Universally Typical Sets for Ergodic Sources of Multidimensional Data

Tyll Krüger, Guido Montufar, Ruedi Seiler and Rainer Siegmund-Schultze

 $\rm http://arxiv.org/abs/1105.0393$

• data modeled by stationary/ergodic random process

- data modeled by stationary/ergodic random process
- lossless: algorithm ensurs exact reconstruction

- data modeled by stationary/ergodic random process
- lossless: algorithm ensurs exact reconstruction
- main idea (Shannon): encode typical but small set

- data modeled by stationary/ergodic random process
- lossless: algorithm ensurs exact reconstruction
- main idea (Shannon): encode typical but small set
- *universal*: algorithm does not involve specific properties of random process.

- data modeled by stationary/ergodic random process
- lossless: algorithm ensurs exact reconstruction
- main idea (Shannon): encode typical but small set
- *universal*: algorithm does not involve specific properties of random process.
- main idea: construction of *universally typical sets*.

$$(x_1^n)$$
 with $-\frac{1}{n}\log\mu(x_1^n) \sim h(\mu)$

have the Asymptotic Equipartition Property:

٠

• all (x_1^n) have the same probability $e^{-nh(\mu)}$

$$(x_1^n)$$
 with $-\frac{1}{n}\log\mu(x_1^n) \sim h(\mu)$

have the Asymptotic Equipartition Property:

- all (x_1^n) have the same probability $e^{-nh(\mu)}$
- small size $e^{nh(\mu)}$ but still

٠

$$(x_1^n)$$
 with $-\frac{1}{n}\log\mu(x_1^n) \sim h(\mu)$

have the Asymptotic Equipartition Property:

- all (x_1^n) have the same probability $e^{-nh(\mu)}$
- small size $e^{nh(\mu)}$ but still
- nearly full measure

.

$$(x_1^n)$$
 with $-\frac{1}{n}\log\mu(x_1^n) \sim h(\mu)$

have the Asymptotic Equipartition Property:

- all (x_1^n) have the same probability $e^{-nh(\mu)}$
- small size $e^{nh(\mu)}$ but still
- nearly full measure

.

• output sequences with higher or smaler probability than $e^{-nh(\mu)}$ will rarely be observed.

Shannon-Mcmillan-Briman

 \mathbbm{Z} -ergodic processes:

•
$$-\frac{1}{n}\log\mu(x_1^n) \to h(\mu).$$

• in probability (Shannon)

Shannon-Mcmillan-Briman

 \mathbbm{Z} -ergodic processes:

•
$$-\frac{1}{n}\log\mu(x_1^n) \to h(\mu).$$

- in probability (Shannon)
- pointwise almost surely (Mcmillan, Briman)

Shannon-Mcmillan-Briman

 \mathbbm{Z} -ergodic processes:

•
$$-\frac{1}{n}\log\mu(x_1^n) \to h(\mu).$$

- in probability (Shannon)
- pointwise almost surely (Mcmillan, Briman)
- amenable groups, \mathbb{Z}^d (Kiefer, Ornstein and Weiss)

Notation

d-dimensional:

• $\Lambda_n := \{(i_1, \dots, i_d) \in \mathbb{Z}^d_+ : 0 \le i_j \le n - 1, j \in \{1, \dots, d\}\}$

Notation

d-dimensional:

- $\Lambda_n := \{(i_1, \dots, i_d) \in \mathbb{Z}^d_+ : 0 \le i_j \le n 1, j \in \{1, \dots, d\}\}$
- $\Sigma^n := \mathcal{A}^{\Lambda_n}, \ \Sigma = \mathcal{A}^{\mathbb{Z}^d}, \ \mathcal{A}$ finite alphabet

Result

Theorem (Universally-typical-sets)

For any given h_0 with $0 < h_0 \leq \log(|\mathcal{A}|)$ one can construct a sequence of subsets $\{\mathcal{T}_n(h_0) \subset \Sigma^n\}_n$ such that for all $\mu \in \mathbb{P}_{erg}$ with $h(\mu) < h_0$ the following holds:

1.
$$\lim_{n \to \infty} \mu_n \left(\mathcal{T}_n(h_0) \right) = 1,$$

Result

Theorem (Universally-typical-sets)

For any given h_0 with $0 < h_0 \leq \log(|\mathcal{A}|)$ one can construct a sequence of subsets $\{\mathcal{T}_n(h_0) \subset \Sigma^n\}_n$ such that for all $\mu \in \mathbb{P}_{erg}$ with $h(\mu) < h_0$ the following holds:

1.
$$\lim_{n \to \infty} \mu_n \left(\mathcal{T}_n(h_0) \right) = 1,$$

2.
$$\lim_{n \to \infty} \frac{\log |\mathcal{T}_n(h_0)|}{n^d} = h_0.$$

Result

Theorem (Universally-typical-sets)

For any given h_0 with $0 < h_0 \leq \log(|\mathcal{A}|)$ one can construct a sequence of subsets $\{\mathcal{T}_n(h_0) \subset \Sigma^n\}_n$ such that for all $\mu \in \mathbb{P}_{erg}$ with $h(\mu) < h_0$ the following holds:

- 1. $\lim_{n \to \infty} \mu_n \left(\mathcal{T}_n(h_0) \right) = 1,$
- 2. $\lim_{n \to \infty} \frac{\log |\mathcal{T}_n(h_0)|}{n^d} = h_0.$
- 3. optimal

• for each
$$x \in \Sigma$$
 empirical measures $\left\{ \tilde{\mu}_x^{k,n} \right\}_{k \le n}$ on \mathcal{A}^{Λ_k} .

