 is the following the-
orem of Falconer [13] regarding projection of sets. Falconer shows that if η is a
measure on the set of directions with dimension β > 0 then if the dimension of ρ
is larger than d− β one has that for η almost every direction θ the projection ρθ
of ρ in the direction θ is absolutely continuous with respect to Lebesgue measure;
we follow the treatment of this result by Peres and Schlag in [27, Sec. 6]. In fact,
the argument gives a much more quantitative result connecting the α-energy of ρ
to the projections of ρ.

We need a version of this theorem for measures ρ which are (C,α)-regular at
some scale r, but are possibly singular at finer scales (indeed the measure we shall
consider will be purely atomic). As we have already remarked in Section 5, this can
be achieved by applying Falconer’s theorem to ρ convolved with an appropriate
smoothing function.

Let Φ be a fixed radially symmetric nonnegative smooth function on Rd with
‖Φ‖1 = 1 supported on B0,1, and set for r > 0

(6.29) Φr(x) = r−dΦ(r−1x).
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Let Ψ : R→ R+ be the smooth compactly supported function

Ψ(x1) =
∫
dx2 . . .

∫
dxd Φ(x1, x2, . . . , xd),

and define Ψr analogously to (6.29).

Lemma 6.10. Let ρ be a probability measure on R, and φ the Radon-Nykodim
derivative φ = d(ρ∗Ψr)

dx . Then for every r < r1 < 1

(6.30) N (supp ρ; r1) ≥ (4r1 ‖φ‖22)−1.

Moreover, for any subset X ⊂ supp ρ,

(6.31) N (X; r1) ≥ ρ(X)2

4r1 ‖φ‖22
.

Proof. Let B = supp ρ + [−r, r], and 1B the corresponding indicator function.
Then the Lebesgue measure of B satisfies λ(B) ≤ 4r1N (supp ρ; r1). By Cauchy-
Schwartz

1 =
∫

1B(x)φ(x) dx ≤ ‖1B‖2 ‖φ‖2 .

Since ‖1B‖2 =
√
λ(B) equation (6.30) follows.

To see (6.31), apply (6.30) on the probability measure ρ|X defined by ρ|X(Y ) =
1

ρ(X)ρ(X ∩ Y ); one has

dρ|X
dx

(y) =

{
1

ρ(X)
dρ
dx(y) if y ∈ X

0 if y 6∈ X

hence ‖dρ|X/dx‖22 ≤ ρ(X)−2 ‖dρ/dx‖22. �

Proposition 6.11. Let ρ be a probability measure supported on the unit ball B0,1

of Rd so that Eα(ρ) < ∞ for some 0 < α < d, 0 < r < 1, and let η be a measure
on Sd−1 such that for some cη, β > 0

(6.32) η(Bθ,ε) ≤ cηεβ for every ε > r and θ ∈ Sd−1.

Then for any β′ < β∫
θ

∫
t
|ρ̂θ(t)|2

∣∣∣Ψ̂r(t)
∣∣∣2 (1 + |t|)β′+α−d dt dη(θ) ≤(6.33)

cηCd

∫
Rd
|ρ̂(x)|2

∣∣∣Φ̂r(x)
∣∣∣2 (1 + |x|)α−d dx+ cηC(α, β, β′, d).

Interpretation: if α + β′ > d and η is (C,α′)-regular at scale r for α′ > α
then by (5.2) the right hand side of (6.32) is bounded from above by a constant
(depending on α, α′, β, β′, C, . . . ) while the left-hand side dominates∫

θ

∥∥∥∥d(ρ ∗Ψr)
dx

∥∥∥∥2

2

dη(θ).

In view of Lemma 6.10, this in particular implies that for η-many choices of θ, the
covering number of supp(ρθ) by r-intervals is large.
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Proof of Proposition 6.11. Our proof follows closely that of [27, Prop. 6.1]. Let
χ be a smooth, compactly supported function on Rd with nonnegative Fourier
transform and χ ≡ 1 on B0,1. Then ρ = ρ · χ and hence ρ̂ = ρ̂ ∗ χ̂. It follows that
|ρ̂|2 < C |ρ̂|2 ∗ χ̂; also since χ is smooth, compactly supported,

|χ̂(ξ)| < CN (1 + |ξ|)−N for every N ;

we shall assume below that N ≥ 2d. Thus

∫
Sd−1

∫
R

∣∣∣ρ̂θ(t)Ψ̂r(t)
∣∣∣2 (1 + |t|)β′+α−d dt dη(θ) ≤

(6.34)

≤ C
∫
Sd−1

∫
R

∫
Rd
χ̂(θt− x)

∣∣∣ρ̂(x)Φ̂r(x)
∣∣∣2 (1 + |t|)β′+α−d dt dη(θ) dx

≤ C ′N
∫

Rd

∣∣∣ρ̂(t)Φ̂r(t)
∣∣∣2 ∫

Sd−1

∫
R

(1 + |θt− x|)−N (1 + |t|)β′+α−d dt dη(θ) dx.

We estimate the innermost integral in the last line of the above equation as
follows:∫

R
(1 + |θt− x|)−N (1 + |t|)β′+α−d dt

≤ 2d (1 + |x|)β′+α−d
∫
|x|/2<|t|<2|x|

(1 + |θt− x|)−N dt +

+ C(N, β′, α)(1 + |x|)−N

≤ Cd,N (1 + |x|)β′+α−d
(

1 + |x| dang

(
θ,

x

|x|

))−N+d

+

+ C(N, β′, α)(1 + |x|)−N .

Using (6.32), we have (recall that N > 2d)∫
Sd−1

(
1 + |x| dang

(
θ,

x

|x|

))−N+d

dη(θ) ≤ η
{
θ : dang

(
θ,

x

|x|

)
< |x|−1

}
+

+
∑
k≥0

2−(N−d)k η

{
θ : 2k |x|−1 ≤ dang

(
θ,

x

|x|

)
< 2k+1 |x|−1

}
≤ 10cη max(r, (1 + |x|)−1)β.

It follows that the integral on the last line of (6.34) is at most

10Cd,N cη
∫
|x|<r−β/β′

max(r, (1 + |x|)−1)β
∣∣∣ρ̂(x)Φ̂r(x)

∣∣∣2 (1 + |x|)β′+α−d dη(x)

(6.35)

+ 10Cd,Ncη
∫
|x|>r−β/β′

rβ
∣∣∣Φ̂r(x)

∣∣∣2 (1 + |x|)β′+α−d dη(x)

+ C ′(N, β′, α).
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For |x| < r−β/β
′

one has the trivial inequality

max(r, (1 + |x|)−1)β ≤ 2(1 + |x|)−β′ .

We also note that Φ̂r(x) < CN1(r |x|)−N1 for every N1 hence (6.35) is bounded
from above by

10Cd,N cη
∫ ∣∣∣ρ̂(x)Φ̂r(x)

∣∣∣2 (1 + |x|)α−d dη(x) + C ′(N, β′, α)+(6.36)

+ 10Cd,N cη CN1

∫
|x|>r−β/β′

rβ(r |x|)−N1 |x|β
′+α−d dη.

As long as N1 is large enough (depending on β, β′, d, α), the integral on the second
line of (6.36) is bounded by a constant (depending on the same set of parameters).

