STATIONARY MEASURES AND EQUIDISTRIBUTION FOR
ORBITS OF NON-ABELIAN SEMIGROUPS ON THE TORUS
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ABSTRACT. Let v be a probability measure on SL4(Z) satisfying the moment
condition E, (||g||°) < oo for some e. We show that if the group generated by
the support of v is large enough, in particular if this group is Zariski dense in
SLg, for any irrational 2 € T? the probability measures v*™ % §, tend to the
uniform measure on T?. If in addition z is Diophantine generic, we show this
convergence is exponentially fast.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let T" be a semigroup of d x d nonsingular integer matrices, and consider the
action of I on the torus T?. We assume throughout that the action is strongly
irreducible: there is no subtorus invariant under a finite index subsemigroup of I'.

The strong irreducibility assumption in particular implies that I' acts ergodi-
cally on T¢ (equipped with the Lebesgue measure m). Therefore the I'-orbit of
Lebesgue almost every = € T? is dense, and in an appropriate sense even becomes
equidistributed. However when I is cyclic there is a set of full Hausdorff dimension
of exceptional points x for which I'.z fails to be dense.

When T is bigger the distribution of individual I'-orbits can be expected to be
much more restrictive. An important result in this direction is due to Furstenberg
who showed for d = 1 (in which case I' < Z*, and in particular abelian) that
if I' is not virtually cyclic, I'.z is dense for all irrational z € T, and moreover
for any open U C T there are only finitely many rational points whose I'-orbits
avoids U. This has been extended by Berend [1] to actions of abelian semigroups
of toral endomorphisms on T¢. However, in both cases, while the orbit closure
of individual orbits are very restricted, there is some flexibility on how such an
orbit distributes; for example consider the orbit of x = )7, 27% € T under the
semigroup I' = (2, 3).

In this paper we consider the action of semigroups I" which satisfy the following
three conditions:

(I'-0) I' < SLy(R),
(I-1) T acts strongly irreducibly on R,
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(I-2) T contain a proximal element: there is some g € I' with a dominant
eigenvalue which is a simple root of its characteristic polynomial.

Note that (I-1) is substantially stronger than the requirement we have already
imposed that T' acts strongly irreducibly on T¢. In particular, for d > 1 an
abelian semigroup never satisfies condition (I'-1); indeed, the group generated by
a semigroup satisfying (I'-1) is nonamenable. Assumption (I'-2) is a technical
condition which is in particular satisfied when I' is a Zariski dense semigroup of
SL4(Z) [16]. While a substantial part of the argument works without assumption
(T'-0), without it simple counterexamples can be given to Theorem below, similar
to the example above of a non-equidistributed orbit for the semigroup (2, 3).

Under these (and more general) conditions, R. Muchnik [26] and Guivarc’h-
Starkov [19] proved the analog of the theorems of Furstenberg and Berend, namely
that for any € T¢ with at least one irrational coordinate I'.z is dense, and
moreover that there are only finitely many rational x whose orbit avoids a given
open neighborhood in T¢.

We study the quantitative distribution properties of I'-orbits. Since I' is not
amenable we do this by considering a random walk on I'.xz corresponding to a
probability measure v on I'. We will assume that v satisfies the moment condition

(1.1) z:u(g)HgHE < 00 for some € > 0.
gel

Given a probability measure v on I' and a probability measure 1 on T¢ the
convolution v * p € T is

vep =y v(g)g.p.
gel

Furstenberg [14] has shown that under assumption (I'-1) the top Liapunov expo-
nent defined by

. 1
Ai(v) = nlggl() - log|lg192 - - gnll Vit as.

is positive. Assumption (I-2) guarantees that this Liapunov exponent is simple
[16,[17]. Our main theorem is the following:

Theorem A. Let I' < SLy4(R) satisfy (I'-1) and (T'-2) above, and let v be a
probability measure supported on a set of generators of I' satisfying . Then
for any 0 < X\ < A\ (v) there is a constant C = C(v, \) so that if for a point x € T?
the measure pi, = v™ x 8, satisfies that for some a € Z\ {0}

~ ) 2
|fin(a)| >t >0, with n > C - log( el

);

then x admits a rational approzimation p/q for p € 7% and q € 7, satisfying

p A 2lJal|\©
r——|<e " and lg| < .
q

(1.2) .

This theorem has several corollaries:
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Corollary B. Let ' and v be as in Theorem and x € T\ (Q/Z)¢. Then the
measures (b, = V*" %8, converge to the Haar measure m on T? in weak-+ topology.

This answers affirmatively a question of Guivarc’h in a private communication,
and should be contrasted with the example given above for the case of d = 1. We
also have the following more quantitative equidistribution results:

Corollary C. Let ' and v be as in Theorem z €T and p, = v*" % 8,. Then
there are c1,co depending only on v so that the following holds:

(1) Assume z is Diophantine generic in the sense that for some M and Q

M

(1.3) for all integers ¢ > Q and p € Z°.

:U—pH>q_
q

Then for n > c1log @

max |7in (b)] < Be=2/M
bezZ4,0<||bl|<B

(2) Assume x & (Q/Z)?. Then there is a sequence n; — oo along which

T —can;
beZd,Oglllgll)TI;eCz"i in (D) < e

Our next corollary answers a question raised by Furstenberg in [12]. Recall
that a measure p is said to be v-stationary if v * u = u. If the support of v
generates a semigroup I', any I'-invariant probability measure is v-stationary for
any probability measure v on I', but the converse (even for a fixed v) is not true
in general. Following Furstenberg (|12]), we say that an action I' ~ X is v-stiff if
any v-stationary measures is I'-invariant.

In his paper |12] Furstenberg shows that for carefully chosen v on SL4(Z),
namely probability measures v so that the corresponding stationary measure on
the boundary of SL(d,R) is absolutely continuous with respect to Lebesgue, the
action of SLg(Z) on T? is v-stiff. He then suggests that this should be true for any
v whose support generates SLg(Z). The following corollary of our main theorem
confirms Furstenberg’s insight:

Theorem D. Let I' < SLy(R) be a semigroup satisfying (I'-1) and (T'-2) above,
and let v be a probability measure supported on a set of generators of I' satisfying
(T.1). Then any v-stationary measure p on T is a convex combination of the Haar
measure on T% and atomic measures supported by rational points. In particular,
for such v the action of T on T% is v-stiff.

The results of this paper have been announced in [6]. Since then an alternative,
ergodic theoretic, approach to Theorem [D]| was discovered by Y. Benoist and F.
Quint [2]. This approach has the advantage of being more general; in particu-
lar, Benoist and Quint have been able to prove Theorem [D| without making the
assumption (I'-2). However their ergodic theoretic argument is not quantitative,
certainly not in the sense of Theorem [A] It also does not give equidistribution of
Vv*" % 0, as in Corollary
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2. DEDUCTION OF COROLLARIES FROM THEOREM [A]

Is this short section, we deduce Corollaries [B] and [C] from Theorem [A] The
deduction of Theorem [D] from Theorem [A] or more precisely from the closely
related Proposition [3.1] is a given at the beginning of the next section.

Proof of Corollary[B given Theorem[4] Let x € T4\ (Q/Z)?. Suppose that the
measures p, = v, fail to converge to the Haar measure m. Then by Weyl’s
equidistribution criterion it follows that for some a € T?\ {0} and some sequence
n; — o0

|fin, (@) >t >0 for all 4.
It follows from Theorem [A|that there is a sequence of approximations p—z tending to
x with ¢; uniformly bounded — which of course is only possible if x is rational. [J

Proof of Corollary[( given Theorem[4] We first prove assertion (1) of the corol-
lary. Let x be Diophantine generic in the sense of ([1.3). Suppose that |, (b)| >
t/B for some b € Z* with 0 < ||b]| < B. Then as long as

(2.1) t>1em/C
for C = C(v,\1/2) as in Theorem [A} by (1.2]) there are integers p, ¢ so that
x — pH < e Man/2 and lg| < (2t71H)°.

By , it follows that if n > ¢ log @
(2.2) e Nn/2 5 M 5 o= MO
It follows form and that

t<c” max(e*”/c, e*)‘I”/QMC),
establishing Corollary B| part(1).

Suppose now that for some x & (Q/Z)? part (2) of the corollary does not hold,
i.e. that for every n there is a b, € Z¢ so that

|in (bp)| > ™", and l|bn || < ™.

Then by Theorem [A] as long as 2C'ca < 1 and n is large enough there is a sequence
of rational numbers Z—: so that

Pn
n

Since x is irrational, the sequence ¢, is not eventually constant, so there are
arbitrarily large n for which Z—: # z:—i. But then by (12.3) applied for both
n,n + 1 gives

ef)\1n/2

(2.3) x — < and |gn| < 2Ce2e26m,

& N Pn+1
dn gn+1
which is a contradiction for large n if 8Cco < A7.

—2C —4C 1 -2 2
9720 ¢=4Ce2(nt1) < ( < 2¢”Mn/2,

Gnns1) "L < ‘
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3. OUTLINE OF THE PROOF

Given @ € N let

b1 DPd
RQ: U {(,..-,)ETd : pl,u-,pde{o?""q_l}}
<Q 1 e

denote the set of rational points on the torus with denominators ¢ < . For r > 0
let Wg,, = UIE Ro B.,» denote the r-neighborhood of Rg. We prove Theorem
by establishing the following;:

Proposition 3.1. Let I' and v be as in Theorem[4] 0 < X < A\y(v). Then for
some constant C depending on v, A the following holds: for any probability measure
po on T, if ju,, = v*™ % g has a non-trivial Fourier coefficient a € 74\ {0}

1 2
(3.1) |fin(a)| > t, with 0 <t < 3 and n > C - log( all ),
then
c 2/l \©
(3.2) po(Wg e-rn) >t where Q= < - ) _

By specializing to the case of py = §; we get Theorem [A] since

—An

6z(Wge-xn) >0 = <e for some ¢ < Q.

a‘
2@
q

Note that somewhat surprisingly Theorem [A]then implies a sharper form of Propo-
sition with the estimate on the mass of almost rational points replaced by
the sharper estimate 119(Wg -xn) > C't. In the special case of 1 = g = p1 = . ...
a v-stationary probability measure, we can take n in Proposition to be arbi-
trarily large, and deduce that for appropriate constant C

C
2||la
> oo (He)”
with @ and t as in (3.1)), giving a somewhat more quantitative version of Theo-
rem
We sketch the proof of Proposition The proof consists of two phases:

(Ph-1) first one starts with a lower bound on a single Fourier coefficient of the
measure [, = V*" %, namely |11, (a)| > t, and deduce from this that for an
appropriately chosen m; < n the measure p,_.,, has a rich set of Fourier
coefficients which are larger than a polynomial in ¢.

(Ph-2) In the second phase, this information on the set of big Fourier coefficients
of pn, for n; = n—my is used to show that for another appropriately chosen
mgy < n; the measure fi,, —m, gives a significant (polynomial in ¢) mass to
small balls around rationals of low denominator.

It is perhaps instructive to present a proof of a much simpler result with a some-
what similar structure:
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Proposition 3.2 (“Baby Case”). A probability measure p on T¢ which is I'-
invariant for I' a finite index subgroup of SL4(Z) is a linear combination of Haar
measure and a purely atomic I'-invariant measure.

In this setting one can use the following simple argument by Marc Burger [9].

e Assume that the I'-invariant probability measure p is not Haar measure.
Then p has a non trivial Fourier coefficient:

|i(a) =t >0 at some a € 24\ {0}.

Since fi(a) = gupi(a) = fi(¢"a), it follows that |u(b)| =ty > 0 for all b €
I'**a. For SLy4(Z) and its finite index subgroups, any orbit I'**a  Z%\ {0}
has positive density in Z4.

e By Wiener’s Lemma this implies that p has atoms. Indeed, evaluating
px u(A) = p* i({0}) (where A is the diagonal in T x T? and the
convolution p* 1 is the image of p x p under the projection (x,y) — x —y)
in two ways one gets the identity

(3.3) Z p({z})? = lim NZ |B

N—»oo
z atom of u

Zlu

beB,

where By = {a ezd . maxi<i<q |a;| < N}. It follows that any ~-invariant
probability measure p on T? can be presented as a linear combination of
Haar measure and a purely atomic I'-invariant measure.

In the context of Proposition [3.1]establishing the existence of enough “big” Fourier
coefficients for p,, given that u, had at least one significant Fourier coefficient
is substantially more involved, and we get much less than positive density. Con-
sequently, in the second phase of the proof we will start with a weaker type of
information on px than in the simple proof sketched above.

3.A. Phase I: Large scale structure of the set of large Fourier coefficients.
Starting from some ag € Z% \ {0} with |, (ao)| = to > 0 for sufficiently large n
depending on ¢y, ag, we shall prove that for ¢ = t{j and any m; in the range
C(1+logty) < mi < n (with p,C some constants depending on I', v) the set of
t-“large” Fourier coeflicients

(3.4) Anmyt = {a e Ze . |jin (a)] > t}

is relatively “thick” in Z¢, in the following sense.

