Yosi and Me

Barry Simon
Mathematics and Theoretical Physics
California Institute of Technology Pasadena, CA, U.S.A.

Yosi and Me

I plan to focus on describing some of my joint work with Yosi. Between 1978 and 1994 we published 24 papers together:

Yosi and Me

I plan to focus on describing some of my joint work with Yosi. Between 1978 and 1994 we published 24 papers together:

- 8 on magnetic fields (6 together with Ira Herbst);

Yosi and Me

Miscellaneous
A Tale of Two Projections

I plan to focus on describing some of my joint work with Yosi. Between 1978 and 1994 we published 24 papers together:

■ 8 on magnetic fields (6 together with Ira Herbst);
■ 7 on almost periodic (and other ergodic) Schrödinger operators;

Yosi and Me

I plan to focus on describing some of my joint work with Yosi. Between 1978 and 1994 we published 24 papers together:

- 8 on magnetic fields (6 together with Ira Herbst);

■ 7 on almost periodic (and other ergodic) Schrödinger operators;
■ 6 on topological aspects of solid state physics;

Yosi and Me

I plan to focus on describing some of my joint work with Yosi. Between 1978 and 1994 we published 24 papers together:

- 8 on magnetic fields (6 together with Ira Herbst);

■ 7 on almost periodic (and other ergodic) Schrödinger operators;
■ 6 on topological aspects of solid state physics;

- 3 on miscellaneous subjects.

Yosi and Me

Overview
Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Working with Yosi was always a joy.

Yosi and Me

Working with Yosi was always a joy.
He had a wonderful intuition for the direction the physics suggested the mathematics should go.

Yosi and Me

Working with Yosi was always a joy.
He had a wonderful intuition for the direction the physics suggested the mathematics should go.
And his sunny disposition and pleasant personality added to the joy.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

The central part of my work with Yosi on magnetic fields is joint also with Ira Herbst. The rigorous study of magnetic quantum Hamiltonians has become a huge industry-so much so that Mittag-Leffler had a several-month program on the subject.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

The central part of my work with Yosi on magnetic fields is joint also with Ira Herbst. The rigorous study of magnetic quantum Hamiltonians has become a huge industry-so much so that Mittag-Leffler had a several-month program on the subject.
I think it fair to say that our papers are the founding documents of the field.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

The central part of my work with Yosi on magnetic fields is joint also with Ira Herbst. The rigorous study of magnetic quantum Hamiltonians has become a huge industry-so much so that Mittag-Leffler had a several-month program on the subject.
I think it fair to say that our papers are the founding documents of the field.

Prior to our work, virtually all of the mathematically centered work focussed on the self-adjointness question.

Magnetic Fields

I'll mainly discuss

Overview
Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
H(\vec{a}, V)=(-i \vec{\nabla}-\vec{a})^{2}+V
$$

Magnetic Fields

I'll mainly discuss

$$
H(\vec{a}, V)=(-i \vec{\nabla}-\vec{a})^{2}+V
$$

In connection with understanding Kato's work on what I named Kato's inequality, I first proved (for Bose statistics) that

Magnetic Fields

I'll mainly discuss

$$
H(\vec{a}, V)=(-i \vec{\nabla}-\vec{a})^{2}+V
$$

In connection with understanding Kato's work on what I named Kato's inequality, I first proved (for Bose statistics) that

$$
\inf \operatorname{spec}(H(\vec{a}, V)) \geq \inf \operatorname{spec}(H(\vec{a}=0, V))
$$

Magnetic Fields

I'll mainly discuss

$$
H(\vec{a}, V)=(-i \vec{\nabla}-\vec{a})^{2}+V
$$

In connection with understanding Kato's work on what I named Kato's inequality, I first proved (for Bose statistics) that

$$
\inf \operatorname{spec}(H(\vec{a}, V)) \geq \inf \operatorname{spec}(H(\vec{a}=0, V))
$$

This led me to conjecture and then prove, with an assist from Ed Nelson, that

$$
\left|e^{-t H(\vec{a}, V)} \varphi\right| \leq e^{-t H(\vec{a}=0, V)}|\varphi|
$$

something I named diamagnetic inequalities.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

No one in the mathematical physics community, including me, had thought to ask about the physics of magnetic fields-adding \vec{a} was an extra example thrown in along the way.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

No one in the mathematical physics community, including me, had thought to ask about the physics of magnetic fields-adding \vec{a} was an extra example thrown in along the way.

Yosi had the good sense to realize that the time was right to study this issue starting with the classical Zeeman effect in hydrogen.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

No one in the mathematical physics community, including me, had thought to ask about the physics of magnetic fields-adding \vec{a} was an extra example thrown in along the way.

Yosi had the good sense to realize that the time was right to study this issue starting with the classical Zeeman effect in hydrogen.
He first convinced Ira to join him and then involved me.

Aside on Electric Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

In this regard, it should be mentioned that before working on magnetic fields, Yosi and Ira (without me!) wrote a seminal paper on constant electric fields including the Stark effect.

Aside on Electric Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

In this regard, it should be mentioned that before working on magnetic fields, Yosi and Ira (without me!) wrote a seminal paper on constant electric fields including the Stark effect.
One lovely result is the Avron-Herbst formula,

$$
H_{o}=p^{2}+x_{1} \Rightarrow e^{-i t H_{0}}=e^{-i t x_{1}} e^{-i t p^{2}} e^{i t^{2} p_{1}} e^{-i t^{3} / 3}
$$

a formula with interesting physics built into it.