Explain empirical measure $\left\{ \tilde{\mu}_x^{k,n} \right\}$ by a drawing (black bord)

• for each
$$x \in \Sigma$$
 empirical measures $\left\{ \tilde{\mu}_x^{k,n} \right\}_{k \le n}$ on \mathcal{A}^{Λ_k} .

•
$$\mathcal{T}_n(h_0) := \prod_n \{ x \in \Sigma : \frac{1}{k^d} H(\tilde{\mu}_x^{k,n}) \le h_0 \}$$

Explain empirical measure $\left\{ \tilde{\mu}_x^{k,n} \right\}$ by a drawing (black bord)

- for each $x \in \Sigma$ empirical measures $\left\{ \tilde{\mu}_x^{k,n} \right\}_{k \leq n}$ on \mathcal{A}^{Λ_k} .
- $\mathcal{T}_n(h_0) := \prod_n \{ x \in \Sigma : \frac{1}{k^d} H(\tilde{\mu}_x^{k,n}) \le h_0 \}$

•
$$k^d \leq \frac{1}{1+\epsilon} \log_{|\mathcal{A}|} n^d, \quad \epsilon > 0$$

Explain empirical measure $\left\{\tilde{\mu}_x^{k,n}\right\}$ by a drawing (black bord)

- for each $x \in \Sigma$ empirical measures $\left\{ \tilde{\mu}_x^{k,n} \right\}_{k \leq n}$ on \mathcal{A}^{Λ_k} .
- $\mathcal{T}_n(h_0) := \prod_n \{ x \in \Sigma : \frac{1}{k^d} H(\tilde{\mu}_x^{k,n}) \le h_0 \}$

•
$$k^d \le \frac{1}{1+\epsilon} \log_{|\mathcal{A}|} n^d$$
, $\epsilon > 0$

•
$$\limsup \frac{\log |\mathcal{T}_n(h_0)|}{n^d} \le h_0$$

Explain empirical measure $\left\{\tilde{\mu}_x^{k,n}\right\}$ by a drawing (black bord)

Theorem (Empirical-Entropy Theorem) Let $\mu \in \mathbb{P}_{erg}$. For any sequence $\{k_n\}$ satisfying $k_n \xrightarrow{n \to \infty} \infty$ and $k_n^d = o(n^d)$ we have

$$\lim_{n \to \infty} \frac{1}{k_n^d} H(\tilde{\mu}_x^{k_n, n}) = h(\mu) \,, \quad \mu\text{-almost surely} \,.$$

Main references

- Paul C. Shields: The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics, Vol.13 AMS.
- Article to appear in KYBERNETICA

Background Material

Lemma (Packing Lemma)

Consider for any fixed $0 < \delta \leq 1$ integers k and m related through $k \geq d \cdot m/\delta$. Let $C \subset \Sigma^m$ and $x \in \Sigma$ with the property that $\tilde{\mu}_{x,overl}^{m,k}(C) \geq 1 - \delta$. Then, there exists $\mathbf{p} \in \Lambda_m$ such that: a) $\tilde{\mu}_x^{\mathbf{p},m,k}(C) \geq 1 - 2\delta$, and also b) $\lfloor \frac{k}{m} \rfloor^d \tilde{\mu}_x^{\mathbf{p},m,k}(C) \geq (1-4)\delta(\lfloor \frac{k}{m} \rfloor + 2)^d$.

Theorem

Given any $\mu \in \mathbb{P}_{erg}$ and any $\alpha \in (0, \frac{1}{2})$ we have the following:

• For all k larger than some $k_0 = k_0(\alpha)$ there is a set $\mathcal{T}_k(\alpha) \subset \Sigma^k$ satisfying

$$\frac{\log |\mathcal{T}_k(\alpha)|}{k^d} \le h(\mu) + \alpha \,,$$

and such that for μ -a.e. x the following holds:

$$\tilde{\mu}_x^{k,n}\left(\mathcal{T}_k(\alpha)\right) > 1 - \alpha\,,$$

for all n and k such that $\frac{k}{n} < \varepsilon$ for some $\varepsilon = \varepsilon(\alpha) > 0$ and n larger than some $n_0(x)$.

• (optimality)

Definition (Entropy-typical-sets)

Let $\delta < \frac{1}{2}$. For some μ with entropy rate $h(\mu)$ the *entropy-typical-sets* are defined as:

$$C_m(\delta) := \left\{ x \in \Sigma^m : 2^{-m^d(h(\mu) + \delta)} \le \mu^m(\{x\}) \le 2^{-m^d(h(\mu) - \delta)} \right\}.$$
(1)

We will use these sets as basic sets for the typical-sampling-sets defined below.

Definition (Typical-sampling-sets)

Consider some μ . Consider some $\delta < \frac{1}{2}$. For $k \geq m$, we define a *typical-sampling-set* $\mathcal{T}_k(\delta, m)$ as the set of elements in Σ^k that have a regular *m*-block partition such that the resulting words belonging to the μ -entropy-typical-set $C_m = C_m(\delta)$ contribute at least a $(1 - \delta)$ -fraction to the (slightly modified) number of partition elements in that regular *m*-block partition, more precisely, they occupy at least a $(1 - \delta)$ -fraction of all sites in Λ_k

$$\mathcal{T}_{k}(\delta,m) := \left\{ x \in \Sigma^{k} : \sum_{\substack{\mathbf{r} \in m \cdot \mathbb{Z}^{d}:\\ (\Lambda_{m} + \mathbf{r} + \mathbf{p}) \cap \Lambda_{k} \neq \emptyset}} \mathbf{1}_{[C_{m}]}(\sigma_{\mathbf{r} + \mathbf{p}} x) \ge (1 - \delta) \left(\frac{k}{m}\right)^{a} \text{ for some} \right.$$