Let NV (E; M) denotes the covering number of E C Z¢ by M-balls. In the
simple proof of Proposition [3.2] the proportion of “large” Fourier coefficients in any
sufficiently large box was shown to be positive. In the context of Proposition
the most difficult part of the proof, which in precise form is given by Theorem [6.1]
below, gives that there is a large N (with T ||bounded above and below by an

exponential in m;) and an exponentially smaller M (more precisely, £ Taoll will be in



STATIONARY MEASURES AND EQUIDISTRIBUTION ON THE TORUS 7

N )1*“1 <M< (N )17”2) so that the number of M-balls needed

llaoll llaoll l[aoll
to cover the intersection Ay, ; N [~N, N]? is large — namely

the range (

(3.5) N (A, 0 =N, N M) > th(N/M)Y,

where p, k1, k2 > 0 are constants depending only on I' and v. Thinking of ¢y as
fixed (which is the case needed to establish Corollary , this gives a lower bound
on the covering number that is a positive proportion of the trivial upper bound.

To prove the key estimate ({3.5]), one starts with the identity

Ain(ao) = 3 07" () - (9" a0)
g

to conclude that if |fi,(ag)| > to, then

(3.6) V'™ {g el ¢ |fn—m(g™ao)| > to/2} > to/2.

In Proposition below we deduce from (3.6]), using the quantitative theory of
random matrix products, that once m; is larger than some absolute constant,

(3.7) /\/<Am,t1 N [_NlaNl]d;Ml) > (N1 /M)

Wher ni =n—mi, N1 = ||lao|| exp(3Am), My = |lao|, t1 = to/2, with A the top
Liapunov exponent corresponding to v (cf. Section {4)).

For our proof it is crucial to improve the estimate to the much sharper den-
sity type estimate . Equation is equivalent to having an M;-separated
subset E C Z N [~Ny, N1]? of cardinality |E| > (N1/M;)® so that for every
a € E we have |[in, (a)] > t1; and decreasing the cardinality of E by a constant
factor we may assume

(3.8)

Z Fin, (a)

eckE

Similar to the way we used the identity p, = v*"™! % u,, in the proof of (3.7)),
equation (3.8) implies that (for any chice of m < ny), for v*-many g € T, for
many e € g""E we have that |7, _mn(€e)| > t1/4; indeed, if

G={gel : [{e€g"E : |fin,—m(e)| > t1/4}| > t1|E| /4}

then v*(G) > t1 /4.

Our assumptions (I-0)—(I"-2) on I' guarantee that the top Liapunov exponent
for the random walk on SLg4(Z) corresponding to v is simple, which allows us
to approximate v*"-typical g by a composition of dilation (by a factor oi(g) in
the range e=9™ < g (g) < eP+9)™) 4 rotation, and a rank one projection,
say my. The theory of random matrix products also gives us control over the
distribution on the direction of the null space of this projection. Therefore choosing

>t |B| /2.

*There is nothing special about %; any constant greater than one would do.
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M appropriately, we cannot distinguish with resolution Ms between the map
a — g%a and this rank one transformation, e.g. in the sense that for any £’ C E

N(gtr(E’);Mg) xN(al(g)ﬂgtr(E’);Mg).

As long as m = my is sufficiently large (larger than some constant times |logt|),
this applies to most g € G so that we can view ¢'"(E) as a rotated and dilated
rank one (random) projection of E.

If No, M5, mo are appropriately chosen, outside a set of g € I' of negligible
v*M_measure, g'"([—~Ni, N1]?) is contained in a rotated rectangular box of size
[— N2, No| X [—Ma, Ma] X -+ x [—Ma, Ms]. If a1 were very close to d (say bigger
than some apigp) we could use a variant on the Marstrand Projection Theorem, or
more precisely on an extension due to Falconer [13], to show that for many g € G

N(gtrE;Mz) > ] (Na/My),

and moreover that a similar inequality (with possibly a different implied constant,
still polynomial in ¢;) holds for any subset E' C F with |E'| > t1|E|/4. By
definition of G, one obtains that

N (An27t1/4 N gtr([_vaNl]d); MZ) > 75117(]\[2/]\42)7

and with some further arguments employing the inherent additive structure of
Fourier coefficients of probability measured'|get from this an estimate of the desired
form

N (Anz,t1/4 N [~ Na, Nz]d; MZ) > tzl)/(Ng/Mg)d.

The argument sketched above is carried in Section [6.C| below, and the resulting
proposition is given by Proposition [6.5]below. Unfortunately, we have little control
over «; which is determined by properties of the random walk corresponding
to v on SL(d,R). To handle the main case where a1 < apign We need to use
arithmetic combinatorics: a projection result [5, Thm. 5] of the first author
(based on techniques developed in the context of the Discretized Ring Conjecture
[4]). Roughly stated, this theorem asserts that given a sufficiently rich set of
lines D C P4~! and a (sufficiently non-degenerate) set E C [0,1]¢ of “dimension”
« there exist (many) lines § € D so that the projection my(E) of E to 6 has
“dimension” > (a+ aync)/d. This bootstrap step is the content of Proposition [6.3]

A complication in the proof of both Proposition [6.3] and Proposition [6.5 is that
to employ the respective (discretized) projection theorem one needs finer control
on the set to be projected than simply its covering number by M;-balls. This is
taken care of by zooming-in on a portion of the set Ay, ,,, N [—N;, N;] in which
there is greater regularity, and recentering this window using Cauchy-Schwartz,
cf. Lemma [6.71

tEssentially, the Cauchy-Schwartz inequality.
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3.B. Phase II: Granulation structure of yy on the torus.

The information on the Fourier coefficients of a measure g for which a Fourier
coefficient fi,(a) is significant that has been obtained in Phase I of the proof (with
tn = V™" % g as before, and n sufficiently large depending on ||a|| and the size
of |fin(a)|) can be translated to a statement about the measure pg itself (and
more generally about the measures i, for m large enough) using the following
elementary harmonic analysis proposition in the spirit of Wiener’s Lemma:

Proposition 3.3 (cf. Proposition . If a probability measure . on T satisfies
for some N > M then there exists a set X C T? of 1/M-separated points in

T with
,u(U Bﬁ,zif) >th.

zeX

Using this harmonic analytic fact, the outcome of the first stage of the proof is
that for my > log(||a||/to), the measure p,, = pn—m is granulated in the following
sense (cf. Proposition : for some constants 1 < L1 < Lo and x > 0 there is
some p € (L;™, L7™) and the finite set X C T? so that

(1) X is r = p!~"-separated;
(2) ptny (Upex Bayp) > €.

This is not yet what we want. So we continue with the strategy of successively
sacrificing some convolution powers of v (i.e., increasing m to m’ > m) in exchange
for more precise information on fi, .

The two conditions (1)—(2) above on fi,—n, and X guarantee in particular that
t9M) of the mass of ln—m 1s concentrated in balls of radius p whose measure is
rather large, namely > tO() pl=*,

Thanks to the separation condition, we can improve this estimate (cf. Propo-
sition and show that for appropriate m’ (also < log(||a|| /t)) there is a set
X' of cardinality at most that of X so that i, (U,cx: By pn) > tOn () for an
arbitrary N.

At this stage we can rectify the unknown balls {BI, Nz EX ! } to be centered
at rational points of controlled denominator. The reason for that is that as

:u’n—m'(Bac,pN) = Z VM(Q) M'rz—m’—f(gilBLpN)a
g

if f1y (B, v ) is big, for many g with Hg_lH of controllable size (roughly e~*¢,

with A4 the bottom Liapunov exponent of v) the measure of the “shifted” balls
un,m/,g(g_le,pN) has to be big — so many g in fact that as p,_,/_¢ is a prob-
ability measure there should be a lot of intersections between these shifted balls.
These nontrivial intersections can be used to show that x is much closer to a ra-
tional of controlled denominator than what can be expected of a random point in
T¢. This rough scheme is carried out by Proposition

Using the extra information obtained, one can proceed similarly to the first
step mentioned above (i.e. Proposition but with essentially no loss of mass
(Proposition and obtain the desired conclusion, i.e. Proposition



10 J. BOURGAIN, A. FURMAN, E. LINDENSTRAUSS, AND S. MOZES

4. RANDOM MATRIX PRODUCTS

4.A. Notations. Let G be a topological group; in this paper the discrete group
' or the torus T¢. On the set Prob(G) of all probability measures on G (for
G = T the measures are assumed to be Borel regular) one defines operations
of convolution: vi,v9 — vy x 19, and of a reflection v — U, by pushing forward
v1 X vg under the product map (g1, g2) — ¢1- g2, and pushing v by the inverse map
g +— g~ !, respectively. For n € N we write v*” for the nth convolution power of v
with itself. This should be distinguished from the product v*" defined on G".

Similarly, if G ~ X is a continuous action on a topological space, for v €
Prob(G) and p € Prob(X) the convolution v x u € Prob(X) is the pushforward
of v x pu under the action map G x X — X. For I' ~ T¢ and v € Prob(I'),
€ Prob(T?) we have

Vk = Z y(g) G fhy where g*,U«(E) = M(g_lE)
gel

For u € Prob(T¢) the Fourier coefficients are

ja) = / eq(x) dp(zx) where eq(z) = 2ma2) (a €Z% zeT?).
Td

The Fourier transform intertwines I-actions on T¢ and on Z% = T¢ according to

Gofi(a) = (g™ a).
In a metric space (such as Z%, R%, P?~1 T%) we denote by B, = {y : d(z,y) <1}
the closed r-ball around z, and by Nbd, (E) the (closed) r-neighborhood of a set
E

For a set F denote by

n
N(E;r):inf{n : Jdzq, ..., 1, st ECUBIN}

i=1

the covering number of E by r-balls (these covering numbers will be used for finite
subsets of Z¢ with a large r, and for subsets of P4~! and T? with small r > 0).

Linear algebra. Throughout the paper we use the standard inner product
(x,y) = E‘f x;y;, the Buclidean norm ||z||?> = (z,z) on R? and the operator
norm ||g|| = max |gx||/||x|| on matrices g € GL4(R). For x € R4\ {0}, 7 = Rz
denotes the corresponding point in the projective space P#~1. We equip P4~! with
the metric given by

o o lz Ayl
dung (7, ) = sin (angle(@, 7)) = 75—
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For g € GL4(R) denote by o1(g) > 02(g9) > --- > 04(g) > 0 the singular values of
g. In the polar decomposition we have

a1(g)
g=U L Vv with UV orthogonal.

oa(g)
For g € GLg(R) let p(g) = 02(9)/01(g). If p(g) < 1 let
0(g) = Ue; € P71,
This is the direction of the long axis of the g image of the round ball {z € R? : ||z|| < 1}.
Denote by H(g) the hyperplane of vectors with “shorter stretch”
H(g) = {Z eP¥ ! : VzeSpan(eg +--- + ed)}

c {zeP !t gzl < oag)l=l)

Note that 6(g) describes the direction of the image of the “long vector”, under
g: R — R?, while H(g) refers to the source of the shorter ones.

Lemma 4.1. For g € GLy(R) with p(g) < 1.
(1) H(g) = 0(g")*.
(2) For any 0 # z € RY,
gl - 2]l - dang (2, H(g)) < gzl < llgll - |2[] - (p(9) + dang (2, H(g)))-

(3) dang (97,0(9)) < p(g)/dang (2, H(g)) for any 0 # z € RY.
(4) If g = hk with p(g) < 1 and 2p(h) < |lg|l/(||h] - ||k|]) then
dang (0(g),0(h)) < 2p(h) - |h‘||g||’|k'||

Proof. (1) is immediate from the definitions.

