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What is a Large Dense Random Graph?

A Graph is a collection of n vertices and
up to

(n
2

)
undirected edges.

Points are distinguishable and abstract. There is no geometry.

A Random Graph also has a measure on the 2(n2)

possibilities.

A Large Random Graph means taking the n→∞ limit.

A Large Dense Random Graph means non-trivial edge density.

e :=
# of edges

n2/2
6→ 0.

t :=
# of triangles

n3/6.
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Microcanonical ensemble

What values of (e, t) are possible in the n→∞ limit?

How many graphs of given (e, t) are possible?

Z δ,n
e,t = number of graphs with n vertices such that∣∣∣∣# edges

n2/2
− e

∣∣∣∣ < δ and

∣∣∣∣# triangles

n3/6
− t

∣∣∣∣ < δ.

s(e, t) = lim
δ→0

lim
n→∞

ln Z δ,n
e,t

n2
.

What does a typical graph with a given (e, t) look like?

Like microcanonical ensemble with

edges ↔ particles
triangles ↔ interaction energy
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The shape of (e, t) space
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Exponential Random Graphs

Instead of using the microcanonical ensemble, most work has
picked parameters β1, β2 and set

P(graph G ) =
1

Z
exp

[
β1(# edges) +

β2
n

(# triangles)

]
.

Like grand canonical ensemble.
Bad idea! (We’ll see why soon)
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Results

1 s(e, t) is well-defined and is the solution to an explicit
minimization problem on functions g : [0, 1]2 → [0, 1].

2 There is a phase transition along the entire Erdös-Rényi (ER)
curve t = e3.

3 Large regions of (e, t) space are invisible to the canonical or
grand canonical ensembles.

4 There are explicit formulas for s(e, t) on the boundary, on the
ER curve, and on the line e = 1/2 below the ER curve.

5 Analytic evidence that this last formula works for all e ≤ 1/2
below the ER curve.

6 Numerical evidence of other phase transitions, some 1st order
and some 2nd.
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Graphons

Key idea: Embed all graphs in a single space of graphons.
(Lovasz and collaborators)

A graphon is a (measurable) function g : [0, 1]2 → [0, 1] with
g(x , y) = g(y , x).

A graph G can be viewed as a checkerboard graphon. Break
[0, 1] into n equal intervals, each corresponding to a vertex.
This breaks [0, 1]2 into n2 squares, one for each possible edge.
Let g(x , y) = 1 if the edge exists and 0 if it doesn’t.

Topology of space of graphons is technical. Buzzword is “Cut
metric”. Also need to mod out by measure-preserving
transformations of [0, 1]. (Unnecessary for today’s talk.)
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Generating random graphs from a graphon

Graphons are best viewed as recipes for generating random graphs:

Pick n points (x1, . . . , xn) uniformly on [0, 1].

Vertex between i-th and j-th vertices exists with probability
g(xi , xj).

Once (x1, . . . , xn) are chosen, edges exist independently.

The expected edge and triangle densities are:

e(g) =

∫∫
g(x , y)dx dy , t(g) =

∫∫∫
g(x , y)g(y , z)g(z , x)dxdydz .
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Entropy and graphons

Entropy of one coin flip is − [u ln(u) + (1− u) ln(1− u)].

Let

Io(u) =
1

2
(u ln(u) + (1− u) ln(1− u)) = Rate function.

Rate function of graphon g is

I (g) =

∫∫
I0(g(x , y))dx dy .

Entropy of random process described by graphon is −n2I (g)

Entropy density is −I (g).
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The rate function determines everything

Theorem (Chatterjee-Varadhan)

Large deviation principle for ER graphs. The rate function controls
everything.

Theorem (Radin-S)

The entropy density s(e, t) is well-defined, and equals − inf I (g),

where inf is over graphons g with

∫∫
g(x , y)dx dy = e and∫∫∫

g(x , y)g(y , z)g(x , z)dx dy dz = t.

This reduces all questions to minimizing I (g) for fixed e and t.
Goodbye statistical mechanics. Hello functional analysis.
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Two examples

1) On ER curve, minimizing graphon is g(x , y) = e; entropy is
s(e, e3) = −I0(e).