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic
Stuff
Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Here are our main results:
■ Divergence but Borel summability of perturbation series for Zeeman effect (see below);

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic
Stuff
Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Here are our main results:
■ Divergence but Borel summability of perturbation series for Zeeman effect (see below);
■ Large B asymptotic expansion for Zeeman Ground State (has some logs; 6 terms in all);

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Here are our main results:
■ Divergence but Borel summability of perturbation series for Zeeman effect (see below);

■ Large B asymptotic expansion for Zeeman Ground State (has some logs; 6 terms in all);
■ Ground State has $m=0$ (via FKG Inequalities; needs monotonicity of V) for Hydrogen Zeeman and some other models;

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Here are our main results:

- Divergence but Borel summability of perturbation series for Zeeman effect (see below);
■ Large B asymptotic expansion for Zeeman Ground State (has some logs; 6 terms in all);
■ Ground State has $m=0$ (via FKG Inequalities; needs monotonicity of V) for Hydrogen Zeeman and some other models;
- Reduction of Center of Mass (subtle because non-commuting total "momenta.")

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Enhanced small coupling binding (pseudo one-dimensional), e.g., $H e^{-}$in constant non-zero field has infinitely many bound states;

Magnetic Fields

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Enhanced small coupling binding (pseudo one-dimensional), e.g., $H e^{-}$in constant non-zero field has infinitely many bound states;
■ Magnetic Bottles, even in odd dimension

Magnetic Fields

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Enhanced small coupling binding (pseudo one-dimensional), e.g., $H e^{-}$in constant non-zero field has infinitely many bound states;
■ Magnetic Bottles, even in odd dimension
■ Conjecture (proved by Lieb) that for constant field for bosons, ground state of $H(a, V)+\vec{\sigma} \cdot \overrightarrow{B_{0}}$ goes down for $\overrightarrow{B_{0}} \neq 0$ compared to $B_{0}=0$.

Avron Solo(Large Orders for Zeeman)

Overview

Magnetic Fields
Almost Periodic
Stuff
Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Independently of our collaboration, Yosi obtained a Bender-Wu-type formula for the large order asymptotics of the perturbation coefficients.

Avron Solo(Large Orders for Zeeman)

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Independently of our collaboration, Yosi obtained a Bender-Wu-type formula for the large order asymptotics of the perturbation coefficients.
Like Bender-Wu (as made rigorous by Harrell-Simon), this relied on a formal tunneling calculation but in this case the tunneling is two-dimensional and so required an instanton calculation.

Avron Solo(Large Orders for Zeeman)

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Independently of our collaboration, Yosi obtained a Bender-Wu-type formula for the large order asymptotics of the perturbation coefficients.
Like Bender-Wu (as made rigorous by Harrell-Simon), this relied on a formal tunneling calculation but in this case the tunneling is two-dimensional and so required an instanton calculation.

This proof was not rigorous in Yosi's 1981 paper but was made rigorous by Helffer-Sjöstrand in 1985.

Paramagnetic Conjectures

Overview

Magnetic Fields

As we saw, my diamagnetic inequality says

$$
\inf \sigma(H(\vec{a}, V)) \geq \inf \sigma(H(0, V))
$$

Paramagnetic Conjectures

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

As we saw, my diamagnetic inequality says

$$
\inf \sigma(H(\vec{a}, V)) \geq \inf \sigma(H(0, V))
$$

For constant fields, Lieb proved the conjecture of AHS:

$$
\inf (\sigma(H(\vec{a}, V)+\vec{B} \cdot \vec{\sigma})) \leq \inf (\sigma(H(0, V))
$$

Paramagnetic Conjectures

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

As we saw, my diamagnetic inequality says

$$
\inf \sigma(H(\vec{a}, V)) \geq \inf \sigma(H(0, V))
$$

For constant fields, Lieb proved the conjecture of AHS:

$$
\inf (\sigma(H(\vec{a}, V)+\vec{B} \cdot \vec{\sigma})) \leq \inf (\sigma(H(0, V))
$$

The paramagnetic conjecture of Hogreve, Schrader, and Seiler says that this holds for non-constant fields.

Paramagnetic Conjectures

Overview

Magnetic Fields

Almost Periodic

 StuffTopological
Invariants
Miscellaneous
A Tale of Two
Projections

Yosi and I found a counterexample for this in 1979.

Paramagnetic Conjectures

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Yosi and I found a counterexample for this in 1979. The idea is the same as that behind the Bohm-Aharanov effect. If, due to an infinite V in the region where $B \neq 0$, the electron doesn't feel \vec{B} directly, it can still feel \vec{a}. But then $\langle\varphi, \vec{B} \cdot \vec{\sigma} \varphi\rangle=0$ so one can't have opposite inequalities.

Paramagnetic Conjectures

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Yosi and I found a counterexample for this in 1979.
The idea is the same as that behind the Bohm-Aharanov effect. If, due to an infinite V in the region where $B \neq 0$, the electron doesn't feel \vec{B} directly, it can still feel \vec{a}. But then $\langle\varphi, \vec{B} \cdot \vec{\sigma} \varphi\rangle=0$ so one can't have opposite inequalities.
A notable feature of the paper is the acknowledgment: "One of us (B.S.) would like to thank the Technion Physics Department for its hospitality and also the Egged bus company."

Paramagnetic Conjectures

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Yosi and I found a counterexample for this in 1979.
The idea is the same as that behind the Bohm-Aharanov effect. If, due to an infinite V in the region where $B \neq 0$, the electron doesn't feel \vec{B} directly, it can still feel \vec{a}. But then $\langle\varphi, \vec{B} \cdot \vec{\sigma} \varphi\rangle=0$ so one can't have opposite inequalities.
A notable feature of the paper is the acknowledgment: "One of us (B.S.) would like to thank the Technion Physics Department for its hospitality and also the Egged bus company."
There is a story behind that.