�

As in Section 6.B, we interpret the identity

µ̂n(b) =
∑
g

ν∗m(g)µ̂n−m(gtrb)

to mean that for “many” g in the support of ν∗m, the set of large Fourier coef-
ficients At′,n−m of µn−m contains “a substantial proportion of” gtrA. This later
sets we consider as a perturbation of a rescaled and rotated orthogonal projection
of A in the direction g expands the most (in the notations of Section 4.A, the
direction perpendicular to H(g)).

Lemma 6.12. There are ε0, C, c8 > 0 (depending on ν) and an absolute constant
q > 0 so that if for some 1/2 > t > 0, 1 ≤M < N with

(6.37) log(N/M) > c8 log(1/t) and n ≥ c8 log(N/M)

it holds that

N (At,n ∩ B0,N ;M) >
(
N

M

)d−ε0
,

then there are m,M ′, N ′ with M ′ ≥M

m ≤ c8 log(N/M) N ′ ≤ N(N/M)c8 (N ′/M ′) ≥ (N/M)1/c8

and ξ ∈ Pd−1 so that if R denotes the “rectangle” B0,N ′ ∩NbdM ′(ξ) and t′ = Ctq.

(6.38) N
(
At′,n−m ∩R;M ′

)
>
t′N ′

M ′
.

Proof. Let τ be as in Lemma 4.5, and set ε0 = τ/3 . Assume that for t, n,M,N
as in the statement of Lemma 6.12 we have that

N (At,n ∩ B0,N ;M) >
(
N

M

)d−ε0
.

By Lemma 6.7 applied with ε = τ/30 there is a N1 ∈ (M,N) with log(N1/M) >
1
2 log(N/M) so that At1,n ∩ B0,N1 contains a subset E which is (Ct−2, d − 2τ/3)-
regular at scale M , where t1 = t2/4 and C depends only on τ . As before, we may



34 J. BOURGAIN, A. FURMAN, E. LINDENSTRAUSS, AND S. MOZES

assume

(6.39)
1
|E|

∣∣∣∣∣∑
b∈E

µ̂n(b)

∣∣∣∣∣ ≥ t1
2

since we may always choose a subset E1 ⊂ E of cardinality ≥ |E| /4 on which the
above inequality holds wake a to (Ct−2, d− 2τ/3)-regular (possibly for a slightly
different C).

Let m1 = κ log(N/M) (for a large constant κ to be determined later depending
on ν), and set n1 = n−m1. For any g ∈ supp(ν∗m1) set

E(g) = E ∩ (gtr)−1A t1
8
,n1

Gstat =
{
g ∈ supp ν∗m1 : |E(g)| > t1

8
|E|
}
.

By (6.39), as µn = ν∗m1 ∗ µn1 ,

1
|E|

∑
g

ν∗m1(g)

∣∣∣∣∣∑
b∈E

µ̂n1(gtrb)

∣∣∣∣∣ ≥ t1
2
,

and it follows that for a set of g of ν∗m1-measure at least t1/4 one has∑
b∈E

µ̂n1(gtrb) ≥ t1
4
|E| .

By Chebyshev inequality any such g satisfies |E(g)| ≥ t1 |E| /8; hence we conclude
that

ν∗m1(Gstat) ≥
t1
4
.

Let ω = (λ1 − λ2)/20, and set

Glen =
{
g ∈ Γ : |λi −

1
m1

log σi(g)| < ω for i = 1, 2
}
.

By Theorem 4.3 and (6.37), if c8 is sufficiently large (depending on ν),

ν∗m1(Glen) > 1− t1/8

hence ν∗m1(Glen ∩ Gstat) ≥ t1/8. Let G = Gstat ∩ Glen and η be the probability
measure on Pd−1 defined by

η(Ω) =
ν∗m1 {g ∈ G : θ(g) ∈ Ω}

ν∗m1(G)
.

By Lemma 4.5, for any ξ ∈ Pd−1 and e−c1m1 < r < r0 (with r0, C, c1, τ as in that
lemma)

η(Bξ,r) ≤ 4t−1
1 rτ .
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Applying Proposition 6.11 with β = τ , β′ = 5τ
6 , α = d− 5τ

6 and ρ = 1
|E|
∑

b∈E δb/N1

we get

(6.40)

∫
ξ

∥∥∥∥d(ρξ ∗Ψr)
dx

∥∥∥∥2

2

dη(ξ) ≤ C ′t−1
1

[
Cd

∫
Rd
|ρ̂(x)|2

∣∣∣Φ̂r(x)
∣∣∣2 (1 + |x|)α−d dx+

+ C(α, β, β′, d)
]
.

Recall that ρ is (ct−2, d − 2
3τ)-regular at scale M/N1; moreover if κ ≥ c−1

1 , we
have that r := M/N1 ≥ e−c1m1 . It follows that∫

Rd
|ρ̂(x)|2

∣∣∣Φ̂r(x)
∣∣∣2 (1 + |x|)α−d dx � Eα(ρ ◦Ψr) (by (5.2))

≤ c′′t−2 = 8c′′t−1
1 (since α > d− 2τ/3)

with c′, c′′ depending on τ, ν. Substituting into (6.40) we get∫
ξ

∥∥∥∥d(ρξ ∗Ψr)
dx

∥∥∥∥2

2

dη(ξ) ≤ c∗t−2
1 .

We conclude that there is a g0 ∈ G for which

(6.41)
∥∥∥∥d(ρξ0 ∗Ψr)

dx

∥∥∥∥2

2

≤ c∗t−2
1 with ξ0 = θ(g0).

Set

M ′ = max(N1e
σ2(g0),Meσ1(g0))

N ′ = N1e
σ1(g0).

Since g0 ∈ Glen we have that

log(N ′/M ′) ≥ min(log(N1/M), (λ1 − λ2 − 2ω)m1)� log(N/M)

(the implicit constant depending on ν). Also clearly M ′ ≥ M . Since g0 ∈ Gstat,
we have that |E(g0)| > t1 |E| /8 hence ρ( 1

N1
E(g0)) ≥ t1/8. Let πξ0 denote the

orthogonal projection to the direction ξ0 (considered as a map Rd → R). By
Lemma 6.10 and (6.41) it follows that

(6.42) N
(
πξ0( 1

N1
E(g0)); r′

)
≥ c∗∗(r′)−1t41

where r′ = M ′/N ′ ≥ r, and c∗∗ = 2−8c−1
∗ . By definition of E(g0), we have that

g0
tr(E(g0)) ⊂ At1/8,n1

; moreover for b ∈ B0,N1∥∥∥g0
trb− eσ1(g0)πξ0(b)θ(g0)

∥∥∥ ≤ N1e
σ2(g0) ≤M ′.

In particular, setting ξ = θ(g) and R the rectangle B0,N ′ ∩ NbdM ′(ξ),

gtr
0 (E(g0)) ⊂ R ∩At1/8,n1

(6.43)

N
(
gtr

0 (E(g0));M ′
)
≥ N

(
πξ0(E(g0)); r′

)
/2.(6.44)

By (6.42), (6.43), and (6.44), keeping in mind that r′ = M ′/N ′, the desired
inequality (6.38) follows. �



36 J. BOURGAIN, A. FURMAN, E. LINDENSTRAUSS, AND S. MOZES

Similarly to the proof of Proposition 6.3, Proposition 6.5 can easily be deduced
from Lemma 6.12 using Lemma 6.9. Note that in the notations of Lemma 6.9,∣∣∣log N1

M1
− log N2

M2

∣∣∣ � log t1 with the implicit constant depending on ν. We omit
the details.