(2) Write z = 2| - (tz + sy) with Z € H(g)*, 5 € H(g), ||z = [ly|| = 1. Then
|t| = dang (27 H(g)), while

121~ gl - 18] < Nlg2ll = Nzl - VEllgz 1 + syl < [l2]l - (Elllgll + [slo2(9))-

(3) Assume ||z|| = 1 and write z = tx + sy as in (2). We have 0(g) = gz and
gl = llgz|l and [lgz]| = [lgll - [t]. Also gz A gz = g A (tgz + sgy) = s(gz A gy).
Hence

_ lgz Agxll s |lgyll - 9| gyl
dang (97,0(9)) = < < :
e gzl - llg=ll = llgll - I¢l - gzl — llgll - ||

Now (3) follows, because ||gy|| < 02(g) and [t| = dang (Z, H(g)).
(4) Choose a unit vector z L H(g), denote z = kx and write

2= |l2]l - (ty + sw) with ye H(h)", we H), |yl =|uw]| =1
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Thus dang (2, H(h)) = [t|. We have
1h=] gl

Izl Ikl
But ||hz]]? < ||2||2(t201(h)? + 02(h)?s?) because w € H(h). Hence
gl [[z]]
< < V2 + p(h)2s% < /12 + p(h)2.
([Rafl - &A= (1R[] - [1=]]

Denoting by ¢ the LHS, we get dang (2, H(h)) = |t| > \/c? — p(h)?. Since 6(g) =
9T = hz, estimate (3) gives

dang (e(g)v Q(h)) = dang (hZ, e(h)) <

lgll = llg=ll = lIhzll, =l = lkz|| < (k]

plh)  _ 2p(h)
z—p(h)* ¢
under the assumption 2p(h) < c. O

4.B. Random walks. Let v be a probability measure on SLy(R) such that

(4.1) /log]ngV< 00

The Lyapunov exponents Ay > Ay > -+ > Ay of v are defined through the limits
of the following sub-additive sequences:

k
M= tim [ log gl v (9) D= fim [ 3 1ogl ¥ gl v (o)
1=

Equivalently, ); describes the asymptotic of [n~!-loga;(g) dv*™(g), where o; are

the singular values; in particular, o1(g) = ||g||. The convergence holds not only on

average, but also a.e. and in L': if (g1, g2, ... ) are chosen independently according

to v then, using Kingman’s subadditive ergodic theorem, with probability one and
in L' (v*°) a long random product has polar decomposition

e)\ln—l-o(n)

Gn- 9291 =U eranto(n) 1%

with U and V orthogonal.

Theorem 4.2 ([17], [16]). Let v be a probability measure on SLg(R) with
and so that the group (supp(v)) satisfies conditions (I'-0)—(T'-2) of p.[1 Then the
top Lyapunov exponent is simple:

)\1 > )\2
In particular, Ay > 0.

If (supp(v)) is irreducible on R? then ([15]) for any fixed x € R?\ {0} for v>-a.e.
sequence (g1, 92, ... )

1
—logllgn - g1z =M
and, denoting h, = gp - - - g1, the angular distance dang (hnZ,0(hy)) — 0.
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We shall need exponential estimates for various rates of convergence in the above
stated limits. Such estimates are known under an assumption slightly stronger

than (4.1), namely:
(4.2) / llgll¢ dv(g) < oo for some e>0.

Theorem 4.3 (Large deviations). Let v € Prob(SLq(R)) satisfy ({4.9). Then for
any w > 0 there is p, > 0 and mo(w) so that for m > mo(w)

*m 1
v Lo+ D= Lio(laall/ ol

ar

Proof. The first inequality follows from |3, Thm. V.6.1] and the remarks following
the proof regarding uniformity in x; the second inequality is [3, Thm. V.6.2]. O

Theorem 4.4 (Exponential Estimates). Let v € Prob(SL4(R)) satisfy and
conditions (U-0)—(T-2) of p.[1 Then for any ¢y > 0 and some cy > 0 there exist
c3 > 0 and mo € N so that for all Z,7 € P! each of the following subsets of T':

(1) {g €l : dang(97,7) > e ™},

(2) {g €T : dang (92,5") > e 1™}

(3) {g €T : dang (97,0(g)) <e ™}
has v -probability > 1 — e~ "™ for m > my.

Proof. We first establish (3). By Theorem there is some p; > 0 so that with
probability > 1 —e=P1™,

> w} < e P Ve e RN\ {0}

1
Ai — logai(g)‘ > w} < e P (i=1,...,d)
m

A1 — Aa
12
AL — A2
12
In the notations of Lemma the above two inequality implies that p(g) <

e~ A1 =A2)m/6 hence by (3) of that lemma, at least one of the following two equa-
tions holds:

(4.4) dang (97,0(g)) < e~ P1722)m/2

(4.5) dang (T, H(g)) < e~M1722)m/3,

But if holds, by Lemma [4.1](2)

log(llgz|l / [|z]]) < 1+ max(log o1(g) — m(A — A2)/3,log o2(g))
<1+ 2\ + A2)/3 :

By Theorem (4.6) occurs with probability < e~#2™ for some positive py and
m > Mo, 50 dang (97, 0(g)) < e~ M1=22)m/2 gutside a set of v*"-measure < =P +
e~ 2™ establishing (3) with ca = (A1 — A\2)/2.

|1log01(g) — M| <
(4.3) m

1
‘ logoa(g) — A2| <
m

(4.6)
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We now turn to the proof of assertion (2). This also relies on Theorem but
applied to the random walk corresponding to the measure o defined by v(g) =
v(g'"). The measure ¥ also satisfies conditions and conditions (I'-0)—(T"-2)
above and moreover has the same the Lyapunov exponents as v. Writing

o1(g)
g=U 14 with UV orthogonal.

od(g)
and recalling that by definition (g) = Ue;, we have that if (4.4 holds

dang (g””’yL) > dang (9(9), yL) — dang (92,0(9))
> dang (1, (U"y)*) = e Cadom2

S llg™y]| / llyll — o2(9) _ e uAo)m/2.

N o1(9)
By Theorem with probability > 1 — e

g™yl / llyll — oa(g) < 9 min(er,(A—A2)/2)m
o1 (9) N

I

hence dang (gac,yL) > 2e” 4™ with probability > 1 — e™P1™ — 72" — =3,
establishing (2).
Assertion (1) is a trivial consequence of (2). O

4.C. Some further estimates. In this subsection we shall establish some basic
estimates that will be used in the following sections.
Given a point Z and a set D in P41 let
I'sop={g€el : gz €D}, Loyep =19 €T : 0(g) € D}.

Lemma 4.5 (Basic estimate of distribution of directions). There exist 7 > 0 and
mg so that for any r in the range

eM<r<e ™,
one has
V' (Tzoy) <71’ v (Logrev) <77
for any & € P and an r-neighborhood of a hyperplane V = Nbd, (7).
Proof. Given r > 0 let V() = Nbd,(5%), and choose k € N with

e k-1 <r< e k.
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Asuming k > mg for mg as in Theorem applied with ¢; = 1, by part (2) of
that theorem

V*m(Fj_)\/(r)) < V*m(rj—d/(e*k) = /V*k(l—‘hj_)v(ek)dl/*(m_k)(h)

< /e—CQk dl/*(m_k)(h) _ 6—05.k

< (er)®,
with ¢z as in Theorem [£.4]
To estimate v*" (I'g(g)cv(r)) set r1 = max(r,e~"™). Then
v (Togreviy) < v (Togrevien)) + v (dang (97,0(9)))-
The first of these is < (2er;)®; the second, by part (3) of Theorem is < ri.
It follows that
VI Cgigrevr) < 22er) < Crlmmiies)

Setting e.g. 7 = min(cs, cac3)/2 the lemma follows once my is sufficiently large. O

Given a set F = {Z1,...,Zq} C P! a quantitative measure of the extent to
which these lines are in general position is given by the volume spanned by unit
vectors in these directions:

e A Ay
o]l - llwall
This quantity is symmetric in the arguments, but can be computed as

vol(Z1,...,Zq)

d
vol(Z1,...,Zq) = H dang (i, Span(z1,...,Ti—1)) .
=2
Hence, denoting
w(Zy, ..., &q) = 1§ji2ddang (xj,Span(z1,...,Zj,...24))
we have
u(fla s 7£d)d S VOl(jlv ey jd)) S u(flv s 7‘%d)'

Lemma 4.6 (General position). For some p < co,cy and so > 0 depending on v,
one has

(v*m)xd {§€ ¢ vol(B(g1),...,0(gq)) > sp} >1-—s.
and
(v*myxd {ﬁe e vol(A(g),...,0(g%F)) > sp} >1-—s.

fore™ M < s < 89

Proof. Let r = d~' - s'/7. Given any arbitrary g; € I' the v*™-probability that

dang (0(h),0(g1)) > r
is at least 1 — 77 (Theorem . For the same reason given any ¢, go:

V" {h  dang (0(R),0(91) ®0(g2)) >r}>1—1".
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Continuing this argument we deduce that the set
{FET! : dung (009:),0(90) &+ @ 0(gi0)) > 7, i =2.....d]
has (v*™)*%-measure at least
1—r)t>1—(d=1)r" >1—s.
On the other hand every d-tuple in the set above has

vol(8(g1),...,0(gq)) > rd

If p is large enough, s? < r% = d~4s4/7.
To deduce the second estimate, one may apply the same arguments to the
random walk generated by 7, with 7 the transpose to v as in p. O

5. TWO NOTIONS OF COARSE DIMENSION

Given a subset A of By C R?, there are several ways one can try to estimate
its dimension, or more precisely, in our case, its dimension at scale r. One simple
way is via covering numbers: we can consider A to be of “coarse dimension”

> « at scale r if N ([1; r) > r~% Another, more restrictive definition of “coarse
dimension > «” is via the following;:

Definition 5.1. A measure p on a set B is said to be (C, «)-regular at scale r on
Bifforany x € A, s> r

60 < ()

Thus another plausible definition of “coarse dimension” of a finite set A would
be that A supports some probability measure p which is (C, a)-regular at scale r
on A for some absolute constant C.

The following lemma allows us to relate the two notions:

Lemma 5.2. For any € > 0 there are constants C.,C. > 0 such that for every
s,oc with2e < s < aandr <1, if AC By C R? satisfies

N <f~l, r) >re
then there is a point x € Bg1 and a probability measure p supported on An S
which is (Ce, o — s)-regular on By, cv,6 at scale r for 3= di%f;e.

Proof. Let T be a large integer (which will eventually be determined by €), and
ki = [—logy(r)/T"]. Without loss of generality we shall assume that every cube

of size 27%17 intersects A in at most one point.

Consider

Q= {(:cl,...,xd):fll <i<d,30<k<k sothat QkT:ciEZ—i—[O,TT]}.

Then as Q is a subset of R% of density at most
1—(1—d2hHk
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there is a translate A + £ of A so that

(A+o\ Q| = (1-da2 )b

A‘ > o) p—ate/2

as long as T is large enough (depending only on d,€) for some constant c®
(depending on d,T and €). Let Ay = (A+¢)\ Q.

We shall call a cube of the form [n12 %7 (nq + 1)27%) x - -+ x [ng27*T (ng +
)27k for (ny,...,nq) € Z% a 2757 -cube. By definition of Ay, for any 0 < k < ki,
and any two distinct 2= KT _cubes I 1, I2 intersecting flo, the distance between I3 ﬂflo
and Iy N Ay is at least 2~ (++1T (this is precisely the purpose of removing points
of Q from an appropriate shift of 121)

It will be convenient to start by extracting from Ay a large subset A; with
tree-structure (similar to but simpler than that used in [4,5]). By this we mean
that there are integers Ry,..., Ry, with 1 < R < 2T so that if Aj, denotes the
collection of 27 ¥ _cubes intersecting 1211, then each 0 < k < ki, each 27 *T-cube
I € Ay, contains precisely Ry11 cubes in Ag11. By successively trimming the set
Ay one easily shows that if T is large enough (also depending only on €), one can

find such a subset fll - fio with tree-structure so that ‘Al‘ > O@)p—ate,

Indeed, to obtain this trimmed set 1211, consider all 2=*1=DT cyhes intersecting
Ay, and find Ry, so that the number of these cubes containing between Ry, and
2Ry, of the 2~FT_cubes is maximized. Throw away all points of Ay which are not
contained in such a 2~ 1=1DT_cube. Suppose Q is one of the remaining 2~ *1—DT.
cubes, and that exactly ng of the 2T _subcubes in ) have nonempty intersection
with Ag. We throw away all points of Ay in ng — Ry, of these 2k T
that precisely Ry, subcubes in with nonempty intersection with Ay remain in Q.
Now consider all 2-(F1=2T_cubes intersecting the surviving set, and choose Ry, —1
in a similar way, etc.

If T is large enough

-subcubes so

k1
Zlogz Ry = log, )fh’ > —(a—e)logyr > (a—€)T(k1 — 1)
(=1

k1T _cube can contain

the first equality being a consequence of the fact that no 27
more than one point of A;.

Set

k

1

M‘ p— 1 1 .

=i g 2 e R
f=i+1

Let 1 < ko < ki1 be the smallest integer for which My, > (o — s + ¢€)T" if such

exists; otherwise set ko = k1. Then a standard covering argument gives that there

is some ko < k < k1 so that

k
ZlogQ Ry <k(lao—s+¢€T
/=1
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hence using the trivial bound R, < 297 we get the inequality
ka(a — s+ €)T + (kg — ko)dT > (o — €)T'(k1 — 1)

and
d—a+e
ko <kj————+0(1
2= 1d—oz+s—e+ )
(explicitly, the O(1) term is (o —€)/(d — a + s —€)).
Now let I be any 2jk2T—cube intersecting Ap, and let p; be the normalized
counting measure on Ay NI as above. Then as My, > (o — s + €)T for any

2T _cube J C I for ko < ¥ < ky

l
pr(7)= [] Rp' <2 (kemstor
U=ky+1

and pr is a (C¢,a — s)-regular measure on [ at scale r, for a suitably chosen

constant Cy; note also that I is a cube of diameter C'r® for 3 = ky/ky = di%fsfe.
O

Lemma 5.3. Let p be a (C, a)-reqular probability measure at scale r on B C R,
Then for any € > 0 there is a r-separated subset A C supp p so that the uniform
measure on A (i.e. pg = |7}| Y acada) is (Ce, o0 — €)-regular at scale r on B.