Almost Periodic Jacob and Schrödinger Operators

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

In 1980-1981, I visited Caltech and Yosi, an Assistant Professor at Princeton, came with me. We needed to decide between two possible subjects that I thought might be ripe: The Quasiclassical Limit and Almost Periodic Schrödinger Operators.

Almost Periodic Jacob and Schrödinger Operators

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

In 1980-1981, I visited Caltech and Yosi, an Assistant Professor at Princeton, came with me. We needed to decide between two possible subjects that I thought might be ripe: The Quasiclassical Limit and Almost Periodic Schrödinger Operators.
We decided there wasn't that much in the second subject so we'd finish it off in six months and then turn to the quasiclassical limit.

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Were we wrong! Thirty years later, I'm still thinking about the subject of almost periodic operators and never did get to the quasiclassical limit. So instead we wrote the founding documents of another industry, so much so that the Newton Institute will have a special term on it in the first half of 2015.

Almost Periodic Stuff

Were we wrong! Thirty years later, I'm still thinking about the subject of almost periodic operators and never did get to the quasiclassical limit. So instead we wrote the founding documents of another industry, so much so that the Newton Institute will have a special term on it in the first half of 2015.

The subject was certainly "in the air." Shortly before us Moser and Johnson, first separately, but then jointly, looked at some of the subjects we did.

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Shortly afterwards Kisch and Martinelli recovered some of our results, and there was work of Bellissard and others, using C^{*}-algebra ideas.

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Shortly afterwards Kisch and Martinelli recovered some of our results, and there was work of Bellissard and others, using C^{*}-algebra ideas.
The theoretical physics community was also focusing on some of the same issues, notably Thouless, a group around Kadanoff and Dick Prange with two of his postdocs: Fishman and Grempel.

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

Shortly afterwards Kisch and Martinelli recovered some of our results, and there was work of Bellissard and others, using C^{*}-algebra ideas.
The theoretical physics community was also focusing on some of the same issues, notably Thouless, a group around Kadanoff and Dick Prange with two of his postdocs:
Fishman and Grempel.
Johnson-Moser used ODE methods. Yosi and I focused on functional analytic methods. Here are some of our results:

Almost Periodic Stuff

■ Transient vs. recurrent a.c. spectrum;

Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

- a.c. spectrum for a dense set of limit periodic potentials and some examples of recurrent a.c. spectrum;

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

- a.c. spectrum for a dense set of limit periodic potentials and some examples of recurrent a.c. spectrum;
■ Existence of IDS and Lyapunov exponent;

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

- a.c. spectrum for a dense set of limit periodic potentials and some examples of recurrent a.c. spectrum;
■ Existence of IDS and Lyapunov exponent;
- Thouless formula (rigorous proof);

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

- a.c. spectrum for a dense set of limit periodic potentials and some examples of recurrent a.c. spectrum;
■ Existence of IDS and Lyapunov exponent;
- Thouless formula (rigorous proof);
- Theory of Rings of Saturn

Almost Periodic Stuff

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ Transient vs. recurrent a.c. spectrum;
■ Generic Cantor spectrum for limit periodic potentials;

- a.c. spectrum for a dense set of limit periodic potentials and some examples of recurrent a.c. spectrum;
■ Existence of IDS and Lyapunov exponent;
- Thouless formula (rigorous proof);
- Theory of Rings of Saturn which nature rudely rejected.

Almost Matthieu Operator

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ We named

$$
(h u)(n)=u(n+1)+u(n-1)+\lambda \cos (\pi \alpha n+\theta) u(n)
$$

the almost Matthieu operator, a name that has stuck despite the competing name, Harper's equation.

Almost Matthieu Operator

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ We named

$$
(h u)(n)=u(n+1)+u(n-1)+\lambda \cos (\pi \alpha n+\theta) u(n)
$$

the almost Matthieu operator, a name that has stuck despite the competing name, Harper's equation.

- We provided a proof of Aubry duality (motivating Herman's more general result).

Almost Matthieu Operator

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two
Projections

■ We named

$$
(h u)(n)=u(n+1)+u(n-1)+\lambda \cos (\pi \alpha n+\theta) u(n)
$$

the almost Matthieu operator, a name that has stuck despite the competing name, Harper's equation.
■ We provided a proof of Aubry duality (motivating Herman's more general result).
■ First a.p. models with singular continuous spectrum (Diophantine vs. Liouville frequencies).

Almost Matthieu Operator

■ Eight years later Yosi and I and a visitor at Caltech named van Mouche reexamined the almost Matthieu operator.

Almost Matthieu Operator

■ Eight years later Yosi and I and a visitor at Caltech named van Mouche reexamined the almost Matthieu operator.

- We tried to prove a conjecture of Aubry-André that for α irrational

$$
|\operatorname{spec}(H(\alpha, \lambda, \theta))|=|4-2 \lambda|
$$

Almost Matthieu Operator

■ Eight years later Yosi and I and a visitor at Caltech named van Mouche reexamined the almost Matthieu operator.

- We tried to prove a conjecture of Aubry-André that for α irrational

$$
|\operatorname{spec}(H(\alpha, \lambda, \theta))|=|4-2 \lambda|
$$

■ We obtained results on the case of irrational α, that proved as $\frac{p}{q} \rightarrow \alpha,\left|\cup \operatorname{spec}\left(\mathrm{H}\left(\frac{\mathrm{p}}{\mathrm{q}}, \lambda, \theta\right)\right)\right| \rightarrow|4-2 \lambda|$

Almost Matthieu Operator

■ Eight years later Yosi and I and a visitor at Caltech named van Mouche reexamined the almost Matthieu operator.