7. Granulated measures

The goal of this section is to prove Proposition 3.1 and hence our main result
Theorem A which follows easily from it. Assume that µn = ν∗n ∗ µ0 satisfies

|µ̂n0(a0)| ≥ t0 > 0

where n0 is assumed to be larger than a constant multiple of log(2‖a0‖/t0). The
goal is to deduce that for any λ < λ1 there is C so that

µn0−m(WQ,e−λ·m) >
(
t0
2

)C
, where Q <

(
2‖a0‖
t0

)C
.

We recall the notations

RQ =
{

(
p1

q
, . . . ,

pd
q

) ∈ Td : q ≤ Q
}
, WQ,r =

⋃
x∈RQ

Bx,r.

Unless otherwise specified, all other constants defined in this section depend only
on ν (and hence indirectly also on Γ).

We outline the ingredients of the argument in the following Propositions 7.1–
7.4, and formally deduce Proposition 3.1. The proofs of propositions 7.1–7.4 are
given in §§7.A–7.D below.

In the first phase of the proof (Section 6, Theorem 6.1) it was shown that
the set of significant Fourier coefficients

{
a ∈ Zd : |µ̂n0−m(a)| > t

}
in large balls{

a ∈ Zd : ‖a‖ < N
}

has positive density when viewed at resolution M = N1−κ.
We shall use this information on Fourier coefficients to show that a certain portion
of the measure µn0−m on the torus Td is (1 − κ)-granulated at scale ρ = 1/N in
the following sense.

Let µ be a probability measure µ on Td. Say that a t-portion of µ is α-granulated
at scale ρ (here α < 1 and ρ > 0 is smaller than a power of t/2) if there exists a
ρα-separated set X ⊂ Td so that

µ(Nbdρ(X)) = µ(
⋃
x∈X

Bx,ρ) > t.

The information on significant Fourier coefficients of µn obtained in the first phase
of the proof (Section 6, Theorem 6.1) enables one to show that a significant portion
of the measures µn0−m is (1− κ)-granulated.

Proposition 7.1 (Initial granulation estimate).
There exist constants 1 < L1 < L2, κ > 0, and c1, c2, so that for m ≥ c1 · log 2‖a0‖

t0
,

there exists ρ ∈ (L−m2 , L−m1 ) and a finite set X ⊂ Td so that
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(1) X is r = ρ1−κ-separated;
(2) µn0−m

(⋃
x∈X Bx,ρ

)
>
(
t0
2

)c2.

Let us say that a probability measure µ is β-concentrated around x ∈ Td at
scale ρ if µ(Bx,ρ) > ρβ. So Lebesgue measure is d-concentrated, while atomic
measures are 0-concentrated, at all scales. Observe that if α < d and α ·d < β < d
then a probability measure µ which is α-granulated at sufficiently small scale ρ
has points which are β-concentrated: since ρα-separated subset on the d-torus has
O(ρ−d·α) points, an average ρ-ball with center x ∈ X has µ-mass

µ(Bx,ρ) > const · t · ρα·d > ρβ.

Thus µn0−m has points which are β-concentrated where β = d − κ > (1 − κ) · d,
assuming the scale ρ is small compared to t. The next step of the argument allows
to bootstrap this concentration phenomenon from β0 = d − κ down to βN = δ,
where δ > 0 is some fixed concentration goal determined in Proposition 7.3 below.
The bootstrapping procedure is performed some finite number N = N(κ, δ) of
times.

Proposition 7.2 (Bootstrapping concentration).
Given ε > 0 there is γ > 0 and `0 so that for n > ` > `0 the following holds: given
scales ρ < e−dλ1·` · r there are scales

r′ = e−(λ1+ε)·` · r, ρ′ = e−(λ1−ε)·` · ρ
so that given an r-separated set X ⊂ Td one can construct an r′-separated set
X ′ ⊂ Td with

|X ′| ≤ |X| and µn−`(
⋃
y∈X′

By,ρ′) >

(
µn(

⋃
x∈X

Bx,ρ)

)d
− e−γ·`.

The initial granulation α = 1− κ gives r0
ρ0

= ρ−κ0 so the above proposition can
be applied with ` as big as 1

dλ1
log( r0ρ0

) = κ
dλ1

log( 1
ρ0

). With half that big `, we

still get a shrinking factor of e−(λ1−ε)·` < ρ
κ/3d
0 in the scale of concentrated balls

produced in the proposition. The fact that the ratio r′

ρ′ in the output is close to
the initial one r

ρ , allows to apply the proposition with a fixed ` for a number N
of iterations, and obtain very high concentrations. The loss of mass is not very
drastic if the initial portion τ0 > (t0/2)c2 of (1− κ)-granulated measure µn0−m is
large compared to the scale ρ and e−γ`.

The following proposition shows that certain level of concentration can occur
only near rational points. This determines the desired concentration level δ > 0
mentioned above.

Proposition 7.3 (Rational approximation).
There is δ > 0 and c4 <∞ so that for any small ρ > 0

µn(Bz,ρ) > ρδ =⇒ Bz,ρ ⊂WQ,r,

for r = ρ9/10 and Q = ρ−1/10, provided n > c4 · log(1/ρ).
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Hence assuming that a significant µn-mass is granulated with exponent δ, µn
gives this significant mass to WQ,r with r = Q−9. Of course factor 9 is arbitrary
here, for the following we could work with any factor bigger than say 3.

The final step of the proof, uses the Γ-invariance of the set RQ to show that
most of µn mass of WQ,r =

⋃
x∈RQ Bx,r must be concentrated near the centers RQ

of these balls.

Proposition 7.4 (Tight Bootstrapping).
Given ε > 0 there is m∗ and ω > 0 so that if r > 0, Q <∞ and m > m∗ satisfy

edλ1·m · r < 1
Q2

then
µn−m(WQ,e−(λ1−ε)·m·r) > µn(WQ,r)− e−ω·m

assuming n > m.

This is done by considering the intersections of a large number N > eδ·m of
translates g−1

i (WQ,r), where g1, . . . , gN are chosen using the distribution ν∗m of
the m-step random walk.

Let us now deduce Proportion 3.1 of the introduction from these propositions,
which are proved in the following subsections §§7.A–7.D.

Proof of Proposition 3.1.

We assume that |µ̂n0(a0)| ≥ t0 > 0 for some a0 ∈ Zd \ {0}. We shall work with
n0 > m > C · log 2‖a0‖

t0
where the value of C will be determined implicitly in the

proof.

Our first goal is to show that for some constants C1, D, 1 < L3 < L4 and any
m0 > C1 · log 2‖a0‖

t0
there exist ρ with L−m0

4 < ρ < L−m0
3 and a finite set Y ⊂ Td

so that

(7.1) µn0−m0(By,ρ) > ρδ (∀ y ∈ Y ), µn0−m0(
⋃
y∈Y

By,ρ) >
(
t0
2

)D
where δ > 0 is the constant from Proposition 7.3.