Proof. For simplicity of notations, we may assume without loss of generality that
diam B = 1. Choose randomly a sequence a1, as, ..., ar, € supp p with L = G
with each a; chosen i.i.d. according to p.

For any r < s < 1 partition B into s~%cubes of size s; the probability that any

of these cubes contain at least N points of {ay,...,ar} for N > Ls® is at most
L (Ls*)N
5.1 —d na | < 2574 .
(5.1) s Z <n>s r <2s N
n>N

Choosing N = max(24,3Ls*~¢), and using the trivial inequality N! > (N/3)V
valid for all N > 1, we see that

G.1) < 257N < 244,

As 237, 107% < 1, with positive probability for all k, no cube of size 107* will
contain more than max(%d, 3L10~*@=9) points of the set {ay,...,ar}. Apply this
to ko = [|log;o(1/7)], and obtain an r separated subset A C {ay,...,ar} of size
|A| > & so that for any 10~‘-cube Q with ¢ < ko,

1Q N A < 6de L1079 < 12¢%¢~2 | A| 107F(@~)

establishing the lemma. O

Closely related to the notion of (C, a)-regular measures introduced in Defini-
tion is the notion of a-energy of a measure p, denoted by &,(p), which we
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define for a compactly supported measure p on Rd and a < d by:
/]Rd /]Rd |z — y\
If pis (C,a + €)-regular on a set B at all scales, then

(z) dr < C(diam B) ™ “ae L.

The energy £,(p) can be given also in terms of the Fourier transform of p, up to
an implicit constant that tends to oo as @ — d (cf. [25, 12.12])):

(52) Ealp) = [ 10O (1 + I e

If £,(p) < oo then any set of positive p measure has Hausdorff dimension > « (for
this and further information about a-energy, see |25]) .

A simple way to adapt this notion to our “coarse” setup, where we do not care
about the details of how p behaves at scales smaller than r is to smoothen it
by convolving with an appropriate kernel. Let ® be a fixed radially symmetric
nonnegative smooth function on R? with ||®[|; = 1 supported on By 1, and set for
r >0

®,(z) = r 4o(r ta).
Then instead of using the possibly atomic measure p, we can consider its smoothed
version p' = p x ®,. In particular, if p is (C, « + ¢)-regular at scale r on a subset
B C R? then

Ealp* ®,) < C(diam B) ™ “ae?
with the implicit parameter depending only on d and the choice of ®.

6. STRUCTURE OF THE SET OF t-LARGE FOURIER COEFFICIENTS
Fix some probability measure pg € Prob(T¢) and consider the sequence
fin = V""" % 1
and the following sets of “large” coefficients
App = {b ez : ()| > t}.
Our goal in this section is to obtain the following result:

Theorem 6.1. There exist constants k1 > kg > 0, Lo > L1 > 1, p,C < o0
depending on v only, so that if for some ty € (0,1/2)

(6.1) |fing (a0)| > to
then for any m > C(1 + |logtg|) one has

N d
N (Atg,no—ml N B(),N;M) > tg : <M>
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for some m; < m, N in the range LT" < HTJ\(/;H < LY, and M in the range
( N )1—&1 < M < ( N >1—fi2
llaoll llaoll llaoll ’

The proof of Theorem [6.1] involves the following steps.

Proposition 6.2 (Initial dimension). There erist ain;, C1 > 0 depending only on
v so that for any measure o on T%, if p, = v*" * pg satisfies for n = ng,to < 1/2
that

|fing (ao)| > to >0
then for any integer m with

no >m > C1(1 + |log(to)|)
it holds that
(6.2) N (At j2,n0—m N Bon; M) > (N/M)%im
for N = exp(3A1m/2) [laol| , M = |ao]|.

Proposition 6.3 (Improving the large scale dimension). Given ajn; > 0 and
Qhigh < d there exisls (pe,c2,C > 0 (depending on v) so that if for some 1/2 >
t>0,1<M< N with

(6.3) log(N/M) > c2log(1/t) and n > colog(N/M)
it holds that

N (e}
N(At,n NBon; M) > <M> for some cini < a < Qpigh,

then there are m, M', N' with
m < cylog(N/M) N' < N(N/M)* (N'/M") > (N/M)e

so that

N/ at+Qine
(64) N (At,n—m N BO,N’; M/) > (M)
for t' = Ct4e.

Iterating this proposition we obtain:

Corollary 6.4 (of Proposition [6.3). Given an; > 0 and apign < d there exists
c3,C3 > 0 so that if for some 1/2 > ¢t > 0, 1 < M < N with log(N/M) >
c3log(1/t) and n > c3log(N/M) it holds that

N Qing
(65) N(At,n n BO,N; M) > <M> ,

then there are m, M', N’ with
m < c3log(N/M) N' < N(N/M)® (N'/M') > (N/M)Ye3
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so that

N/ Qhigh
(6.6) N (Ap e N By M) > <M,)
for t' = t©5.

Proposition 6.5 (High dimension to positive density at large scales). There exist
Qthighs C4, K4 > 0 depending only on v and q4 depending on d with the following
properties. Assume that for some 1/2 >t >0, 1 < M < N with log(N/M) >
cqlog(1/t) and n > cqlog(N/M) it holds that

N Qhigh
N(At,n N BO,N;M) > <M) .

then there are m, M', N' with
m < eglog(N/M) N < N(N/M)*  (N'/M') > (N/M)"/
such that

N\ ¢

forti = chtq‘*.

Let us deduce Theorem from the above propositions.
Proof. Suppose |fin,(ag)| > to. Then by Proposition there are a;p;, c1 so that
N (Ato/Z,nofml N BO,N1; Ml) Z (Nl/Ml)aini

for N1 = exp(3A\1m1/2) ||laol|, M1 = ||ao|| provided ng > my > C1(1 + |logto|).
Let apign < d be as in Proposition and c3,C3 as in Corollary for the
already chosen values of p;, pign. Then if

mi
(6.7) log(Ny/M;) = —2L > ¢3(1 + [log(to/2)))
(6.8) no —my > c3log(Ny /M)
there are mo < c3log(N1/M;) and Na, Ms with

-
Ny < Nl(Nl/Ml)c3 MQ > (]\71/]\41)1/63
2

so that

Ny \ “hioh
N(At27n0*M1*M2 N BO7N2; MQ) > <M)
2

with to = (to/2)¢5.

As long as
(6.9) log(Na/Ms) > ca(1 + log(ta))
(6.10) ng —mip — msy > Cq log(Ng/Mz)

we can apply Proposition and conclude that for some N3, M3 with
my < cqlog(Na/Mz) N3 < No(Np/Mz)™  (N3/Ms) > (Na/Ms)*/
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so that

_ N3\ “
N(Ats,nofm1fm27m3 N BO,NS;M3) > ¢ 1t§4 <]\4Z>

with t3 = (t2)%, proving the theorem.

6.A. Initial Dimension and Regularity: proof of Proposition 6.2

Proof of Proposition[6.3. Let w = A\1/4, and C1 > 2 a large constant to be deter-
mined later. For any fixed m > C1(1 + |log(to)|) set

N = MNP lgg| R = MM g

Let t = % and n’ = ng — m. Consider the following sets:

G = {aeT + 7 gl = g < eI
7 tr / lo
gstzzt = .g S I_‘ N ‘l[,l,n/(g ao)l Z t = 5 ,

Gung = {ger  dung (@0, H(g)) = dus (0(0). ) > @)U}

g = glen N gstat N gcmg'
By Theorem |4.3| there is p,, > 0 so that (assuming m > m,,)
V" (Glen) > 1 —e P,
Our choice of Cy should guarantee m > m,, and
t
e P < go.
There exists my so that for m > m; Lemma [4.5| gives

" t
12 m(gang) > 1-— go
Finally, the fact that p,, = v™" * p, gives
x to
1% m(gstat) > 5

Therefore

smioy - O 0 0 A

RO > 5 g TR T
Since [|g%[| = ||gl, and dang (Z, H(g%)) = dang (0(g), *), by Lemma [1.1] (2) every
g c g - gang N glen has

1/7
_ - to
g aoll > g1 ool dug (@ F5%)) > =] - ()

If m > (w-7)~!-log(8/to), which is true for large C7, then the the RHS above is
bigger than R. it is also clear that if g € Giep, g“ao‘ < N. So we get

R < ¢%ayg < N (g €G)
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while g™ ag € Ay, for any g € G C Ggiqe. Thus for any g € G we have
gtrao € A:= At’,n’ N (BO,N \ B(),R) = {R < HbH < N ’ﬂm(b)‘ > t/} .
Let D be the projection of A to P4~!. Then
t
v {g : g"ag € D} > ZO
and
N (Dsem@am2m) < A7 (A5 Jaol )
It follows that

ge[@d—l
<N (D, 6—(>\1—2w)m> G_T/m.
For some 7/ > 0 depending only on v. It follows that
to /
N (A;laol)) = Jem™ > e™™/?

if 'y is large enough. O

6.B. Bootstrap of large scale dimension: proof of Proposition (6.3

A central step in the proof of Theorem is the bootstrap procedure, which
allows us to increase the large-scale “dimension” of the set of large Fourier coeffi-
cients from « to a+ ne. in order to show this we employ the following projection
theorem due the first author which implicitly can be found in [4], and are proved
explicitly in [5].

Theorem 6.6 (|5, Thm. 5]). For any ap,k > 0 and d > 2 there are aa,€,19 > 0
such that such that the following holds for 0 < r <rg and ap < a < d—ag: Letn
be a probability measure on P~ s.t.

(6.11) max n(V (y*, p)) < p* ifr<p<r®
]

Let E C [0,1]% be a r-separated set with |E| > r~® and a non-concentration
property

max |[ENBg,| < p|E]| ifr<p<rm.

x
Then there exist D C P41 and E' C E with
n(D) >1—r¢ |E'| > r¢|E|
So that
N (mo(E");7) > rlataa)/d

whenever € D and E" C E' satisfies |E"| > r*|E|.
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Lemma 6.7. For any € > 0, there is a C. > 0 so that the following holds. Let p
be a measure on T% and

A(p) = {be 2’ [ae)] >t}
Assume that for some N > M, «

N (A 1 Bo s M) > (ﬁ)

Then there is a M < N' < N with

e ¥ o (d-atey, N
8 " \d—a+ts) %M

so that Ay 4(1) NBon contains a subset which is (Cct™2, o —10€)-regular at scale

Proof. By Lemma there is a point x € Bg n so that A N B, n/ supports a
probability measure p which is (Ce, & — 9¢)-regular measure at scale M with

N’ N\ doatie
v ()

Replacing C¢ by 4C¢ we may assume all b € supp p satisfies that fi(b) lie in a single
quadrant of C, and hence
t

> .
2

> p(b)ac)
b

By Cauchy-Schwartz:

St~ (el = [

b,by T

- t°
=[S amem)| =4
b
hence
2
(6.12) prp(Apya(p)) = -
Let py be the probability measure p * p|At2/4(u)' As p was (4C,, a — 9¢)-regular on

B n7, the measure p * p is (242C,, o — 9¢)-regular on Bo,2n7, hence by
pa is (2974Ct72, oo — 9¢)-regular on B(0,2N") .
By Lemma there is some
A C suppps C Aypz/4(p) N Bo v
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which is M-separated and (C/t2, a — 10¢)-regular on By y. O

Lemma 6.8. Given ai,; > 0 and apign < d there exists aine, cs,C > 0 (depending
on v) so that if for some 1/2 >t >0,1 < M < N with

(6.13) log(N/M) > cglog(1/t) and n > cglog(N/M)
it holds that

N (e}
N (A, NBon; M) > <M> for some aini < o < apigh,

then there are m, M', N' with M’ > M
m < cglog(N/M)  N' < N(N/M)®  (N'/M')> (N/M)/<
and & € PP so that if R denotes the “rectangle” Bo,n N Nbdz (§)
N (at2ainc)/d
(6.14) N (Aypem "Ry M') > <M,>
for t' = Ctt.
Proof. Let aa be as in Theorem for ag = k£ = min(oni, d — apign)/2. By
Lemma applied with € = aa /20, there is an M < N; < N with
log(N1/M) > clog(N/M)
and an M-separated subset
AC ApynNBon,
which is (Ct72, o« — aa /2)-regular at scale M on By n,; in particular
N, a—ap /2
u)

Both the constants ¢ and C depend only on aj,; and apign (and aa which is
determined by these two quantities).