- We tried to prove a conjecture of Aubry-André that for α irrational

$$
|\operatorname{spec}(H(\alpha, \lambda, \theta))|=|4-2 \lambda|
$$

■ We obtained results on the case of irrational α, that proved as $\frac{p}{q} \rightarrow \alpha,\left|\cup \operatorname{spec}\left(\mathrm{H}\left(\frac{\mathrm{p}}{\mathrm{q}}, \lambda, \theta\right)\right)\right| \rightarrow|4-2 \lambda|$

- Our method has since been used extensively in related problems by others; in particular in Last's proof of the Aubry-André conjecture for most irrational α.

Almost Matthieu Operator

■ Eight years later Yosi and I and a visitor at Caltech named van Mouche reexamined the almost Matthieu operator.

- We tried to prove a conjecture of Aubry-André that for α irrational

$$
|\operatorname{spec}(H(\alpha, \lambda, \theta))|=|4-2 \lambda|
$$

- We obtained results on the case of irrational α, that proved as $\frac{p}{q} \rightarrow \alpha,\left|\cup \operatorname{spec}\left(\mathrm{H}\left(\frac{\mathrm{p}}{\mathrm{q}}, \lambda, \theta\right)\right)\right| \rightarrow|4-2 \lambda|$
- Our method has since been used extensively in related problems by others; in particular in Last's proof of the Aubry-André conjecture for most irrational α.

I would be remiss in leaving the subject of the almost Matthieu equation without mentioning the progress of Avila, Jitomirskaya, and Last (ten Martini problem).

Topological Invariants

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In the period since 1980, it has become clear that various topological invariants and geometric structures play important roles in solid state physics as illustrated by buzz words:

Topological Invariants

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In the period since 1980, it has become clear that various topological invariants and geometric structures play important roles in solid state physics as illustrated by buzz words:
Integer Quantum Hall Effect, TKNN integers, Chern Classes, Berry's Phase

Topological Invariants

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In the period since 1980, it has become clear that various topological invariants and geometric structures play important roles in solid state physics as illustrated by buzz words:
Integer Quantum Hall Effect, TKNN integers, Chern Classes, Berry's Phase
Geometry in physics has been a constant theme in Yosi's work, not only in the joint work we did from 1983 to 1994 but also since then.

Topological Invariants

Our work was in three parts, each one with a PRL paper.

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

Topological Invariants

Our work was in three parts, each one with a PRL paper.
■ (with Ruedi Seiler) Homotopy groups of the set of positive, compact, self-adjoint operators with all simple eigenvalues (and its connection to TKNN integers);

Topological Invariants

Our work was in three parts, each one with a PRL paper.
■ (with Ruedi Seiler) Homotopy groups of the set of positive, compact, self-adjoint operators with all simple eigenvalues (and its connection to TKNN integers);

- (with Lorenzo Sadun and Jan Segert) Berry's Phase for Fermions;

Topological Invariants

Our work was in three parts, each one with a PRL paper.

Magnetic Fields

■ (with Ruedi Seiler) Homotopy groups of the set of positive, compact, self-adjoint operators with all simple eigenvalues (and its connection to TKNN integers);

- (with Lorenzo Sadun and Jan Segert) Berry's Phase for Fermions;
- (with Ruedi Seiler again) The index of a pair of projections reconciling the Chern class (TKNN) and the noncommutative differential geometry (ConnesBellissard) views of the quantum Hall effect.

Topological Invariants

Our work was in three parts, each one with a PRL paper.

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

■ (with Ruedi Seiler) Homotopy groups of the set of positive, compact, self-adjoint operators with all simple eigenvalues (and its connection to TKNN integers);

- (with Lorenzo Sadun and Jan Segert) Berry's Phase for Fermions;
- (with Ruedi Seiler again) The index of a pair of projections reconciling the Chern class (TKNN) and the noncommutative differential geometry (ConnesBellissard) views of the quantum Hall effect.

For the first we promised, but never produced, a longer paper.

TKNN Integers

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In trying to understand the integer quantum Hall effect, Thouless, Kohmoto, Nightingale, and den Nijs were able to compute the conductance due to a single non-degenerate band to a constant times an integer, which we called TKNN integers (Avron-Seiler-Simon-1983).

TKNN Integers

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In trying to understand the integer quantum Hall effect, Thouless, Kohmoto, Nightingale, and den Nijs were able to compute the conductance due to a single non-degenerate band to a constant times an integer, which we called TKNN integers (Avron-Seiler-Simon-1983).
They had essentially rediscovered the Chern class.

TKNN Integers

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In trying to understand the integer quantum Hall effect, Thouless, Kohmoto, Nightingale, and den Nijs were able to compute the conductance due to a single non-degenerate band to a constant times an integer, which we called TKNN integers (Avron-Seiler-Simon-1983).
They had essentially rediscovered the Chern class.
Our paper includes an explicit formula that Yosi loved writing down:

$$
n_{j}=\frac{i}{2 \pi} \int \operatorname{Tr}\left(\left(d P_{j}\right) P_{j}\left(d P_{j}\right)\right)
$$

where $P_{j}(k)$ is the projection onto the j th base function at k and n_{j} is the TKNN integer.

TKNN Integers

We also:
Overview
Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

TKNN Integers

We also:

Overview

Magnetic Fields
Almost Periodic
Stuff
Topological Invariants

Miscellaneous
A Tale of Two
Projections

- proved that the TKNN integers were the only topological invariants for this situation even if k-space is higher dimensional;

TKNN Integers

We also:

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

- proved that the TKNN integers were the only topological invariants for this situation even if k-space is higher dimensional;
- proved that if another parameter is varied so that two bands collide as the parameter is varied, then the sum of their TKNN integers is preserved.