Proposition 7.1 provides 1 < L1 < L2 and κ > 0, so that for large m00 there
exists ρ0 ∈ (L−m00

2 , L−m00
1 ) and finite set X0 ⊂ Td which is r0-separated so that

r0 = ρ1−κ
0 , µn0−m00(

⋃
x∈X0

Bx,ρ0) >
(
t0
2

)c2
.

We shall amplify this initial concentration by a number (N below) of iterations
of the bootstrapping procedure in Proposition 7.2. The relevant parameters are
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chosen as follows:

` ∈ N so that e−2dλ1·` >
ρ0

r0
= ρκ0 > e−3dλ1·`,(7.2)

N ∈ N so that δN · κ > 6d2,(7.3)
ε > 0 so that 2N · ε < dλ1.(7.4)

Here δ > 0 is provided by Proposition 7.3 and κ by Proposition 7.1. Note that
` � log 1

ρ0
� m00, i.e., the ratios between these quantities are bounded from below

and from above by finite positive constants (depending on ν).
For j = 1, . . . , N − 1 set ρj+1 = e−j(λ1−ε)·` · ρ0 and rj+1 = e−j(λ1+ε)·` · r0. Then

(7.5)
ρ0

r0
< . . . · · · < ρN

rN
= e2Nε` · ρ0

r0
< e2Nε`−2dλ1` < e−dλ1`,

where the last inequality is justified by (7.2) and (7.4).
We have arranged ρj < e−dλ1` · rj for j = 0, . . . , N , and, assuming that ` >

`0, may apply Proposition 7.2 inductively starting from the set X0 provided by
Proposition 7.1. This yields a finite sequence of sets X1, . . . , XN , where each Xj

is an rj-separated set on the torus, the sets do not increase in cardinality:

(7.6) |XN | ≤ · · · ≤ |X1| ≤ |X0| < constd · r−d0 < ρ−d0 ,

while the masses

τj = µn0−j`(
⋃
x∈Xj

Bx,ρj ) satisfy τj+1 > τdj − e−γ·`.

Recall that γ > 0, depending on ε > 0, N , κ > 0 and δ > 0, are constants
(depending on ν), but independent of `, m00, etc. So choosing C1 large enough,
we may ensure that m00, and thus `, are large compared to log(2/t0) so that

e−γ·` <

(
t0
2

)c2·(d+1)N

.

This implies, by induction on i, that τi > 2e−γ·` and τi+1 > 1
2τ

d
i > τd+1

i . In
particular the last set XN satisfies:

µn0−N`(
⋃

x∈XN

Bx,ρN ) = τN >

(
t0
2

)c2·(d+1)N

.

We now use the fact that |XN | has few elements, estimated by (7.6), to extract
the subset Y of very concentrated ρN -balls:

(7.7) Y =
{
x ∈ XN : µn0−N`(Bx,ρN ) >

τN
2 · |XN |

}
.

Then

µn0−N`(
⋃
y∈Y

By,ρN ) >
τN
2
>

(
t0
2

)D
,
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where D is set to be D = c2 · (d+ 1)N + 1. Finally we claim that

(7.8)
τN

2|XN |
> (ρN )δ.

Indeed, assuming m00 is large compared to log(2/t0), we have

τN
2|XN |

>

(
t0
2

)D
· ρd(1−κ)

0 > ρd0.

Using (7.3) and (7.2) it follows

(ρN )δ = e−δN(λ1−ε)·` · ρδ0 < e−δN
λ1
2
` <

(
e−3dλ1`

)d/κ
< ρd0.

With Y as in (7.7), ρ = ρN , m0 = N`, the claim (7.1) is proven.

Applying Proposition 7.3 to the conclusion (7.1) we deduce that for some C2,
C3 > 1, for m0 > C2 · log 2‖a0‖

t0
, and n0 > C3 ·m0, one has

(7.9) µn0−m0(WQ,r) >
(
t0
2

)D
, where r = Q−9, Q ∈ (L

m0
10

3 , L
m0
10

4 ).

The proof of Proposition 3.1 concludes with the second bootstrap Proposition 7.4
applied a number of times. Given λ < λ1 we choose

ε = min(
λ1

3
,
λ1 − λ

2
)

and let ω = ω(ε) > 0 be the corresponding constant from Proposition 7.4.
With ε < λ1 − λ there are 0 < α < β and k ∈ N, so that any large m can be

written as
m = m0 +m1 +m2 + · · ·+mk,

where

λm < (λ1 − ε) · (m−m0),(7.10)
α ·m < m0 < β ·m,(7.11)

(
7

10dλ1
logL3) ·m0 < m1 < (

7
10dλ1

logL4) ·m0,(7.12)

(1 +
1
3d

) ·mi < mi+1 < (1 +
1
2d

) ·mi.(7.13)

We set C to be large enough so that writing m > C · log 2‖a0‖
t0

as m = m0 + · · ·+mk

as above we get m0 > C2 · log 2‖a0‖
t0

and m1 > m∗. Then for r and Q as in (7.9)
condition (7.12) implies

edλ1m1 < L
7m0
10

3 < Q7 =
1

r ·Q2
.

Denoting ri = e−(λ1−ε)·(m1+···+mi) · r we also obtain

edλ1·mi+1 · ri <
1
Q2

.
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Indeed, this is proven by induction using (7.13):

edλ1·mi+1 < edλ1·mi · e
λ1
2
·mi <

e
λ1
2
·mi

ri ·Q2
<

1
ri+1 ·Q2

.

Therefore, Proposition 7.4 can be applied to deduce, using (7.10), that

µn0−m(WQ,e−λ·m) > µn0−m(WQ,e−(λ1−ε)·(m1+···+mk)·r)

> µn0−m0(WQ,r)− e−ω·m1 − · · · − e−ω·mk .
For some c > 0, independent of m, etc, we have

∑
e−ω·mi < e−c·m. If C > 2D/c

then it follows, using (7.9), that

µn0−m(WQ,e−λ·m) > µn0−m0(WQ,r)− e−c·m >

(
t0
2

)D
− e−c·m >

(
t0
2

)D+1

.

This completes the proof of Proposition 3.1. �

7.A. Initial granulation: proof of Proposition 7.1.
Proposition 7.1 follows from Theorem 6.1 and the following general statement with
M = N1−κ, ρ = 1

M , s = t = tp0.

Proposition 7.5. There exists c > 0 so that if a probability measure µ on Td
satisfies

N
({
a ∈ Zd ∩ B0,N : |µ̂(a)| > t

}
;M
)
> s ·

(
N

M

)d
with M < constd ·N , then there exists an 1

M -separated set X ⊂ Td with

µ

(⋃
x∈X

Bx, 1
N

)
> c · (ts)3.

Proof. We shall need an auxiliary smooth function F on the torus such that

0 ≤ F ≤ C1 ·Nd, supp(F ) ⊂ B0, 1
N
,

∫
Td
F dx = 1.

and the Fourier coefficients

F̂ (a) ≥ 0 F̂ (a) ≥ 1
2

for a ∈ Zd ∩ B0,N .

Here C1 < ∞ is a constant depending on d only. To construct such a function,
consider the step function F1(x) = m(B0,r)−1 · 1B0,r(x) where r = ε/N for some
fixed small ε > 0. Then F̂1(a) is close to 1 for a ∈ Zd ∩ B0,N . If F2 is a smooth
symmetric approximation of F1, then the convolution F = F2 ∗ F̌2 has the desired
properties.