Let w > 0 be small (specifically, we require that w < min(A; — A2, A1, aa)/20)
and let m be the smallest integer so that

|A| > O 12 (

M-Ap—2w)ym — N1
eM1—de—2w)m U
Let n’ = n —m and set M’, N’ by
(ml) N’ = eMtw)m . N
(m2) M’ = eP1=w)m . pr
then also
(m3) M’ < ePetw)rm . Ny < M/,
assuming the constant cg in is sufficiently large, we will have that m is

greater or equal to the constant mg(w) in Theorem H Invoking that theorem,
we conclude that the set

1
glen:{gef : \)\i—alogai(g)]<w for 2':1,2}.
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satisfies
(6.15) V" (Glen) > 1 —e P
Conditions (m1)—(m3) imply that for any g € Giep,
9" (Bo,n,) C Bonv N Nbdy (€) with £ =0(g"),

i.e. the linear transformation ¢' maps the ball By y, into a cylinder of length 2N’
and base of radius M.

Let 17 € Prob(P?~1) denote the distribution of §(g) where g € T is distributed
according to v*, ie., n(©) = v {g €T : 0(g) € O}. Lemma provides the
regularity of n as in condition of Theorem

Let £ = Nfl - A C Bpy € RY and r = M/N;. Theorem applied for
r = M/N' and € = aa/10, gives us a set E' C E with |E'| > r®a/1|E| and
O c P41 with n(©) > 1 — r*a/10 5o that
(6.16)

N (mg(E");r) > p=(@+508)/d g C B g € © with |E"| > r*a/10|E|.

Let B= N;E" and

gproj - {g el : e(g) € @}
‘We have
(6.17) V" (Gproj) = 1(0©) > 1 — roa/10,

Since b € B C A C A4, we have that |fi,,(b)] > 112 for all b € B; by reducing

B slightly we may also assume that |B| ™" ‘ZbeB ﬁn(b)’ > 112, Using the identity
fn = V™ % p, (recall that n’ = n — m) and the Cauchy-Schwartz inequality we
may conclude that

>0 a) - o S i (6 = | S0 S0 v @) (6D

ger beB gl be B

beB

2

> 27644

and therefore the set

1 . _
Gstat = {9 el B| Z i (90)|* > 2 7t4}

beB
has

(6.18) V™ (Gstat) > 27,
Note that for each g € G4t the set
(6.19) By={be B : |uy(g"b)]* > 275"}
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has |By| > 2784 |B|. Let G = Gien N Gproj N Gstar- From (6.18)), (6.17) and (6.15)
we have

M

V(G) > 27t — rea/10 _g=pom o 27844, where r=N
1

assuming r8/10 e=Pom < 97944 which is guaranteed by taking cg large enough.
Moreover, for any g € G we have that |B,| > 275t* . |B| and (assuming as we
may that 278t% > rea/10) by (6.16))

N (me(By); M) = v (@F202)/T with € = 6(g"™);
note that by definition of By,
(6.20) g™ (By) C A,z

.
6™

Since also g € Gien, 9" (By) C Bo,nv N Nbdps(€) and
N (9" (By); M') > N (me(By); M),
which in view of implies . ([
Lemma 6.9. Let 1/2 > t; > 0,M; < Ny and ny satisfy
(6.21) ni,log(N/M) > c7log(1/t1)

with ¢; depending on v. Let & € P! and let R be the “rectangle” R = Bo,n, N
Nbdas, (€). Then there are ma, Mo, No with

ma, [log(N1) — log(N2)|, |log(M7) — log(Ms)| < c7log(1/t1)
s0 that for to = (t1/8)%
(6.22) N (Atyny—my N Bony; Ma) > ¢ 5N (Agy my 0 R; My)*
where k7 also depends only on v.

Proof. Let w = (A1 — A2)/10, and let mq be such that the sets
1
Glen = {ge e . |Ai — —logoi(gj)| <w fori=1,2and j=1,...,d }
m2

Gang = {ge re . dang (f,H(g;r)) >2e7“"™ forj=1,...,d }

2dp
t
Gool = {g eT? : vol((gth),...,0(g%)) > <81) } (p as in Lemma [4.6))

satisfy

(6.23) min((*"2)4(Gien), (V") (Gang), (V") (Goot)) = 1 — §(t1/4)*.

By Lemma and Theorem and Theorem [£.4] one can find such mgy with
mg < 71 |logt1| for some constant 7;. In particular if the constant ¢7 of is
sufficiently large, ng = n; — meo > 0, which we shall assume henceforth.

Let E C Ay, »n, N R be such that
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b—b
< —wms9
o (855 7) =

(E2) | pep fins (0)] > 5t1|E.
Clearly, by (6.28)) one can find such E so that
|E| > ce~®m2 \f (A¢y ny N R; M)

where ¢ is some constant depending only on d. Note that in order to satisfy (E2)
one can e.g. take F so that {jin, (b) : b € E} lie in a single quadrant of C.
. —1 «
Write G(x) = |E| Zg V™2 (g) > per €gtrp(x). Then

2d
‘E‘ ZM’M | ZZ *m2 Mng trb)

beE g beE

'/G ) dping (2 /IG ) dpiny ()

= 2d Z Z *mz 91 *1M0 (QZd)'

-92d

‘Z"'Zﬂnz gl b1+"'+g¢tirbd

b1,....b24€E

(E1) for every bt/ € E

2= 2dt2d

(6.24)

t t
- gdilbdﬂ — -+ — gogbaq).

Set 2(91,...,gd)(b) = ZZ 1glrb Fix (gd4+1,---,92d) € Glen and bgy1,...,b2g € E
with
(6.25)

. £\ 2
‘E|—d Z...Zy*nﬂ(gl)- gd Z ,Uznz (91,-,94) ( )—b) > <4>

9g1,--,9d beEd

where b = g +1bd+1 + -+ debgd Such a choice exists in view of the estimate

(6.23) on the measure of glm and -

Set

= 1/t\*
G =4 7T+ 1B 3 a0 - 0)| > 3 (F)
beEd
In view of (6.25), (1"™2)%(Getar) > 1(t1/4)%, hence by (6.23) the set G = Gurar N
Guol N Glen N Gang is nonempty. Let ty = (t1/8)%<

We claim that if
tgeo‘l_%)mQ > 4de()\2+w)m2

then for any g € G,
(6.26) N (Agma N (S5(B?) = b); My ) > 15 ||
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with My = §theM1=2m2 0y note that 7, (ga+1.-- - 92a) € Gien and B C By,
imply
Eé‘(Ed) —b C Bo,n, where Ny = 2\@6(“*“’)’”2]\[1.

As
(6.27) |E| > ce” ™™ N (Ap n, N Ry M)
It follows form and that
N (Agyny N Bo Ny Ma) > c/tgefd%m?/\/' (At’,m N R; Ml)d,
establishing Lemma assuming the claim .
We now turn to proving (6.26). Let & = 6(g{") for i = 1,...,d. We shall use

-,

the following auxiliary expression, which is meant to approximate 33(b):

d
2}(5) = Z e (gl?rbi%
i=1

where we consider 7, as a rank one map RY — R? whose image is in the vector
space spanned by &;. Indeed, for § € G,

|36) - 56| < e 37

Let b = (bgi), .. .,bili)) (i = 1,2) be two distinct points in E?; assume they
differ in the jth coordinate by). Write b; = bgl) - bg-Z) as b + b with b} € H(g;)
and b; L b]. As E is M;-separated, [|bj|| > Mi. Then dang (€, 5/ [[b;]]) < e=“™2
(cf. (E1)), hence as § € Gang

dang < b]' 7H(gj)> > dang (gvH(g;r)) — dang (b]’f) > e ?
16511 16511

and
‘b;‘ > e W2 ’b]| > %efwmng'
In these notations, ¢, (g;rbj) = ;rb;-, and it follows that
Ime; (g50) | = 56t 72 |l
Then as § € Gy
HEE»(E(U - 5(2))H 2 VOl(Eﬁ(g(l) - 6(2))7 517 e 7€j—17 gj-‘rlv o 7€d)
= Hﬂ-fj (g;er)H vol(&1, ..., &a)
> Jtheh 2 .
Hence
2300 = 52)| 2 4heCr=2me oy | — deatrmz o)
under the assumption this last expression is

> LhePu=2)mz b1 > A,
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for which it follows that $7(E?) is My-separated and is proved, concluding
the proof of Lemma O
Proof of Proposition[6.3 Apply Lemmal6.8|to find Ny, M1, mi,n1 = n—m; with
my < cglog(N/M) Ny < N(N/M)®  (Ny/My) > (N/M)'/es
and a ¢ € P41 so that
a+20tinc)/d
with R = Bgn, N Nbdys, (€). Now apply Lemma to find mo,no = ng —
ma, Mo, No with
ma, [log(N1) — log(N2)] , [log(My) — log(Mz)| < c7log(1/t1)

(6.28) ./\/'(Atl,n1 NR; M) > <

so that
N (At27n2 N BO,NQQ MQ) > C7t’f7./\/’ (Atlﬂh N R; Ml)

Nl a+2ine
7 tl ) [1

with to = (t1/8)%%. Note that by choosing ¢z of (6.3)) to be large enough guarantees
that (6.21]) holds. Moreover, if this constant cg is large enough,

g7 & a+2ainc . & a+Qinc
A\ Mo

establishing Proposition [6.3
O

6.C. From high dimension to positive density: proof of Proposition|6.5

Underlying (and motivating) the proof of Proposition is the following the-
orem of Falconer [13] regarding projection of sets. Falconer shows that if 7 is a
measure on the set of directions with dimension 8 > 0 then if the dimension of p
is larger than d — 3 one has that for n almost every direction 6 the projection pg
of p in the direction 6 is absolutely continuous with respect to Lebesgue measure;
we follow the treatment of this result by Peres and Schlag in |27, Sec. 6]. In fact,
the argument gives a much more quantitative result connecting the a-energy of p
to the projections of p.

We need a version of this theorem for measures p which are (C, «)-regular at
some scale 7, but are possibly singular at finer scales (indeed the measure we shall
consider will be purely atomic). As we have already remarked in Section this can
be achieved by applying Falconer’s theorem to p convolved with an appropriate
smoothing function.

Let ® be a fixed radially symmetric nonnegative smooth function on R% with
|®]|; = 1 supported on By 1, and set for r > 0

(6.29) O, (x) = r4d(rta).
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Let U : R — R™ be the smooth compactly supported function

U(zq) /da:Q /dmd<1> 1,22, ..., Xq),

and define ¥, analogously to

Lemma 6.10. Let p be a probabzlzty measure on R, and ¢ the Radon-Nykodim
d(px¥r)

deriwative ¢ = =—=—>. Then for everyr <r; <1
(6.30) N (supp p;r1) > (4r1 [|6]13) "
Moreover, for any subset X C supp p,
X 2
(6.31) N (X;r) > ’)(7)2.
ry [0l

Proof. Let B = suppp + [—r,r|, and 1p the corresponding indicator function.
Then the Lebesgue measure of B satisfies A(B) < 471N (supp p; r1). By Cauchy-
Schwartz

1= [ 1a(@)é()dz < [1al, o],
Since ||15|ly = \/A(B) equation (6.30) follows.

To see (6.31)), apply (6.30) on the probability measure p|x defined by p|x(Y) =
p( 5P p(X NY); one has

dx 0 ifyg X
hence [ldplx /de| < p(X) "2 ||dp/dz2 O

Proposition 6.11. Let p be a probability measure supported on the unit ball Bg 1
of R% so that E,(p) < 0o for some 0 < a < d, 0 <r <1, and let n be a measure
on St such that for some cn, 3>0

d L) ifye X
plx (y) = {p(X) dz

(6.32) n(Bg.ec) < cye” for every e > r and § € S
Then for any 5’ < 3
639 [ [1oo0 P [Too)] 0+ e deanto) <
oCa [ @ B, (1+[a)* de + 6,00, 5.5'.a)

Interpretation: if a« + 3 > d and 7 is (C,d/)-regular at scale r for o/ > «
then by (5.2) the right hand side of (6.32)) is bounded from above by a constant
(depending on a, o/, 3,3, C,...) while the left-hand side dominates

/ d(p* ¥y) ?
0 dx 2

In view of Lemma this in particular implies that for n-many choices of @, the
covering number of supp(pg) by r-intervals is large.

dn(0).
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Proof of Proposition[6.11 Our proof follows closely that of [27, Prop. 6.1]. Let
x be a smooth, compactly supported function on R? with nonnegative Fourier
transform and x =1 on By ;. Then p = p- x and hence p = p* . It follows that
1p|? < C|p* * X; also since x is smooth, compactly supported,

X < Cn(1+ )™ for every N;

we shall assume below that N > 2d. Thus
(6.34)

/ / 5o ®T ()] (14 #1)7+ 4 dt dn(6) <
gd—1

<C’/ // (0t — x) ‘p (x ) (1+ [P+ dt dn(6) da
Sd—1 R4
<C’N/ &, (1) / / L 16t — 2) "N (1 + €))7+~ gt dy(9) da.