TKNN Integers

We also:

Overview
Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

- proved that the TKNN integers were the only topological invariants for this situation even if k-space is higher dimensional;
- proved that if another parameter is varied so that two bands collide as the parameter is varied, then the sum of their TKNN integers is preserved.

In the proof, we needed to compute the homotopy groups of the set of compact self-adjoint operators with non-degenerate eigenvalues.

TKNN Integers

We also:

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

- proved that the TKNN integers were the only topological invariants for this situation even if k-space is higher dimensional;
- proved that if another parameter is varied so that two bands collide as the parameter is varied, then the sum of their TKNN integers is preserved.

In the proof, we needed to compute the homotopy groups of the set of compact self-adjoint operators with non-degenerate eigenvalues.
We did this with the exact sequence of a fibration. There is an interesting story behind our use of this tool.

Berry's Phase for Fermions

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1988, Yosi and I, with Sadun and Segert, considered the following. It was common wisdom that Berry's phase and TKNN integers were trivial in systems with time-reversal invariance because the Hamiltonians could be made simultaneous real.

Berry's Phase for Fermions

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1988, Yosi and I, with Sadun and Segert, considered the following. It was common wisdom that Berry's phase and TKNN integers were trivial in systems with time-reversal invariance because the Hamiltonians could be made simultaneous real.

This is true for bosons but not for fermions. For bosons, time reversal, T, is an antilinear map with $T^{2}=1$, so a complex conjugation.

Berry's Phase for Fermions

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1988, Yosi and I, with Sadun and Segert, considered the following. It was common wisdom that Berry's phase and TKNN integers were trivial in systems with time-reversal invariance because the Hamiltonians could be made simultaneous real.
This is true for bosons but not for fermions. For bosons, time reversal, T, is an antilinear map with $T^{2}=1$, so a complex conjugation.
But for fermions, $T^{2}=-1$, so such systems have a quaternionic structure and there will be, in general, a nontrivial Berry and TKNN structure.

Berry's Phase for Fermions

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

We found a number of abstract results, for example, if $M_{n}(\mathbb{C})$ is the $n \times n$ complex Hermitian matrices with simple eigenvalues, the only non-trivial homotopy group is $\pi_{2}\left(M_{n}(\mathbb{C})\right)=\mathbb{Z}^{n-1}$, corresponding to $n-1$ TKNN integers. For quaternion \mathbb{H}, the only low-dimensional nontrivial π is $\pi_{4}\left(M_{n}(\mathbb{H})\right)=\mathbb{Z}^{n-1}$.

Berry's Phase for Fermions

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

We found a number of abstract results, for example, if $M_{n}(\mathbb{C})$ is the $n \times n$ complex Hermitian matrices with simple eigenvalues, the only non-trivial homotopy group is $\pi_{2}\left(M_{n}(\mathbb{C})\right)=\mathbb{Z}^{n-1}$, corresponding to $n-1$ TKNN integers. For quaternion \mathbb{H}, the only low-dimensional nontrivial π is $\pi_{4}\left(M_{n}(\mathbb{H})\right)=\mathbb{Z}^{n-1}$.
We also did a rather complete analysis of spin $3 / 2$ in a quadruple field, a beautiful and subtle model with $\mathrm{SO}(5)$ symmetry.

Yosi, the Zen Master

This paper hasn't gotten much attention, although in the past ten years its results have been rediscovered in the physics literature several times by those ignorant of our paper.

Yosi, the Zen Master

This paper hasn't gotten much attention, although in the past ten years its results have been rediscovered in the physics literature several times by those ignorant of our paper.
It is probably best known for its Abstract, yes-its Abstract.

Yosi, the Zen Master

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

This paper hasn't gotten much attention, although in the past ten years its results have been rediscovered in the physics literature several times by those ignorant of our paper.
It is probably best known for its Abstract, yes-its Abstract.
For example, recently, Maxim Raginsky, a computer scientist on his blog in a piece entitled "Abstract Snark," called it "almost Zen in its simplicity and perfection." The abstract in full.

Yosi, the Zen Master

This paper hasn't gotten much attention, although in the past ten years its results have been rediscovered in the physics literature several times by those ignorant of our paper.
It is probably best known for its Abstract, yes-its Abstract.
For example, recently, Maxim Raginsky, a computer scientist on his blog in a piece entitled "Abstract Snark," called it "almost Zen in its simplicity and perfection." The abstract in full.
Abstract: Yes, but some parts are reasonably concrete.

Yosi, the Zen Master

This paper hasn't gotten much attention, although in the past ten years its results have been rediscovered in the physics literature several times by those ignorant of our paper.
It is probably best known for its Abstract, yes-its Abstract.
For example, recently, Maxim Raginsky, a computer scientist on his blog in a piece entitled "Abstract Snark," called it "almost Zen in its simplicity and perfection." The abstract in full.
Abstract: Yes, but some parts are reasonably concrete.
There is even a story on how we got it included.

The Relative Index for Projections

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1990 (papers in 1994), Yosi, Ruedi Seiler, and I announced some results about pairs of orthogonal projections, P and Q, on a Hilbert space when $P-Q$ is compact.

The Relative Index for Projections

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1990 (papers in 1994), Yosi, Ruedi Seiler, and I announced some results about pairs of orthogonal projections, P and Q, on a Hilbert space when $P-Q$ is compact.
We used this to contrast the TKNN theory of the quantum Hall effect and an approach of Bellissard.