Let Ã =
{
a ∈ Zd ∩ B0,N : |µ̂(a)| > t

}
. Upon passing to a subset A ⊂ Ã of size

|A| ≥ |Ã|
4
>
s

4

(
N

M

)d
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we may assume that Re(eiθ · µ̂(a)) > t
2 for some fixed θ ∈ [0, 2π). Let

φ(x) =
∑
a∈A

ea(x).

As usual, ea(x) = e−2πi〈x,a〉 are the standard characters. Note that

|φ(x)|2 = (
∑
a∈A

ea(x)) · (
∑
b∈A

eb(x)) =
∑
a,b∈A

ea−b(x).

The probability measure λ = µ ∗ F has a smooth density g : Td → [0,∞) with
ĝ(b) = µ̂(b) · F̂ (b). On A we have F̂ ≥ 1/2 and Re(eiθµ̂) > t/2. Therefore

(7.14)
∣∣∣∣∫

Td
φdλ

∣∣∣∣ ≥∑
a∈A

Re(eiθ · ĝ(a)) >
t

4
· |A| > ts

16
·
(
N

M

)d
.

We shall see that the RHS is close to an a priori upper estimate for the LHS.
Partition Td into Md ”cubes” Qi with side length 1

M and centers ci ∈ Td. By
Cauchy-Schwartz inequality

(7.15)
∣∣∣∣∫

Td
φdλ

∣∣∣∣ ≤∑
i

∣∣∣∣∫
Td

1Qi · φdλ
∣∣∣∣ ≤∑

i

λ(Qi)
1
2 ·
(∫

Qi

|φ|2 dλ
) 1

2

.

Let r =
√
d

M which is assumed to dominate 1
N . Then Qi ⊂ Bci,r/2 and y+Qi ⊂ Bci,r

for any y ∈ supp(F ) ⊂ B0, 1
N

. Thus

λ(Qi) =
∫

Td
F (y) · µ(y +Qi) dy ≤ µ(Bci,r).

Since dλ(x) = g(x) dx we have∫
Qi

|φ|2 dλ ≤ Gi ·
∫
Qi

|φ|2 dx, where Gi = max
x∈Qi

g(x).

We shall estimate
∫
Qi
|φ|2 dx using an auxiliary function f on Td; we take f to be

the product f(x) =
∏d
i=1 hM (xi) of one dimensional Fejér kernels

hn(u) =
1
n

n∑
k=1

k∑
j=−k

e2πju =
1
n

(
sin nu

2

sin u
2

)2

.

Note that f is a non-negative function, with f(x) > 10−d ·Md on the 1
M -cube

Q0 = [− 1
2M ,

1
2M ]d + Zd around 0 ∈ Td. The Fourier coefficients f̂ take values in
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[0, 1] and vanish outside the [−M,M ]d ∩ Zd cube. Thus∫
Qi

|φ(x)|2 dx =
∫
Q0

|φ(ci + y)|2 dy ≤ 10d

Md

∫
Q0

|φ(ci + y)|2f(y) dy

≤ 10d

Md

∫
Td
|φ(ci + y)|2f(y) dy =

10d

Md

∫
Td

∑
a,b∈A

ea−b(ci + y) · f(y) dy

=
10d

Md

∑
a,b∈A

ea−b(ci)f̂(a− b)

 ≤ 10d

Md
· max
a,b∈A

|f̂(a− b)|

≤ C2 · |A|
Md

≤ C2 ·Nd

M2d
.

Here C2 is a constant which is 10d times the maximal cardinality of a 1-separated
set in [−1, 1]d.

The density g of λ = µ ∗ F has the following upper bound:

(7.16) g(x) =
∫
F (x− y) dµ(y) ≤ C1 ·Nd · µ(Bx, 1

N
).

Since Nbd 1
N

(Qi) ⊂ Bci,r it follows that

Gi = max
x∈Qi

g(x) ≤ C1N
dµ(Bci,r).

Let 0 ≤ Hi ≤ 1 denote the ratio, so Gi = Hi · C1N
dµ(Bci,r). By (7.14 and 7.15)

ts

16

(
N

M

)d
≤
∑
i

µ(Bci,r)
1
2 ·G

1
2
i ·
√
C2 ·N

d
2

Md

≤
∑
i

µ(Bci,r) ·H
1
2
i ·
√
C1 · C2 ·

(
N

M

)d
.

Let C3 =
√
C1 · C2. We have∑

i

µ(Bci,r) ·H
1
2
i >

ts

16C3
.

Therefore

(7.17)
∑
i∈I

µ(Bci,r) >
ts

25C3
where I =

{
i : H

1
2
i >

ts

25C3

}
.

For each i ∈ I let xi ∈ Qi be such that g(xi) > ( ts
25C3

)2 · C1 ·Nd · µ(Bci,r). Then

µ(Bxi, 1
N

) >
(ts)2

210C2
· µ(Bci,r)

and using (7.17) ∑
i∈I

µ(Bxi, 1
N

) >
(ts)3

215 · C2 · C3
.
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The set X̃ = {xi : i ∈ I} visits each of the cubes Qj at most ones. Thus it may
be separated into 2d subsets each of which never visits neighboring Qj-s, and is
therefore 1

M -separated. At least one of 2d such subsets X ⊂ X̃ has

µ(
⋃
x∈X

Bx,r) =
∑
x∈X

µ(Bx, 1
N

) > 2−d ·
∑
i∈I

µ(Bxi, 1
N

) >
(ts)3

2d+15 · C2 · C3
.

This completes the proof of the Proposition. �

7.B. Bootstrapping the concentration: proof of Proposition 7.2.

We start with a few lemmas.

Lemma 7.6. Given ε > 0 there is γ > 0 and m0 ∈ N so that for n > m ≥ m0

one can find a subset G ⊂ Γd so that for (g1, . . . , gd) ∈ G:

(i) | 1
m

log σj(gi)− λj | < ε (1 ≤ i ≤ d, 1 ≤ j ≤ d)

(ii) vol(θ(g1), . . . , θ(gd)) > e−ε·m

(iii) vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−ε·m

and such that for any Borel subset A ⊂ Td one has

µn(A)d − e−γ·m ≤
∑
~g∈G

ν∗m(g1) · · · ν∗m(gd) · µn−m(g−1
1 A ∩ · · · ∩ g−1

d A).

Proof. By Theorem 4.3 for some ρ > 0 and sufficiently large m the set Glen of
d-tuples ~g ∈ Γd satisfying (i) has

(ν∗m)d(Glen) > (1− e−ρ·m)d.

The set Gtrans of sufficiently ”transversal” d-tuples ~g ∈ Γd, namely ones satisfying
conditions (ii) and (iii), has (Lemma 4.6) mass

(ν∗m)d(Gtrans) > 1− e−(ε/p)·m.

Let G = Glen ∩ Gtrans and let γ > 0 be small enough so that

(ν∗m)d(G) > (1− e−ρ·m)d − e−(ε/p)·m > 1− e−γ·m.
Given A ⊂ Td the function f(x) =

∑
g∈Γ ν

∗m(g) · 1A(gx) on Td satisfies∫
Td
f(x) dµn−m(x) =

∑
g∈Γ

ν∗m(g) · µn−m(g−1A) = µn(A).