We estimate the innermost integral in the last line of the above equation as
follows:

/(1 + 10t — )N+ )P el dt
R

<241+ |x|)5'+°“—d/ (1+|0t —z))Ndt +
lz|/2<|t|<2|x|

+C(N, B a)(1+ =)~V

’ T —N+d
< Can (1 + [a])7 o <1 + |2 dang (9’ \x!>> i
+C(N, B )1+ |) ™Y
Using (6.32)), we have (recall that N > 2d)

[ (15 bl <e,Q))_Nﬁdn(e)gn{e:dang( o5 ) <l

—(N—d)k Lok -1 x k+1 -1
+) 2 77{(9.2|:c| gdang(9,|$|><2 |z| }

k>0
< 10¢, max(r, (1 + lz[)~HP.
It follows that the integral on the last line of is at most
(6.35)

2 i
10Caey [ g M (L5 12D [ @) (14 ()
T|<r—

+10Cq ney /

|a:|>r*ﬂ/f3'

+C'(N, 3, ).

(@ (@)| (1 4 a)? e ()
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For |z| < /% one has the trivial inequality
max(r, (14 |2)) )7 < 2(1 + |af) 77

We also note that CTJT(a:) < Ch, (r|z|)™™ for every N; hence (6.35) is bounded

from above by
~ 2
636)  10Cave, [ ) @] @+ o) dn(o) + €N, 5 )+
+10Cq N ¢, Ch, / P (r|z)) ™M |az|ﬂ,+°‘7d dn.
|| >r—8/8

As long as Ny is large enough (depending on 3, #', d, ), the integral on the second
line of (6.36)) is bounded by a constant (depending on the same set of parameters).
U

As in Section we interpret the identity
ﬁn(b) = Z V*m(g)ﬁn—m(gtrb)
g

to mean that for “many” ¢ in the support of v*™, the set of large Fourier coef-
ficients Ay 5,y Of fin—m contains “a substantial proportion of” g™ A. This later
sets we consider as a perturbation of a rescaled and rotated orthogonal projection
of A in the direction g expands the most (in the notations of Section the
direction perpendicular to H(g)).

Lemma 6.12. There are €y, C,cs > 0 (depending on v) and an absolute constant
q > 0 so that if for some 1/2 >t >0, 1 < M < N with

(6.37) log(N/M) > cglog(1/t) and  n > cglog(N/M)
it holds that

N d—EO
N(At,n N B()’N;M) > <M> s

then there are m, M', N' with M' > M

m < cglog(N/M)  N' < N(N/M)®  (N'/M') > (N/M)"/es
and & € P 5o that if R denotes the “rectangle” Bo,nv M Nbdy (&) and t' = Ct9.
t'N'
M
Proof. Let T be as in Lemma and set g = 7/3 . Assume that for ¢,n, M, N
as in the statement of Lemma [6.12] we have that

(6.38) N (Aypem "Ry M') >

N d—EO
N (At N Bon; M) > <M> :

By Lemma [6.7] applied with € = 7/30 there is a Ny € (M, N) with log(Ny/M) >
2log(N/M) so that Ay, , N Bgn, contains a subset E which is (Ct2,d — 27/3)-
regular at scale M, where t; = t2/4 and C depends only on 7. As before, we may
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assuine

th
6.39 S h
(6.39) =5

ARG

beE

1
E|
since we may always choose a subset Ey C E of cardinality > |FE| /4 on which the
above inequality holds wake a to (Ct=2,d — 27/3)-regular (possibly for a slightly
different C').
Let m; = klog(N/M) (for a large constant x to be determined later depending
on v), and set n; =n —my. For any g € supp(v*™) set
E(g)=En(¢")A

t
?1777'1

" t
G = {a e suppr™ 5 B> T 151}
By (6.39), as pn = v % piyy,

,;‘ S0 (g) |3 i (970)

beE

t
251,

and it follows that for a set of g of v*™1-measure at least ¢1/4 one has
-~ tr t
Z/Lm(g b) > Z ’E| .
beF

By Chebyshev inequality any such g satisfies |[E(g)| > t1 | F| /8; hence we conclude
that

o~

e (gstat) >

Let w = (A1 — A2)/20, and set

Z.

1
glm:{ger : [N — —logoi(g)] <w for i:1,2}.
mi

By Theorem and (6.37)), if cg is sufficiently large (depending on v),
s (glen) >1- tl/S

hence v*"™ (Giep, N Gstat) > t1/8. Let G = Ggpar N Gren, and 1 be the probability
measure on P91 defined by
v'mi{geg:0(g) €}

prma (g) :

By Lemma for any £ € P41 and e=“™ < r < o (with 79, C, ¢y, 7 as in that
lemma)

n(§2) =

n(Be,r) < 4tI1TT.
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Applying Prop081t10nW1th B=1,0 =22 a= d— 2T and p = |E‘ > ek Ob/N,
we get
* U,.)
| H (e dn(é) <ot [cd / @) [ (4 fal) ot
(6.40)
Clas,8,a)|

Recall that p is (ct™2,d — %T)—regular at scale M /Ny; moreover if k > cfl, we
have that r := M/Nj > e~ ™1 Tt follows that

L@ 5@ 1+ el de = Eapo w,) (by ()
<"t =8t (since o > d — 27/3)
with ¢, ¢” depending on 7,v. Substituting into (6.40) we get

2
‘d(pg*\lfr) dn(g) < C*tf2.

/6 dx 2

We conclude that there is a gg € G for which

d(p&) * ‘IJT) 2
dx

(6.41) H <cdty? with & = 0(go).

2
Set

M’ = max(N;e2(90) Nfe71(90))
N' = Nyeo1(90),
Since go € Gien, We have that
log(N’/M’) > min(log(Ny /M), (A1 — Ag — 2w)my) > log(N/M)

(the implicit constant depending on v). Also clearly M’ > M. Since gy € Gstat,
we have that |E(go)| > t1 |E|/8 hence p(N%E(go)) > t1/8. Let mg, denote the

orthogonal projection to the direction &, (considered as a map R¢ — R). By

Lemma and (6.41)) it follows that
(6.42) N (e (R B(g0))i1") = eenlr') Mt}

where v’ = M'/N' > r, and c. = 278¢, ! . By definition of E(gp), we have that
90" (E(g0)) C Ay, /8,5, ; moreover for b € By n,

‘gotrb_ 601(90)760(())9@0)” < Nleaz(go) < M.

In particular, setting £ = 6(g) and R the rectangle By v N Nbdyz/(£),

(6.43) 96 (E(9)) € RN Ay, jsm,y
(6.44) N (95 (E(90)); M') = N (g, (E(g0)):7") /2-
By (6.42), (6.43), and (6.44), keeping in mind that " = M’/N’, the desired

inequality (6.38)) follows. O
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Similarly to the proof of Proposition [6.3] Proposition [6.5] can easily be deduced
from Lemma using Lemma Note that in the notations of Lemma
N N.
‘log 2 — log 77
the details.

< logt; with the implicit constant depending on v. We omit

7. GRANULATED MEASURES

The goal of this section is to prove Proposition [3.1] and hence our main result
Theorem [A] which follows easily from it. Assume that u, = v*" * p satisfies

|Ting (a0)| > to >0

where ng is assumed to be larger than a constant multiple of log(2||ao||/to). The
goal is to deduce that for any A < A; there is C' so that

C C
to 2[|ao|
Nno—m(WQ@—/\'m) > <2> y where Q < <‘[/‘0 .

We recall the notations

RQ:{(pl,...,pd)E’]I‘d : qgQ}, W, = | B
q q cR
rehg

Unless otherwise specified, all other constants defined in this section depend only
on v (and hence indirectly also on I').

We outline the ingredients of the argument in the following Propositions [7.1
and formally deduce Proposition [3.1} The proofs of propositions 7.4] are
given in §§7.AH7.D| below.

In the first phase of the proof (Section |§|, Theorem it was shown that
the set of significant Fourier coefficients {a € Z? : |fip,—m(a)| >t} in large balls
{a€Z® : |a|| < N} has positive density when viewed at resolution M = N7+,
We shall use this information on Fourier coeflicients to show that a certain portion
of the measure fi,,_, on the torus T¢ is (1 — x)-granulated at scale p = 1/N in
the following sense.

Let 1 be a probability measure p on T¢. Say that a t-portion of x is a-granulated
at scale p (here o < 1 and p > 0 is smaller than a power of ¢/2) if there exists a
p@-separated set X C T¢ so that

p(Nbd, (X)) = p( | Bayp) > t.
zeX

The information on significant Fourier coefficients of u,, obtained in the first phase
of the proof (Section |§|, Theorem|6.1]) enables one to show that a significant portion
of the measures fin,—m is (1 — k)-granulated.

Proposition 7.1 (Initial granulation estimate).
There exist constants 1 < Ly < Lo, k > 0, and c1, ca, so that for m > c;-log %ﬂo”,

there exists p € (Ly™,L7™) and a finite set X C T¢ so that
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(1) X is r = p'~F-separated;
C:
(2) tng—m (UacéX Bx,p) > (%O) g

Let us say that a probability measure p is (-concentrated around x € T¢ at
scale p if u(Bg,) > p®. So Lebesgue measure is d-concentrated, while atomic
measures are 0-concentrated, at all scales. Observe that if « < dand a-d < 8 < d
then a probability measure p which is a-granulated at sufficiently small scale p
has points which are B-concentrated: since p®-separated subset on the d-torus has
O(p~®*) points, an average p-ball with center x € X has p-mass

w(Bg,p) > const - ¢ - p% > pP

Thus fin,—m has points which are 8-concentrated where 8 =d —k > (1 — k) - d,
assuming the scale p is small compared to . The next step of the argument allows
to bootstrap this concentration phenomenon from Gy = d — k down to Oy = 9,
where J > 0 is some fixed concentration goal determined in Proposition [7.3| below.
The bootstrapping procedure is performed some finite number N = N(k, ) of
times.

Proposition 7.2 (Bootstrapping concentration).
Given € > 0 there is v > 0 and £y so that for n > £ > {y the following holds: given
scales p < e~ Mt there are scales

MmNt = et

so that given an r-separated set X C T one can construct an v'-separated set
X' C T? with

d
| X' <|X]| and tn—i( U B%p,) > <Nn( U Bx’p)> — et

yeX/’ zeX

The initial granulation o = 1 — x gives ;—g = p, " so the above proposition can

be applied with £ as big as ﬁlog(;—g) = o log(pio). With half that big ¢, we

A—e)-t pg/i%d

still get a shrinking factor of e~ in the scale of concentrated balls

produced in the proposition. The fact that the ratio ' in the output is close to

the initial one %, allows to apply the proposition with a fixed £ for a number N
of iterations, and obtain very high concentrations. The loss of mass is not very
drastic if the initial portion 79 > (¢0/2)* of (1 — k)-granulated measure fin,—m, is

large compared to the scale p and e

The following proposition shows that certain level of concentration can occur
only near rational points. This determines the desired concentration level § > 0
mentioned above.

Proposition 7.3 (Rational approximation).
There is § > 0 and ¢4 < 00 so that for any small p > 0

pn(Bzp) > p° - B=p W,
for v = p*'% and Q = p=/1°, provided n > c4 - log(1/p).
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Hence assuming that a significant p,-mass is granulated with exponent ¢, u,
gives this significant mass to Wq , with r = Q™. Of course factor 9 is arbitrary
here, for the following we could work with any factor bigger than say 3.

The final step of the proof, uses the I'-invariance of the set Ry to show that
most of j1, mass of Wg , = Uxe Ro B.,» must be concentrated near the centers Rg
of these balls.

Proposition 7.4 (Tight Bootstrapping).
Given € > 0 there is my and w > 0 so that if r > 0, Q < oo and m > m, satisfy
1
€d/\1.m r < @
then
,un,m(WQ’e,(Alff).m_r) > Mn(WQ,r) — e wm

assuming n > m.

This is done by considering the intersections of a large number N > €™ of

translates g; 1(WQ,T), where g1,...,gn are chosen using the distribution v*™ of
the m-step random walk.

Let us now deduce Proportion [3.1] of the introduction from these propositions,
which are proved in the following subsections §§7.AH7.D]

Proof of Proposition [3.1]

We assume that |fin,(ag)| > to > 0 for some ag € Z%\ {0}. We shall work with
oo 2llaoll
ng >m > C - log

o where the value of C' will be determined implicitly in the
proof.

Our first goal is to show that for some constants C7, D, 1 < L3 < L4 and any
mg > C] - log %00” there exist p with L, ™ < p < L;™° and a finite set Y C T
so that

D
to
(7.1) Ino—mo (By,p) > pé (VyeY), Hng—mo ( U By.p) > <2>
yey

where 0 > 0 is the constant from Proposition |7.3

Proposition provides 1 < Ly < Ly and k > 0, so that for large mgg there
exists po € (Ly; ™, L7™) and finite set Xo C T¢ which is ro-separated so that

- to\
TO = p(l) H? ,u’no—moo( U Bx,po) > <2> .

z€Xo

We shall amplify this initial concentration by a number (N below) of iterations
of the bootstrapping procedure in Proposition [7.2l The relevant parameters are
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chosen as follows:

(7.2) ¢eN  sothat em2dht 5 L0 pl > e3AL
To

(7.3) NeN  sothat 6N -k > 6d°,

(7.4) e>0 so that 2N - € < d);.