The Relative Index for Projections

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two
Projections

In 1990 (papers in 1994), Yosi, Ruedi Seiler, and I announced some results about pairs of orthogonal projections, P and Q, on a Hilbert space when $P-Q$ is compact.
We used this to contrast the TKNN theory of the quantum Hall effect and an approach of Bellissard.
If there is time, I'll say more about the pairs of projections soon.

Miscellaneous

Three papers don't fit the earlier categories:

Miscellaneous

Three papers don't fit the earlier categories:

- Our first joint paper (1977) studied analytic continuation of the band functions of periodic potentials in higher dimension. The one-dimensional case had been studied by Walter Kohn using ODE methods (and we also extended his work).

Miscellaneous

Three papers don't fit the earlier categories:

- Our first joint paper (1977) studied analytic continuation of the band functions of periodic potentials in higher dimension. The one-dimensional case had been studied by Walter Kohn using ODE methods (and we also extended his work).
■ A "homework problem" of Evans Harrell. He had studied asymptotics of the gaps in the spectrum of

$$
-\frac{d^{2}}{d x^{2}}+2 \kappa \cos (2 x)
$$

where his formula had a constant involving integrals of Airy functions, and he asked what the constant value was. We found a new approach to the problem-a cute argument that led to a direct calculation of the constant.

Miscellaneous

Overview

Magnetic Fields
Almost Periodic
Stuff
Topological
Invariants
Miscellaneous
■ A joint paper with Jim Howland involving a long-time love of Yosi's-the adiabatic theorem-where he is a world expert. We studied adiabatic perturbations for certain cases of dense point spectrum.

A Tale of Two Projections

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Let me give some details of the proof of one of our results (in the paper with Ruedi Seiler in J. Func. Anal.):

A Tale of Two Projections

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Let me give some details of the proof of one of our results (in the paper with Ruedi Seiler in J. Func. Anal.):
If P and Q are two orthogonal projections so that $P-Q$ is trace class, then $\operatorname{Tr}(P-Q)$ is an integer.

A Tale of Two Projections

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Let me give some details of the proof of one of our results (in the paper with Ruedi Seiler in J. Func. Anal.):
If P and Q are two orthogonal projections so that $P-Q$ is trace class, then $\operatorname{Tr}(P-Q)$ is an integer.
Ed Effros seems to be the first to prove this. He used other methods.

Supersymmetry

Following Kato, we define

Overview
Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
A=P-Q, \quad B=1-P-Q
$$

Supersymmetry

Following Kato, we define

$$
A=P-Q, \quad B=1-P-Q
$$

Kato noted that

$$
A^{2}+B^{2}=1
$$

Supersymmetry

Following Kato, we define

$$
A=P-Q, \quad B=1-P-Q
$$

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

$$
A^{2}+B^{2}=1
$$

We added the supersymmetry

$$
A B+B A=0
$$

Supersymmetry

Following Kato, we define

$$
A=P-Q, \quad B=1-P-Q
$$

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
A^{2}+B^{2}=1
$$

We added the supersymmetry

$$
A B+B A=0
$$

After our preprint appeared, Kato sent us an unpublished technical report with this formula, but he didn't use it for anything.

Supersymmetry

Let $\mathcal{H}_{\lambda}=\{\varphi \mid \mathcal{A} \varphi=\lambda \varphi\}, \quad d_{\lambda}=\operatorname{dim}\left(\mathcal{H}_{\lambda}\right)$ so by Lidskii's Theorem, if A is trace class

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
\operatorname{Tr}(P-Q)=\sum_{\lambda} \lambda d_{\lambda}
$$

Supersymmetry

Let $\mathcal{H}_{\lambda}=\{\varphi \mid \mathcal{A} \varphi=\lambda \varphi\}, \quad d_{\lambda}=\operatorname{dim}\left(\mathcal{H}_{\lambda}\right)$ so by Lidskii's Theorem, if A is trace class

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
\operatorname{Tr}(P-Q)=\sum_{\lambda} \lambda d_{\lambda}
$$

By the supersymmetry, if $\varphi \in \mathcal{H}_{\lambda}$, then

$$
A\left(B \varphi_{\lambda}\right)=-B\left(A \varphi_{\lambda}\right)=-\lambda B \varphi_{\lambda}
$$

so $B \varphi_{\lambda} \in \mathcal{H}_{-\lambda}$. Moreover, since

Supersymmetry

Let $\mathcal{H}_{\lambda}=\{\varphi \mid \mathcal{A} \varphi=\lambda \varphi\}, \quad d_{\lambda}=\operatorname{dim}\left(\mathcal{H}_{\lambda}\right)$
so by Lidskii's Theorem, if A is trace class

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

$$
\operatorname{Tr}(P-Q)=\sum_{\lambda} \lambda d_{\lambda}
$$

By the supersymmetry, if $\varphi \in \mathcal{H}_{\lambda}$, then

$$
A\left(B \varphi_{\lambda}\right)=-B\left(A \varphi_{\lambda}\right)=-\lambda B \varphi_{\lambda}
$$

so $B \varphi_{\lambda} \in \mathcal{H}_{-\lambda}$. Moreover, since
$B^{2}+A^{2}=1,\left(1-\lambda^{2}\right)^{-1} B$ is an inverse for $B \upharpoonright \mathcal{H}_{\lambda}$ if
$|\lambda|<1$. Thus $|\lambda|<1 \Rightarrow d_{-\lambda}=d_{\lambda}$ so