By the convexity of t 7→ td we deduce that

µn(A)d =
(∫

Td
f dµn−m

)d
≤
∫

Td
f(x)d dµn−m(x)

=
∑
~g∈Γd

ν∗m(g1) · · · ν∗m(gd) · µn−m(g−1
1 A ∩ · · · ∩ g−1

d A)

and the Lemma follows by restricting the summation to ~g ∈ G. �
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Lemma 7.7. For any x̄1, . . . , x̄d, ȳ1, . . . , ȳd ∈ Pd−1 one has

| vol(x̄1, . . . , x̄d)− vol(ȳ1, . . . , ȳd)| ≤
√

2 ·
d∑
i=1

dang (x̄i, ȳi) .

Proof. Assuming xi, yi are unit vectors, we have

| vol(x1, . . . , xd)− vol(y1, . . . , yd)| ≤
d∑
i=1

| vol(x1, . . . , xi − yi, . . . , yd)|

≤
d∑
i=1

‖xi − yi‖ ≤
√

2 ·
d∑
i=1

dang (x̄i, ȳi) .

�

Lemma 7.8. Given ε > 0 there is m0(ε) so that for m > m0 and any g1, . . . , gd ∈
Γ with

| 1
m
σj(g)− λj | < ε, (j = 1, 2)

vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−ε·m

one has
∀ v ∈ Rd \ {0} : max

1≤i≤d

‖giv‖
‖v‖

≥ e(λ1−3ε)·m.

Proof. First let us estimate

δ = max
1≤i≤d

dang (v,H(gi)) = max
1≤i≤d

dang

(
θ(gtr

i ), v⊥
)
.

If yi denote the projections of some unit vectors in x̄i = θ(gtr
i ) to v⊥, then

vol(ȳ1, . . . , ȳd) = 0. Hence it follows from Lemma 7.7 that

√
2 ·

d∑
i=1

dang (x̄i, ȳi) ≥ vol(x̄1, . . . , x̄d) > e−ε·m.

Thus δ > 1√
2d
· e−ε·m, which is larger than e−2ε·m for sufficiently large m. We have

max
1≤i≤d

‖giv‖
‖v‖

≥ δ · min
1≤i≤d

‖gi‖ ≥ e−2ε·m · e(λ1−ε)·m > e(λ1−3ε)·m

as claimed. �

Proof of Proposition 7.2. We fix a small 0 < δ < ε
3 ; with `0 to be determined

later. Lemma 7.6 provides a set G ⊂ Γd of d-tuples (g1, . . . , gd) and γ > 0 so that

| 1
m

log σj(gi)− λj | < δ (1 ≤ i, j ≤ d)

vol(θ(g1), . . . , θ(gd)) > e−δ·`

vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−δ·`
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and for any A ⊂ Td

µn(A)d − e−γ·` ≤
∑
~g∈G

ν∗`(g1) · · · ν∗`(gd) · µn−`(g−1
1 A ∩ · · · ∩ g−1

d A).

We apply this to the set A = Nbdρ(X) =
⋃
x∈X Bx,ρ of well separated small balls

on the torus, and fix a d-tuple (g1, . . . , gd) ∈ G with

µn(A)d − e−γ·` ≤ µn−`(g−1
1 A ∩ · · · ∩ g−1

d A)

= µn−`(
⋃

x1,...,xd∈X
g−1

1 (Bx1,ρ) ∩ · · · ∩ g−1
d (Bxd,ρ)).

Consider the components Cx1,...,xd = g−1
1 (Bx1,ρ) ∩ · · · ∩ g−1

d (Bxd,ρ), indexed by d-
tuples ~x = (x1, . . . , xd) ∈ Xd, of the union in the right hand side. We shall show
that most of these components are empty; in fact, there are at most |X|-many
ones with C~x 6= ∅. We shall also show that these non-empty components are
r′-separated and have diameter less than ρ′. So choosing one point y from each
non-empty component C~x of g−1

1 A∩· · ·∩g−1
d A, we obtain a set Y with the desired

properties.
Let ~x = (x1, . . . , xd) and ~x′ = (x′1, . . . , x

′
d) be two d-tuples from X, where C~x

and C~x′ are not empty, and assume that x1 = x′1 = x. Then g−1
1 (Bx,ρ) intersects

both g−1
j (Bxj ,ρ) and g−1

j (Bx′j ,ρ). Applying gj it follows that the set (gjg−1
1 )(Bx,ρ)

intersects the ρ-balls around points xj , x′j ∈ X, which yields:

‖xj − x′j‖ < 2ρ+ ‖gj‖ · ‖g−1
1 ‖ · ρ < (2 + e(λ1+δ)·` · e(−λd+δ)·`) · ρ.

By our choice of c3 = λ1 − λd + 1 it follows that ‖xj − x′j‖ < r and therefore
xj = x′j . This consideration applies to all j = 2, . . . , d. So ~x = ~x′.

Let us choose representatives y ∈ C~x in non-empty components of g−1
1 A∩ · · · ∩

g−1
d A and form the set Y . We just showed that associating x1 to y ∈ Cx1,...,xd is

an injective map Y → X, so |Y | ≤ |X|.
Let us show that Y is r′-separated. Let y ∈ C~x and y′ ∈ C~x′ and y 6= y′. Then

x1 6= x′1 ∈ X, while g1y ∈ Bx1,ρ and g1y ∈ Bx′1,ρ. Therefore

r < ‖x1 − x′1‖ ≤ 2ρ+ ‖g1‖ · ‖y − y′‖.

Since ρ is much smaller than r, and ‖g1‖ < 1
2 · e

(λ1+δ)·` < e(λ1+ε)·`, we have

‖y − y′‖ > ‖g1‖−1 · (r − 2ρ) > e−(λ1+ε)·` · r = r′

as claimed.
Let C~x be a non-empty component and y ∈ C~x. We claim that C~x ⊂ By,ρ′ .

Indeed, for any z ∈ C~x and every i = 1, . . . , d both giy and giz are in Bxi,ρ, so that

max
1≤i≤d

‖giy − giz‖ ≤ 2ρ.

The above distances are measured on the torus. But they are so small that the
whole picture may safely be lifted to Rd, and one might think of the vector v = y−z
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being such that
max
1≤i≤d

‖giv‖ ≤ 2ρ.

By Lemma 7.8 and the geometry of g1, . . . , gd this implies that

‖y − z‖ = ‖v‖ < e−(λ1−3δ)·` · 2ρ < e−(λ1−ε)·` · ρ = ρ′.

Therefore
g−1

1 A ∩ · · · ∩ g−1
d A ⊂

⋃
y∈Y

By,ρ′

and
µn−`(

⋃
y∈Y

By,ρ′) ≥ µn(
⋃
x∈X

Bx,ρ)d − e−γ·`

as required. �

7.C. Rational approximation: proof of Proposition 7.3.
We shall need the following technical lemma, which gives a sufficient condition for
a linear combination of d very proximal elements in SLd(R) to be invertible.