Here 6 > 0 is provided by Proposition [7.3] and x by Proposition Note that
{ = log p% = myo, i.e., the ratios between these quantities are bounded from below
and from above by finite positive constants (depending on v).

For j=1,...,N—1set pjy1 = e 7M=L poand 7 = e 7M1+ g Then
J Pj+ P J+
(7.5) Po <. < PN _ o2Nel Po < 2Net=2dMl =Ml
To N To
where the last inequality is justified by (7.2)) and (7.4)).
We have arranged p; < e~dMl. rj for 5 = 0,..., N, and, assuming that ¢ >

loy, may apply Proposition inductively starting from the set Xy provided by
Proposition This yields a finite sequence of sets X7,..., Xy, where each X
is an r;-separated set on the torus, the sets do not increase in cardinality:

(7.6) | Xn| <+ < X1| < |Xo| < consty - ro_d < pad,
while the masses

. d — el
Tj = Hng—je( U Bz,p;) satisfy Tjp1 > T) —e .
ZZ'EX]'

Recall that v > 0, depending on ¢ > 0, N, K > 0 and > 0, are constants
(depending on v), but independent of ¢, mgg, etc. So choosing C; large enough,
we may ensure that mgg, and thus ¢, are large compared to log(2/ty) so that

N
¢ CQ-(d+1)
-l < 70
e ( . ) .

This implies, by induction on 7, that 7; > 2¢~7¢ and 71, > %Tid > TidH_ In
particular the last set Xy satisfies:

to ca-(d+1)N
,uno—NE( U Bz,pN) =TN > <2> .

reX N

We now use the fact that |X x| has few elements, estimated by (7.6]), to extract
the subset Y of very concentrated py-balls:

TN
. Y = Xy _ne(Bz — .
& {oexn s pmseBrp) > 375

Then
TN to\”
Pno—nNe( U By.on) > o > <2> )

yey
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where D is set to be D = ¢3 - (d + 1) + 1. Finally we claim that

(7.8) ™

2| X |

Indeed, assuming mgyp is large compared to log(2/ty), we have

TN to)"” d(1—k)

— . K d
i > (3) A2
Using ([7.3) and ([7.2)) it follows

- —e)- SN _ d/k
)0 = e ONu—l o o (—ONFL (6 3d>\1€)

> (pn)°.

(PN < pg.

With Y as in (7.7)), p = pn, mo = N, the claim ([7.1]) is proven.

Applying Proposition to the conclusion (7.1)) we deduce that for some Cj,
C3 > 1, for mg > Cs - log %@0”, and ng > C3 - mg, one has

mo

D
t _ ™M
(7.9)  tng—mo(Wo.r) > (;) . where r=Q7°% Qe (L)L)

The proof of Proposition [3.1] concludes with the second bootstrap Proposition [7.4]
applied a number of times. Given A < A\; we choose

Al A=A

32 )
and let w = w(e) > 0 be the corresponding constant from Proposition

With € < A; — A there are 0 < o < 3 and k € N, so that any large m can be
written as

€ = min(

m=mg-+miy+mg—+---+mg,

where
(7.10) Am < (A —€) - (m — my),
(7.11) a-m<mg<pf-m,
7 7

12 log L3) - log Ly) -

(7.12) (10d>\1 og Lz) - mo < my <(10d>\1 og Ly) - mo,
1 1

1 14+ =) -m, : 14+ —)- -m;.
(7.13) (—|—3d) mz<mz+1<(+2d)m
We set C to be large enough so that writing m > C'-log %OOH asm=mgo+---+mg

as above we get mg > C5 - log %OOH and my > m,. Then for r and @ as in 1)
condition ([7.12]) implies

7Tmg 1
dA\1my 10 7T _
e <L < = .
3 Q r. ()2

Denoting r; = e~ (A=) (mit+mi) . we also obtain

ed/\1~mi+1 T <

1
o7
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Indeed, this is proven by induction using ([7.13]):

A1
Mo,
g imigy o gddmi | emy €270

ri- Q% i1 Q%
Therefore, Proposition can be applied to deduce, using ([7.10)), that

/Lnofm(WQ,e*A'm) > :unofm(WQVG*(M*6)‘(m1+‘“+mk).7»)
> Mno—mo(WQﬂ’)_e

For some ¢ > 0, independent of m, etc, we have Y e ™ < e ™ If C > 2D/c
then it follows, using ([7.9)), that

£\ ” 1o\ P+
MNO_W(WQ,E_)“m) > fing—mo(We,r) — e " > <2> e <2> '

This completes the proof of Proposition 3.1 O

—wmy —w-mp

— e

7.A. Initial granulation: proof of Proposition |7.1
Proposition [7.1]follows from Theorem [6.1]and the following general statement with
M=N'Yrp=4 s=t=t)

Proposition 7.5. There exists ¢ > 0 so that if a probability measure pu on T¢
satisfies

N d
N ({a €Z'NBoy : |i(a)| > t};M) > s (M)
with M < consty - N, then there exists an ﬁ—sepamted set X C T with

,u(U Bl‘ir) > c-(ts).

zeX

Proof. We shall need an auxiliary smooth function F' on the torus such that
0<F<C;- N supp(F) C By 1, / Fdz =1.
b Td

and the Fourier coefficients

F(a) >0 F(a) > for a€Z'NByy.

N

Here (1 < oo is a constant depending on d only. To construct such a function,
consider the step function Fi(x) = m(Bo,)"! - 1g,,(x) where r = ¢/N for some
fixed small € > 0. Then F} (a) is close to 1 for a € Z4N Bo,v. If F is a smooth
symmetric approximation of Fy, then the convolution F = F, % F has the desired
properties.

Let A = {a€ZiNBon : |ia)|] >t}. Upon passing to a subset A C A of size

Al s (N
> 21 2=
A= > 1\
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we may assume that Re(e? - fi(a)) > § for some fixed 6 € [0, 27). Let

d(x) =) eal).

a€A

As usual, e,(z) = e 2% are the standard characters. Note that

D) = (D eal@) - (D es(@) = D as(2).

acA beA a,be A

The probability measure A\ = p * F has a smooth density g : T¢ — [0,00) with
G(b) = fu(b) - F(b). On A we have F' > 1/2 and Re(e?j1) > t/2. Therefore

t ts [N\
¢d)\’ > Re(e” 4'|A’>16'<M>'

acA

(7.14)

We shall see that the RHS is close to an a priori upper estimate for the LHS.
Partition T? into M¢ ”cubes” @Q; with side length ﬁ and centers ¢; € T?. By
Cauchy-Schwartz inequality

/Tdcbd/\'gzi:'/w1@.¢w‘ gzi:A(Qi);(/Qi'Wd)\)é

(7.15)

Let r = % which is assumed to dominate % Then Q; C B, /2 and y+Q; C B, »
for any y € supp(F') C Bo%- Thus

NQ@) = [ Pty +Q)dy < (B,

Since d\(x) = g(z) dx we have

/|¢|2d)\<G /|¢|2dm where G = ;ré%xg()

We shall estimate fQ ||? dx using an auxiliary function f on T¢; we take f to be

the product f(x) = H‘j:l har(x;) of one dimensional Fejér kernels

n k conu N\ 2
:lzzewju:l S o
n n Sin%

k=1j=—k

Note that f is a non-negative function, with f(z) > 10=¢ - M? on the M—cube

Qo = [~5i7: 557)? + Z¢ around 0 € TY. The Fourier coefficients f take values in
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[0,1] and vanish outside the [—M, M]? N Z¢ cube. Thus
d

[ oty e = | r¢<c@+y>|2dy<}3d / 6(ei-+ )1 () dy

Qo
- 104 ' 5 J
—W Td|¢(cz+y)‘f Zea bcz+y f(y) Y
a bEA

104 i 104 "
_ -7 ) _ < . —

M Z ea—b(cz)f(a’ b) = rd 2}22}5 |f(a b)|

a,beA

Cy-|A]  Cy- N

= Md < M?2d -

Here C5 is a constant which is 10? times the maximal cardinality of a 1-separated
set in [—1,1]%.
The density g of A = p * F' has the following upper bound:

(7.16) @) = [ Fla—y)duty) < Cr- N u(@, ).
Since Nbd%(Qi) C B, it follows that

G, = max g(z) < CLN"(B., ).

z€Q;
Let 0 < H; <1 denote the ratio, so Gi:Hi'ClNd,u( ). By (7 and-
ts [N\ . 1 /O N:
Z =) < B, ,)2-G2. Y2 '
16 <M> < 2 1Ber)? -G M4

1

1 N\ ¢
SZ/‘L(BCi,T : 2 \/Cl CZ<M> .

Let C3 = +/C1 - C5. We have

Therefore

. 1 ts
(7.17) ;,u ciyr) 2503 where I = {z : H? > 2503}.

For each i € I let z; € Q; be such that g(x;) > (2%3)2 -Cy - N%- (B, ). Then

(ts)?
:“(B:c,-,%) > 210C, “1(Be;r)

and using ‘-’
( ) - (t9)3
Z'u Z"1{1 215'02-03.

el
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The set X = {x; : i € I} visits each of the cubes @); at most ones. Thus it may
be separated into 2¢ subsets each of which never visits neighboring Qj-s, and is
therefore ﬁ—separated. At least one of 2¢ such subsets X C X has

_ —d (ts)®
1( U Byyr) = Z M(Bm,%) > 2 ‘ZN(B%%) > 20415 Oy O

zeX zeX el
This completes the proof of the Proposition. O

7.B. Bootstrapping the concentration: proof of Proposition

We start with a few lemmas.

Lemma 7.6. Given € > 0 there is v > 0 and mg € N so that for n > m > mg
one can find a subset G C T'¢ so that for (g1,...,94) €G:

) | loile) - Ml<e (1<i<d 1<j<d)
(i) vol(6(g1),...,0(gq)) > e ™
(iii) vol(0(gt),...,0(g%)) > e ™

and such that for any Borel subset A C T one has
pn(A)? = e <NV (gr) - v (ga) - pnem(gr AN N gy A).
geg
Proof. By Theorem [4.3] for some p > 0 and sufficiently large m the set G, of
d-tuples § € I'? satisfying (i) has

(™) (Gren) > (1 — e ™),

The set Girans of sufficiently ”transversal” d-tuples § € I', namely ones satisfying
conditions (ii) and (iii), has (Lemma [4.6) mass

(V*m)d(gtrans) >1- ef(e/p)-m
Let G = Gien N Girans and let v > 0 be small enough so that
(V*m)d(g) > (1— e_p'm)d _ee/pm 5 gmym,
Given A C T? the function f(z) = > ger V" (g) - La(gz) on T? satisfies
f (@) dppn—m(x Z v"(g) - fn-m(g 1A) = pn(A).
T4 gel

By the convexity of ¢ — t¢ we deduce that

(A = (/ £ dptn m> /f @ bty ()

= (g1) - (ga) - pnem(gr TAN N gyt A)
gEFd

and the Lemma follows by restricting the summation to g € G. O
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Lemma 7.7. For any T1,...,Zq, Y1, ---,5q € P¥! one has

d
| vOl(Z1, - ., Zq) — vol(T, -, Ja)| € V2 dang (Zi,7:)
=1

Proof. Assuming x;, y; are unit vectors, we have

d
| vol(z1,...,2q) — vol(y1, ..., ya)| < Z|vol(z1,...,xi — Yiy - Yd)|
1=1

d d
< Z ||xl - yl” < \/5 ’ Zdang (jugl) :
=1 =1

O
Lemma 7.8. Given € > 0 there is mg(€) so that for m > mg and any g1,...,gq4 €
T with
1
—o0;(9) — Aj| <, j=1,2
’mgj (9) il <e (j )
vol(O(gih), ..., 0(g5)) > e ™
one has
Vv eR {0} : max lgsvl > e(A1=3¢)m
1<i<d o]
Proof. First let us estimate
_ ) — tr 1
6 = max dau (v, H(9:)) = max dag (6(57). 0" ).
If y; denote the projections of some unit vectors in z; = 6(gf*) to vt, then

vol(y1, - .., ¥a) = 0. Hence it follows from Lemma [7.7] that

d
\/5 . Z dang (.f'i, gjz) > VO](.CZ‘l, .. ,ii'd) >e ¢,

i=1
Thus § > ﬁ -e~¢™ which is larger than e~2¢™ for sufficiently large m. We have
||giUH 5. min ”ng > g 2em e(/\176)-m > e(/\1736)-m
1<i<d |jv|| T 1<i<d -
as claimed. O

Proof of Proposition[7.4 We fix a small 0 < § < §; with £y to be determined

later. Lemma provides a set G C I'? of d-tuples (g1,...,gq) and v > 0 so that
1 .
logoy(g) ~ Ml <6 (1<ij<d)

vol(0(g1), . ..,0(gq)) > e %*
vol(0(gih), ..., 0(g%)) > e~
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and for any A C T

pn(A) = e <" (gr) v (ga) - pm—e(gr TAN - N gt A).
geg
We apply this to the set A = Nbd,(X) = (J,cx Bz, of well separated small balls
on the torus, and fix a d-tuple (g1,...,94) € G with

(A — e < (gt AN nggtA)
= fin—e( U 9;1(811,p)m“'ﬂggl(Bmd,p))-

T1,...,LgE€EX

Consider the components Cy, 4, = g1 (Bsy,p) N+ N g7 (Byy,p), indexed by d-
tuples & = (x1,...,24) € X%, of the union in the right hand side. We shall show
that most of these components are empty; in fact, there are at most |X|-many
ones with Cz # (. We shall also show that these non-empty components are
r’-separated and have diameter less than p’. So choosing one point y from each
non-empty component Cz of gflAﬂ- . -ﬂg;lA, we obtain a set Y with the desired
properties.