Supersymmetry

Let $\mathcal{H}_{\lambda}=\{\varphi \mid \mathcal{A} \varphi=\lambda \varphi\}, \quad d_{\lambda}=\operatorname{dim}\left(\mathcal{H}_{\lambda}\right)$
so by Lidskii's Theorem, if A is trace class

$$
\operatorname{Tr}(P-Q)=\sum_{\lambda} \lambda d_{\lambda}
$$

By the supersymmetry, if $\varphi \in \mathcal{H}_{\lambda}$, then

$$
A\left(B \varphi_{\lambda}\right)=-B\left(A \varphi_{\lambda}\right)=-\lambda B \varphi_{\lambda}
$$

so $B \varphi_{\lambda} \in \mathcal{H}_{-\lambda}$. Moreover, since
$B^{2}+A^{2}=1,\left(1-\lambda^{2}\right)^{-1} B$ is an inverse for $B \upharpoonright \mathcal{H}_{\lambda}$ if $|\lambda|<1$. Thus $|\lambda|<1 \Rightarrow d_{-\lambda}=d_{\lambda}$ so

$$
\operatorname{Tr}(P-Q)=d_{1}-d_{-1} \in \mathbb{Z}
$$

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

To illustrate the depth of a simple pair of projections, I want to discuss a lovely result of Landau-Pollak, well known in the "signal community," but which I only recently learned about.

Landau-Pollak Uncertainty Principle

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

To illustrate the depth of a simple pair of projections, I want to discuss a lovely result of Landau-Pollak, well known in the "signal community," but which I only recently learned about. Even though it dates to 1961 , when Yosi and I were kids, I'm hoping it is also new to him and that I can present this as a birthday bouquet.
Here is their result:

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

THEOREM: Let P and Q be two orthogonal projections on a Hilbert space and $\varphi \in \mathcal{H}$ with $\|\varphi\|=1$. Then

$$
\arccos (\|P \varphi\|)+\arccos (\|Q \varphi\|) \geq \arccos (\|P Q\|)
$$

Landau-Pollak Uncertainty Principle

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

THEOREM: Let P and Q be two orthogonal projections on a Hilbert space and $\varphi \in \mathcal{H}$ with $\|\varphi\|=1$. Then

$$
\arccos (\|P \varphi\|)+\arccos (\|Q \varphi\|) \geq \arccos (\|P Q\|)
$$

Moreover, if $\operatorname{Ran} P+\operatorname{Ran} Q$ is not dense in \mathcal{H}, for any α, β with $\alpha+\beta>\arccos (\|P Q\|)$, there is φ with $\arccos (\|P \varphi\|)=\alpha, \arccos (\|Q \varphi\|)=\beta$. If $P Q$ is compact, one can also take α, β with $\alpha+\beta=\arccos (\|P Q\|)$.

Landau-Pollak Uncertainty Principle

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

THEOREM: Let P and Q be two orthogonal projections on a Hilbert space and $\varphi \in \mathcal{H}$ with $\|\varphi\|=1$. Then

$$
\arccos (\|P \varphi\|)+\arccos (\|Q \varphi\|) \geq \arccos (\|P Q\|)
$$

Moreover, if $\operatorname{Ran} P+\operatorname{Ran} Q$ is not dense in \mathcal{H}, for any α, β with $\alpha+\beta>\arccos (\|P Q\|)$, there is φ with $\arccos (\|P \varphi\|)=\alpha, \arccos (\|Q \varphi\|)=\beta$. If $P Q$ is compact, one can also take α, β with $\alpha+\beta=\arccos (\|P Q\|)$.
Below, I'll prove the inequality leaving the best possible "moreover" result to the listener.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

Why is it called an uncertainty principle?

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Why is it called an uncertainty principle? If P is multiplication by $\chi_{(-a, a)}$ in x-space and Q by $\chi_{(-b, b)}$ in p-space, and if $a b$ is small, $\|P Q\|$ is close to zero, so $\arccos (\|P Q\|)$ is close to $\pi / 2$.

Landau-Pollak Uncertainty Principle

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

Why is it called an uncertainty principle? If P is multiplication by $\chi_{(-a, a)}$ in x-space and Q by $\chi_{(-b, b)}$ in p-space, and if $a b$ is small, $\|P Q\|$ is close to zero, so $\arccos (\|P Q\|)$ is close to $\pi / 2$. Since $\arccos (1)=0$, it cannot be that both $\|P \varphi\|$ and $\|Q \varphi\|$ are near 1.

Landau-Pollak Uncertainty Principle

Miscellaneous
A Tale of Two Projections

Why is it called an uncertainty principle? If P is multiplication by $\chi_{(-a, a)}$ in x-space and Q by $\chi_{(-b, b)}$ in p-space, and if $a b$ is small, $\|P Q\|$ is close to zero, so $\arccos (\|P Q\|)$ is close to $\pi / 2$. Since $\arccos (1)=0$, it cannot be that both $\|P \varphi\|$ and $\|Q \varphi\|$ are near 1 . This gives useful information even if $\left\langle x^{2}\right\rangle$ or $\left\langle p^{2}\right\rangle$ is infinite.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

The proof of Landau-Pollak is algebraic and less than transparent. I found a lovely (he said modestly) geometric proof which it turns out is already hinted at in a 1997 review article (on the uncertainty principle) of Folland-Sitaram.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

The proof of Landau-Pollak is algebraic and less than transparent. I found a lovely (he said modestly) geometric proof which it turns out is already hinted at in a 1997 review article (on the uncertainty principle) of Folland-Sitaram. The key is to figure out what angle $\arccos (\|P \varphi\|)$ is.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