Lemma 7.9. Given g1, . . . , gd ∈ SLd(R) and constants c1, . . . , cd let

ρ = max
1≤i≤d

ρ(gi), C = max
1≤i,j≤d

|ci|
|cj |

, L = max
1≤i,j≤d

‖gi‖
‖gj‖

and let v = min(v1, v2), where

v1 = vol(θ(g1), . . . , θ(gd)), v2 = vol(θ(gtr
1 ), . . . , θ(gtr

d )).

Assume that ρ < (20d2CL)−1 · v3. Then the matrix h =
∑d

i=1 cigi is invertible.

Proof. The idea is as follows: the transversality parameter v2 > 0 provides a lower
bound on the largest angle between an arbitrary vector z and the hyperplanes
H(gi) of ”slow growth”. This lower bound and the proximality parameter ρ show
that any given vector z is stretched significantly by at least some of the maps
gi; in addition, for these maps giz̄ is close to the axis θ(gi). The fact that these
directions are in sufficiently general position (controlled by v1), is used to show
that the longer among the images giz do not to cancel each other, and cannot be
offset by the shorter images gjz either. The details follow.

Given a unit vector ‖z‖ = 1 reorder the gi-s so that

αi = dang (z̄, H(gi)) = dang

(
z̄⊥, θ(gtr

i )
)

decrease: α1 ≥ · · · ≥ αd. Let β = 4dρ/v and define k = max {1 ≤ i ≤ d : αi > β}.
Denoting xi = cigiz we shall prove that

(7.18) ‖x1 + · · ·+ xk‖ > ‖xk+1‖+ · · ·+ ‖xd‖

thereby verifying that hz = x1 + · · ·+xd 6= 0. Since z was an arbitrary unit vector
h is non-singular.
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Let ȳi denote the projection of θ(gtr
i ) and to z̄⊥. Then vol(ȳ1, . . . , ȳd) = 0 and

it follows from Lemma 7.7 that
d∑
i=1

αi =
d∑
i=1

dang

(
z̄⊥, θ(gtr

i )
)
≥ v√

2
.

Therefore, α1 ≥ v/2d, which in turn is bigger than β = 4dρ/v by the assumptions
on ρ. Hence we are guaranteed that k ≥ 1. Using Lemma 4.1 (3), for 1 ≤ i ≤ k
we have (with x̄i denoting the unit vector in direction xi)

‖xi‖ ≥ |ci| · ‖gi‖ · αi, dang (x̄i, θ(gi)) ≤
ρ

β
.

Thus applying Lemma 7.7 to

t = vol(x̄1, . . . , x̄k, θ(gk+1), . . . , θ(gd)), and vol(θ(g1), . . . , θ(gd)) ≥ v
gives

t > v −
√

2dρ
β

>
v

2
.

Since t ≤ dang (x̄1, span(x2, . . . , xk)) it follows that

‖x1 + · · ·+ xk‖ ≥ ‖x1‖ · t ≥ |c1| · ‖g1‖ · α1t ≥ |c1| · ‖g1‖ ·
v2

4d
.

At the same time, for k < i ≤ d one has

‖xi‖ ≤ |ci| · ‖gi‖ ·
√
α2
i + ρ(gi)2 < CL · |c1| · ‖g1‖ ·

5dρ
v

using αi ≤ β = 4dρ/v, ci < Cc1, ‖gi‖ ≤ L‖g1‖. Hence (7.18) follows from the
assumption ρ < (20d2CL)−1 · v3. �

Proof of Proposition 7.3. We set ε = λ1−λ2
10 . Let γ > 0 be the corresponding

constant from Lemma 7.6, and set δ = γ
10d2(λ1+2ε)

. The constant c4 is chosen so
that for large m and ρ > e−c4·m we have:

(7.19) e−γm < ρdδ

and

(7.20) ed(λ1+2ε)·m < ρ−
1
10 .

Applying Lemma 7.6 we obtain a set G ⊂ Γd of d-tuples ~g = (g1, . . . , gd) with

| 1
m

log ‖gi‖ − λ1| < ε, | 1
m

log σ2(gi)− λ2| < ε,

vol(θ(g1), . . . , θ(gd)) > e−ε·m,

vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−ε·m,

and such that

µn(Bz,ρ)d − e−γ·m <
∑
~g∈G

ν∗m(g1) · · · ν∗m(gd) · µn−m(
d⋂
i=1

g−1
i (Bz,ρ)).
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The assumption µn(Bz,ρ) > ρδ implies (7.19) that

µn(Bz,ρ)d > ρdδ > e−γm.

In particular, there exists a d-tuple (g1, . . . , gd) ∈ G with µn−m(g−1
1 (Bz,ρ) ∩ · · · ∩

g−1
d (Bz,ρ)) > 0. In particular, there exists w ∈ Td such that

{g1w, g2w, . . . , gdw} ⊂ Bz,ρ.

Choose ~w, ~z ∈ Rd projecting to w, z ∈ Td. Then for some integer vectors ~ai ∈ Zd

(7.21) ‖gi ~w − ~ai − ~z‖ < ρ (i = 1, . . . , d).

Let c1 = · · · = cd−1 = 1, cd = 1− d, so that
∑
ci = 0 and

∑
|ci| < 2d. Combining

the inequalities (7.21) with coefficients ci we get

‖h~w −~b‖ < 2dρ

where h =
∑d

i=1 cigi is an integer d × d matrix and ~b =
∑d

i=1 ci~ai is an integer
vector.

Our choice of ε = λ1−λ2
10 and the following properties of g1, . . . , gd

max ρ(gi) <
e(λ2+ε)·m

e(λ1−ε)·m
, max

|ci|
|cj |

< 2d < eε·m, max
‖gi‖
‖gj‖

< e2ε·m,

vol(θ(g1), . . . , θ(gd)) > e−ε·m, vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−ε·m,

imply that the assumptions of Lemma 7.9 are satisfied. Thus the integer matrix
h is invertible, and its determinant q = det(h) is a non-zero integer; in particular
|q| ≥ 1. Let k ∈ Md×d(Z) be such that hk = q · Id, and set ~p = g1k~b ∈ Zd. We
have

(7.22)
∥∥∥∥~z − ~p

q

∥∥∥∥ ≤ ‖g1h
−1‖ · ‖h~w −~b‖+ ρ < (1 + 2d ‖g1‖ ‖h−1‖) · ρ.

Let us estimate |q| and ‖h−1‖ using ‖gi‖ < e(λ1+ε)·m. For m > m(ε) we may also
assume that ρ < e−c4·m.

‖h‖ ≤
d∑
i=1

|ci| · ‖gi‖ ≤ 2de(λ1+ε)·m,

|q| = | det(h)| ≤ ‖h‖d < (2de(λ1+ε)·m)d < ρ−
1
10 ,

Since |q| ≥ 1 we also have

‖h−1‖ = |q|−1 · ‖k‖ ≤ ‖k‖ ≤ constd · ‖h‖d−1,

and using (7.20) we deduce that

1 + 2d‖g1‖ · ‖h−1‖ < const′d · (2de(λ1+ε)·m)d < ρ−
1
10 .

Combining this estimate with (7.22) gives∥∥∥∥~z − ~p

q

∥∥∥∥ < ρ
9
10 , |q| < ρ−

1
10

as claimed. �
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7.D. Final Bootstrap: proof of Proposition 7.4.