Let & = (x1,...,24) and & = (2,...,2;) be two d-tuples from X, where Cz
and Cz are not empty, and assume that x1 = 2} = z. Then g 1(Bw,) intersects
both gj_l(Bm].’p) and gj_l(Bx;?p). Applying g; it follows that the set (g;9;')(Bz.p)
intersects the p-balls around points x;, x; € X, which yields:

|z — 2]l < 2p+lgjll - llgr I - p < (24 M1 TOEL (FAata)ty

By our choice of c3 = A1 — Ag + 1 it follows that [|z; — 2%|| < r and therefore
zj = 3:2 This consideration applies to all j =2,...,d. So = 7'.

Let us choose representatives y € Cz in non-empty components of g; An---n
gglA and form the set Y. We just showed that associating =1 to y € C, is
an injective map Y — X, so |Y]| < | X]|.

Let us show that Y is r’-separated. Let y € Cz and v € Cy and y # 3'. Then
z1 # 2} € X, while g1y € By, , and g1y € B:cll,p' Therefore

1yees%d

r<|llzy =210l < 20+ lloall - lly — ¢/l
Since p is much smaller than 7, and ||g;| < & - e®1F9 < M1+ we have
ly =o' > llgn] - (r = 2p) > e+ E =4

as claimed.

Let Cz be a non-empty component and y € Cz. We claim that Cz C B, .
Indeed, for any 2z € Cz and every i = 1,...,d both g;y and g;z are in B, ,, so that
ma Yy — g:iz|| < 2p.
max [lgiy — giz|l < 20
The above distances are measured on the torus. But they are so small that the
whole picture may safely be lifted to R%, and one might think of the vector v = y—z
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being such that
masx [lg:v]] < 2p.

1<i<d
By Lemma and the geometry of g1, ..., gq this implies that
ly — 2]l = [Jof| < emM 7302 < emBama b p = .

Therefore

g AN ngtAC By

yey
and
Pn—e( U By,p’) > fin( U Bx,p)d —e 7t

yey zeX

as required. [l

7.C. Rational approximation: proof of Proposition
We shall need the following technical lemma, which gives a sufficient condition for
a linear combination of d very proximal elements in SL4(R) to be invertible.

Lemma 7.9. Given g1,...,gq € SL4(R) and constants c1,...,cq let

o il
p= o, (o) 2% 4] I g

and let v = min(vy,va), where
v1 = V01(0(91)7 R e(gd»v V2 = VOI(Q(_g%r), s 70(93))
Assume that p < (20d*CL)~! - v3. Then the matriz h = Z;‘i:l cigi s invertible.

Proof. The idea is as follows: the transversality parameter vo > 0 provides a lower
bound on the largest angle between an arbitrary vector z and the hyperplanes
H(g;) of ”slow growth”. This lower bound and the proximality parameter p show
that any given vector z is stretched significantly by at least some of the maps
gi; in addition, for these maps g;Z is close to the axis 6(g;). The fact that these
directions are in sufficiently general position (controlled by v;), is used to show
that the longer among the images g;z do not to cancel each other, and cannot be
offset by the shorter images g;z either. The details follow.
Given a unit vector ||z|| = 1 reorder the g;-s so that

0t = dang (2, H(g1)) = dang (7*,0(51"))

decrease: a; > -+ > ay. Let § = 4dp/v and define k = max {1 <i<d : «a; > (}.
Denoting z; = ¢;g;z we shall prove that

(7.18) s+ - 4 apll > flepaal + - - + llzdl

thereby verifying that hz = 1+ -+ x4 # 0. Since z was an arbitrary unit vector
h is non-singular.
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Let ¢; denote the prOJectlon of (g{*) and to z+. Then vol(¥i,...,74) = 0 and
it follows from Lemma [7.7] that

gaz Zdang< 0(g! )) > %

Therefore, a1 > v/2d, which in turn is bigger than 8 = 4dp/v by the assumptions
on p. Hence we are guaranteed that k£ > 1. Using Lemma (3),for 1 <i<k
we have (with Z; denoting the unit vector in direction z;)

lzill = leil - |gill - au, dang (T, 0(gi)) <

SRS

Thus applying Lemma [7.7] to
t:VOI(jlw"ajk>e(gk'+l)7"'79(gd))7 and V01(0(91)7a0(gd)) >

gives

V2dp
t>v— T > 5
Since t < dang (T1,span(xa, ..., xy)) it follows that

2

At the same time, for k£ < ¢ < d one has

5dp
lill < leil - llgill - 1/ @F + p(g:)* < CL - |er] - ||91||

using oy < B = 4dp/v, ¢ < C’cl, llgill < L||g1||. Hence follows from the
assumption p < (20d2CL)~t - v3. O

Proof of Proposition[7.3. We set € = ’\11;0)‘2. Let v > 0 be the corresponding

constant from Lemma 7.6 and set 6 = m. The constant ¢4 is chosen so

4™ we have:

that for large m and p > e
(7.19) e M < p®

and

(7.20) edat2em o p_%.

Applying Lemma we obtain a set G C I'Y of d-tuples § = (g1, ..., gq) with

1 1
|—logllgill = Ml <& | —logoa(gi) — Aaf <o,
m m

vol(0(g1),...,6(g9q)) >e ™,
vol(0(g tr) ...,0(gf1r)) >e M,
and such that

Mn(Bz,p)d —e T <L Z V*m(gl) T V*m(gd) ) :Unfm(m g;l(Bz,p))'

geg =1
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The assumption p,(B,,,) > p? implies (7.19) that
pn(Bz ) > p® > e,

In particular, there exists a d-tuple (g1,...,94) € G with un_m(gfl(B@p) N---N
g;'(B.,)) > 0. In particular, there exists w € T¢ such that

{g1w, gow, ..., ggw} C B, .
Choose @, 7 € R? projecting to w, z € T¢. Then for some integer vectors @; € Z%
(7.21) lgiwd —a; — 2| < p (i=1,...,d).
Let cp =---=cq-1=1,cq=1—d, so that Y ¢; =0 and >_ |¢;| < 2d. Combining
the inequalities ([7.21)) with coefficients ¢; we get
|hi@ — b|| < 2dp

where h = Zle c;g; is an integer d X d matrix and b= E?:l c;@; is an integer
vector.
Our choice of € = % and the following properties of g1, ..., g4

eate)m |cil

“Oagm  max <2d < e, max lgill < eem
e=am ] 195

vol(0(g1),--.,0(gq)) > e ™, vol(8(gi"),...,0(g%)) >e ™,
imply that the assumptions of Lemma [7.9] are satisfied. Thus the integer matrix

h is invertible, and its determinant ¢ = det(h) is a non-zero integer; in particular

lgl > 1. Let k € Myx4(Z) be such that hk = ¢ - I, and set p = glkg e 7% We
have

max p(g;) <

)

(7.22) b

7=l < llguh ™| - |hd = Bl| + p < (1+2d|gall [B7H]) - p-

Let us estimate |g| and ||h Y| using |g:|| < e*1+9)™. For m > m(e) we may also
assume that p < e” %™,

d
IRl <> feil - llgill < 2detatom,

i=1
lal = | det(h)| < [[A]|* < (2de1¥) )T < p7i,
Since |g| > 1 we also have
1= = lal =" - [|k]| < [|k]| < constq - [|A]|*~Y,
and using we deduce that
1+ 2d||lg1]| - [|h Y| < constl, - (2de® 9™y < p=10.
Combining this estimate with gives
p

al-

9 L

Z—=| <po, gl <pi0

as claimed. O
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7.D. Final Bootstrap: proof of Proposition

Lemma 7.10.
Given €1, €3 > 0 there exist § > 0 and mg so that for m > mg any set G C I' with
V*"(G) > =™ contains a subset F C G with cardinality |F| > e*™, such that

|%logaj(g)—)\j|<61 (j=1,...,d, ge€F)
and every d-element subset {g1,...,g9q4} C F satisfies
vol(0(gi),...,0(g%)) > e 2™,
Proof. Let Gien = {g €T : |Loj(g) —\j| <e, (1<j<d)}. By Theorem
there exist N = N(e1) and ¢; > 0 so that for m > N the set
Gn = {7+ |- louos(a) = Nl < (=12}

has v*""(Gjen) > 1 — e~ ™. By Theorem given e > 0 there is ¢ > 0 so that
for any hyperplane H:
VMg €T ¢ dang (0(9"™),H) < e @} < e @™,

Let us take positive § < min(ey, ca/d). For such § and large m

(7.23) eTOm _emarm _ (fmyd=l gmeam o
Let G with v*™(G) > ¢>™ be given. We shall form the subset F C G by choosing
inductively elements from G’ = G N Gje, by induction. Suppose g1,...,g, are

already chosen. For the next element g, 1 we can choose any g € G’ for which the
axis 0(g"") makes angle of at least e~ with all hyperplanes of the form

0(gif) & - ®0(g )

where iy < -+ <ig_1 is a (d—1)-element subset of {1,...,n}. There are less than
n=1 such hyperplanes. It follows that

gy U o das (0™ 00D @ w0l ) < e
1<i1 < <ig—1<n
> efé-m _emcrm _ ndfl LeC2m

and in view of (7.23) the RHS is positive as long as n < [¢*™]. This allows to
construct the desired set F with at least 5™ elements. ]

Proof of Proposition[7.4).

Let 0 > 0 be associated to €; = ez = § in Lemma take w = §/2 and myg
be large enough. The basic relation

Mn(WQ,r) = Z V*m(g) ’ :unfm(g_l(WQ,r))
gel
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implies that the set
G~ {9+ ftnm (g7 Wo.) > pu(Wo) — )

has *™(G) > e7%™. Let F C G be a subset of size |F| > e*™ of well shaped
elements in general position provided by Lemma We shall consider the
possible intersections of the sets

WQT—Ugl xr (geF).
mGRQ

Note that the set Rg of centers of the r-balls which form W, is Q2-separated:
1 1
20
aq' — Q
Suppose that for z,y € Rg and g,h € F the ellipses ¢g71(B,,) and h~1(B,,)
have a common point, say w. We have |z — gw|| < 7, ||y — hw| < r, and

g7, 1Y < e(=Aater)m  Note also that —Ag < dA1, and we may assume that
2¢~(Aate)m o gdhim  Therefore

pay_ (B Pay

L >
q

b1
(;""’q k

|, dpr — ap} q'pa — apl;
- ( / AR / )
q-q q-q

lg™ e = hlyll < llg™ e —w] + lw— My
lg™ 1+ Nl = gl + A7 - lly = hawl]

A

< 2e(FAate)m . o pddim . L

@.
Since g~ 'z and A~y belong to the Q~2-separated set Rg, they coincide: =
hily =z € RQ.
This computation shows that for any d-element subset {g1, ..., g4} C F we have
d
—1
ﬂgi (WQT - U (ﬂgz 9137’>'
=1 ZERQ

The conditions on F show, using Lemma that for any d-element subset
{g1,...,94} C F and every v € R?

max ||giv]| 2 A ([P

1<i<

This implies that on the torus T¢:

ﬂ giil(BgiZaT) - Bz,e*(A1*5>'m-r
i=1

and therefore for any d-element subset {g1,...,94} C F we have

d
ﬂ 9 (W) CWg o-tu-crmay
=1
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Forg € Flet E, = _1(WQ7,«)\WQ’e_(Al_E).m.T. We just showed that the collection
{Ey | g € F} has no d-fold intersections. Thus

0> [ 30 15,@) dtnonle) = Y tinem(Ey),

geF geEF
Thus for at least one h € F C G one has

d
tn—m(Ep) < — < d- e 0m.

~ |7
Therefore:
anm(WQ,e—(M—e)m.T) = Hn-m (h_l(WQ,r)) — fn—m(Ep)
> pn(Wo,) —e o™ —d.e70m
> ,Un(WQ,r) —e ¥,
assuming m > mqg where mg is large enough. ([
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