The proof of Landau-Pollak is algebraic and less than transparent. I found a lovely (he said modestly) geometric proof which it turns out is already hinted at in a 1997 review article (on the uncertainty principle) of Folland-Sitaram. The key is to figure out what angle $\arccos (\|P \varphi\|)$ is. Since $\langle\varphi, P \varphi\rangle=\langle P \varphi, P \varphi\rangle=\|P \varphi\|^{2}$, we have that

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

The proof of Landau-Pollak is algebraic and less than transparent. I found a lovely (he said modestly) geometric proof which it turns out is already hinted at in a 1997 review article (on the uncertainty principle) of Folland-Sitaram. The key is to figure out what angle $\arccos (\|P \varphi\|)$ is.
Since $\langle\varphi, P \varphi\rangle=\langle P \varphi, P \varphi\rangle=\|P \varphi\|^{2}$, we have that

$$
\|P \varphi\|=\langle\varphi, P \varphi\rangle /[\|\varphi\|\|P \varphi\|]
$$

is the cos of the angle between φ and $P \varphi$.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

In \mathbb{R}^{2}, if v, w, z are three vectors on one side of a line, then, if $\operatorname{ang}(v, w)$ is the angle between v and w,

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

In \mathbb{R}^{2}, if v, w, z are three vectors on one side of a line, then, if $\operatorname{ang}(v, w)$ is the angle between v and w,

$$
\operatorname{ang}(v, w) \leq \operatorname{ang}(v, z)+\operatorname{ang}(w, z)
$$

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

In \mathbb{R}^{2}, if v, w, z are three vectors on one side of a line, then, if $\operatorname{ang}(v, w)$ is the angle between v and w,

$$
\operatorname{ang}(v, w) \leq \operatorname{ang}(v, z)+\operatorname{ang}(w, z)
$$

for one has equality if z is "between" v and w and strict inequality if not.

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

In \mathbb{R}^{2}, if v, w, z are three vectors on one side of a line, then, if $\operatorname{ang}(v, w)$ is the angle between v and w,

$$
\operatorname{ang}(v, w) \leq \operatorname{ang}(v, z)+\operatorname{ang}(w, z)
$$

for one has equality if z is "between" v and w and strict inequality if not.
Moreover,

$$
\frac{|\langle P \varphi, Q \varphi\rangle|}{\|P \varphi\|\|Q \varphi\|} \leq\|P Q\|
$$

so

$$
\operatorname{ang}(P \varphi, Q \varphi) \geq \arccos (\|P Q\|)
$$

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

This proves the Landau-Pollak inequality if $\varphi, P \varphi, Q \varphi$ lie in \mathbb{R}^{2} as a real Hilbert space (they all lie on one side of $\{\varphi\}^{\perp}$).

Landau-Pollak Uncertainty Principle

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

This proves the Landau-Pollak inequality if $\varphi, P \varphi, Q \varphi$ lie in \mathbb{R}^{2} as a real Hilbert space (they all lie on one side of $\{\varphi\}^{\perp}$).
Projecting onto the plane spanned by $P \varphi$ and $Q \varphi$, this proves the result in any real Hilbert space.

Landau-Pollak Uncertainty Principle

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

This proves the Landau-Pollak inequality if $\varphi, P \varphi, Q \varphi$ lie in \mathbb{R}^{2} as a real Hilbert space (they all lie on one side of $\{\varphi\}^{\perp}$).
Projecting onto the plane spanned by $P \varphi$ and $Q \varphi$, this proves the result in any real Hilbert space.
In a complex Hilbert space, one does everything for $\langle\cdot, \cdot\rangle_{r}=\operatorname{Re}\langle\cdot, \cdot\rangle$ and gets the general result.

Landau-Widom

Overview

Magnetic Fields
Almost Periodic Stuff

Topological Invariants

Miscellaneous
A Tale of Two Projections

One final result I'd like to mention. As a follow-up to the earlier work by Landau, Pollak, and Slepian, Landau and Widom proved a wonderful result for the case of $P=\chi_{(-a, a)}$ in x-space and $Q=\chi_{(-b, b)}$ in k-space.

Landau-Widom

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

One final result I'd like to mention. As a follow-up to the earlier work by Landau, Pollak, and Slepian, Landau and Widom proved a wonderful result for the case of $P=\chi_{(-a, a)}$ in x-space and $Q=\chi_{(-b, b)}$ in k-space.
The eigenvalues of $K_{c}=P_{a} Q_{b} P_{a}$ only depend on $c=4 a b$ and the phase space volume is c. IF $N\left(\alpha<K_{c}<\beta\right)$ is the number of eigenvalues of K_{c} between α and β, they prove (quasiclassical limit as $c \rightarrow \infty$) that for all $\alpha>0$,

Landau-Widom

Overview

Magnetic Fields
Almost Periodic Stuff

Topological
Invariants
Miscellaneous
A Tale of Two Projections

One final result I'd like to mention. As a follow-up to the earlier work by Landau, Pollak, and Slepian, Landau and Widom proved a wonderful result for the case of $P=\chi_{(-a, a)}$ in x-space and $Q=\chi_{(-b, b)}$ in k-space.
The eigenvalues of $K_{c}=P_{a} Q_{b} P_{a}$ only depend on $c=4 a b$ and the phase space volume is c. IF $N\left(\alpha<K_{c}<\beta\right)$ is the number of eigenvalues of K_{c} between α and β, they prove (quasiclassical limit as $c \rightarrow \infty$) that for all $\alpha>0$,

$$
\begin{gathered}
N\left(K_{c}>1-\alpha\right)=\frac{c}{2 \pi}+O(\log c) \\
N\left(1-\alpha>K_{c}>\alpha\right)=O(\log c)
\end{gathered}
$$