Lemma 7.10.
Given ε1, ε2 > 0 there exist δ > 0 and m0 so that for m ≥ m0 any set G ⊂ Γ with
ν∗m(G) > e−δ·m contains a subset F ⊂ G with cardinality |F| > eδ·m, such that

| 1
m

log σj(g)− λj | < ε1 (j = 1, . . . , d, g ∈ F)

and every d-element subset {g1, . . . , gd} ⊂ F satisfies

vol(θ(gtr
1 ), . . . , θ(gtr

d )) > e−ε2·m.

Proof. Let Glen =
{
g ∈ Γ : | 1

mσj(g)− λj | < ε1, (1 ≤ j ≤ d)
}

. By Theorem 4.3
there exist N = N(ε1) and c1 > 0 so that for m > N the set

Glen =
{
g ∈ Γ : | 1

m
log σj(g)− λj | < ε1 (j = 1, 2)

}
has ν∗m(Glen) > 1 − e−c1·m. By Theorem 4.4 given ε2 > 0 there is c2 > 0 so that
for any hyperplane H:

ν∗m
{
g ∈ Γ : dang

(
θ(gtr), H

)
≤ e−ε2·m

}
< e−c2·m.

Let us take positive δ < min(c1, c2/d). For such δ and large m

(7.23) e−δ·m − e−c1·m − (eδ·m)d−1 · e−c2·m > 0.

Let G with ν∗m(G) > eδ·m be given. We shall form the subset F ⊂ G by choosing
inductively elements from G′ = G ∩ Glen by induction. Suppose g1, . . . , gn are
already chosen. For the next element gn+1 we can choose any g ∈ G′ for which the
axis θ(gtr) makes angle of at least e−ε2·m with all hyperplanes of the form

θ(gtr
i1)⊕ · · · ⊕ θ(gtr

id−1
)

where i1 < · · · < id−1 is a (d−1)-element subset of {1, . . . , n}. There are less than
nd−1 such hyperplanes. It follows that

ν∗m

G′ \ ⋃
1≤i1<···<id−1≤n

{
g : dang

(
θ(gtr), θ(gtr

i1)⊕ · · · ⊕ θ(gtr
id−1

)
)
< e−ε2·m

}
> e−δ·m − e−c1·m − nd−1 · e−c2·m,

and in view of (7.23) the RHS is positive as long as n ≤ [eδ·m]. This allows to
construct the desired set F with at least eδ·m elements. �

Proof of Proposition 7.4.

Let δ > 0 be associated to ε1 = ε2 = ε
3 in Lemma 7.10, take ω = δ/2 and m0

be large enough. The basic relation

µn(WQ,r) =
∑
g∈Γ

ν∗m(g) · µn−m(g−1(WQ,r))
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implies that the set

G =
{
g ∈ Γ : µn−m

(
g−1(WQ,r)

)
> µn(WQ,r)− e−δ·m

}
has ν∗m(G) > e−δ·m. Let F ⊂ G be a subset of size |F| > eδ·m of well shaped
elements in general position provided by Lemma 7.10. We shall consider the
possible intersections of the sets

g−1(WQ,r) =
⋃
x∈RQ

g−1(Bx,r) (g ∈ F).

Note that the set RQ of centers of the r-balls which form WQ,r is Q−2-separated:∥∥∥∥(
p1

q
, . . . ,

pd
q

)− (
p′1
q′
, . . . ,

p′d
q′

)
∥∥∥∥ =

∥∥∥∥(
q′p1 − qp′1
q · q′

, . . . ,
q′pd − qp′d
q · q′

)
∥∥∥∥ ≥ 1

qq′
≥ 1
Q2

.

Suppose that for x, y ∈ RQ and g, h ∈ F the ellipses g−1(Bx,r) and h−1(By,r)
have a common point, say w. We have ‖x − gw‖ < r, ‖y − hw‖ < r, and
‖g−1‖, ‖h−1‖ < e(−λd+ε1)·m. Note also that −λd < dλ1, and we may assume that
2e−(λd+ε1)·m < edλ1·m. Therefore

‖g−1x− h−1y‖ ≤ ‖g−1x− w‖+ ‖w − h−1y‖
< ‖g−1‖ · ‖x− gw‖+ ‖h−1‖ · ‖y − hw‖

< 2e(−λd+ε1)·m · r < edλ1·m · r < 1
Q2

.

Since g−1x and h−1y belong to the Q−2-separated set RQ, they coincide: g−1x =
h−1y = z ∈ RQ.

This computation shows that for any d-element subset {g1, . . . , gd} ⊂ F we have

d⋂
i=1

g−1
i (WQ,r) =

⋃
z∈RQ

(
d⋂
i=1

g−1
i (Bgiz,r)

)
.

The conditions on F show, using Lemma 7.8, that for any d-element subset
{g1, . . . , gd} ⊂ F and every v ∈ Rd

max
1≤i≤d

‖giv‖ ≥ e(λ1−ε)·m · ‖v‖.

This implies that on the torus Td:
d⋂
i=1

g−1
i (Bgiz,r) ⊂ Bz,e−(λ1−ε)·m·r

and therefore for any d-element subset {g1, . . . , gd} ⊂ F we have

d⋂
i=1

g−1
i (WQ,r) ⊂WQ,e−(λ1−ε)·m·r
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For g ∈ F let Eg = g−1(WQ,r)\WQ,e−(λ1−ε)·m·r. We just showed that the collection
{Eg | g ∈ F} has no d-fold intersections. Thus

d >

∫ ∑
g∈F

1Eg(x) dµn−m(x) =
∑
g∈F

µn−m(Eg).

Thus for at least one h ∈ F ⊂ G one has

µn−m(Eh) ≤ d

|F|
< d · e−δ·m.

Therefore:

µn−m(WQ,e−(λ1−ε)·m·r) = µn−m
(
h−1(WQ,r)

)
− µn−m(Eh)

> µn(WQ,r)− e−δ·m − d · e−δ·m

> µn(WQ,r)− e−ω·m,
assuming m > m0 where m0 is large enough. �
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[4] J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13
(2003), no. 2, 334–365.

[5] , The discretized sum product and projection theorems (2009).
[6] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Invariant measures and stiffness

for non-abelian groups of toral automorphisms, C. R. Math. Acad. Sci. Paris 344 (2007),
no. 12, 737–742 (English, with English and French summaries).

[7] J. Bourgain and A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2),
Invent. Math. 171 (2008), no. 1, 83–121.

[8] J. Bourgain, A. Gamburd, and P. Sarnak, Sieving and expanders, C. R. Math. Acad. Sci.
Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries).

[9] M. Burger, Kazhdan constants for SL(3,Z), J. Reine Angew. Math. 413 (1991), 36–67.
[10] M. Einsiedler and E. Lindenstrauss, Rigidity properties of Zd-actions on tori and solenoids,

Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 99–110 (electronic).
[11] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine

approximation, Math. Systems Theory 1 (1967), 1–49.
[12] , Stiffness of group actions, Lie groups and ergodic theory (Mumbai, 1996), Tata Inst.

Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117.
[13] K. J. Falconer, Hausdorff dimension and the exceptional set of projections, Mathematika 29

(1982), no. 1, 109–115. MR673510 (83m:28014)
[14] Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963),

377–428. MR0163345 (29 #648)
[15] H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces,

Israel J. Math. 46 (1983), no. 1-2, 12–32.
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