This is the maximum entropy for fixed e and variable t.
How smooth is the maximum? (Answer: not very)

2) On bottom boundary, minimizing graphon is

g(x , y) =

2e x <
1

2
< y or y <

1

2
< x

0 otherwise.

Entropy is s(e, 0) = −1

2
I0(2e).
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The symmetric bipartite phase

Consider the graphon

g(x , y) =

e + b x <
1

2
< y or y <

1

2
< x

e − b otherwise.

t = e3 − b3. I (g) = [I0(e + b) + I0(e − b)]/2.
When b ≈ e, describes almost-bipartite graphs, with clusters of
equal size.
Appears to minimize I (g). When b ≈ e, 2nd variation w.r.t.
L∞-small changes is positive operator. But L1-small changes
needn’t be L∞-small.
Numerical evidence that this minimizes I (g) for all e ≤ 1/2,
t ≤ e3.
Rigorous proof that this minimizes I (g) for e = 1/2, t ≤ e3.
(Later slide)
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(Later slide)
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The symmetric bipartite phase

Consider the graphon

g(x , y) =

e + b x <
1

2
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1

2
< x
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Phase transition on ER curve.

Theorem (Radin-S)

There exist positive constants c1, c2 such that:
If t < e3, s(e, t) ≤ s(e, e3)− c1(e3 − t)2/3,
If t > e3, s(e, t) ≤ s(e, e3)− c2(t − e3).

s(e, t) has at most a 1-sided derivative w.r.t. t at t = e3.
s(e, t) is concave up for t slightly less than e3. Invisible to
Legendre transform.
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A proof (finally)

Write g(x , y) = e + δg(x , y), with

∫ ∫
δg(x , y)dx dy = 0.

Expand t =

∫ ∫ ∫
g(x , y)g(y , z)g(z , x):

t = e3 + 3e2
∫ ∫

δg(x , y) + 3e

∫ ∫ ∫
δg(x , z)δg(y , z)

+

∫ ∫ ∫
δg(x , y)δg(y , z)δg(z , x).

First integral is zero.

Second integral is positive definite. If α(z) =

∫
δg(x , z)dx , 2nd

integral is 3e

∫
α(z)2dz .

Last integral is O(δg3), so if t < e3, e3 − t < c‖δg‖3/2
L2

.
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Proof, continued

s(e, e3)− s(e, t) =

∫∫
(I0(e)− I0(g(x , y))dx dy = O(δg2).

Since

δt =

{
O(δg2) δt > 0;

O(δg3) δt < 0,

δs =

{
O(δt) δt > 0;

O(|δt|2/3) δt < 0.

When e = 1/2 and δt < 0, all estimates are saturated by
symmetric bipartite graphon, so we know it’s a minimizer.
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Second phase

Phase I: Symmetric bipartite.

Phase II: Asymmetric bipartite. Like symmetric bipartite, but two
subintervals have unequal size and unequal probabilities of internal
edges. There is a constant c 6= 1/2 such that

g(x , y) =


a x , y < c

b x , y > c

d x < c < y or y < c < x

Transition from Phase I to Phase II is 2nd-order.
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Third phase

Phase III: Tripartite. Like bipartite, but interval [c, 1] divided into
equal sub-intervals. When x , y > c , g(x , y) depends on whether x
and y are in same or different sub-intervals.

Applies near first “scallop”.
Transition from Phase II to Phase III is first-order. (Partial
derivatives of s diverge).
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Fourth phase

The behavior above the ER curve is different still. Also expect
n + 2-partite phases near n-th scallops.

Bottom line: Lots of phase transitions, and lots of interesting
behavior, but only in the microcanonical ensemble.

Canonical ensemble (e fixed, t variable) misses most of the fun.

Grand canonical ensemble misses almost all of the fun.
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Happy Birthday

Happy Birthday, Yosi!

Lorenzo Sadun Statistical Mechanics of Large Dense Random Graphs



Cake

Ein Hagigah Bli Uga
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