Quantum statistics on graphs

Jon Harrison (Baylor) Jon Keating (Bristol) JR (Bristol) Adam Sawicki (Bristol)

 J^3 2011 J^3 + Adam Sawicki 2013 preprint

July 3, 2013

The standard formulation is to take

 $\mathcal{H}_n = \mathcal{H} \otimes \cdots \otimes \mathcal{H}, \ n$ -particle Hilbert space,

and restrict to

$$\sigma |\Psi\rangle = (\operatorname{sgn} \sigma)^{\epsilon} |\Psi\rangle, \sigma \in S_n$$

$$\epsilon = \begin{cases} 0, & \text{Bose statistics} \\ 1 & \text{Fermi statistics} \end{cases}$$

The standard formulation is to take

 $\mathcal{H}_n = \mathcal{H} \otimes \cdots \otimes \mathcal{H}, \ n$ -particle Hilbert space,

and restrict to

$$\sigma |\Psi\rangle = (\operatorname{sgn} \sigma)^{\epsilon} |\Psi\rangle, \sigma \in S_n$$

$$\epsilon = \begin{cases} 0, & \text{Bose statistics} \\ 1 & \text{Fermi statistics} \end{cases}$$

Are there other possibilities?

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_1(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_1(M)$.

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_1(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_1(M)$.

If the rep'n is one-dimensional, it corresponds to a representation of $H_1(M)$.

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_1(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_1(M)$.

If the rep'n is one-dimensional, it corresponds to a representation of $H_1(M)$.

 $H_1(M) \simeq \mathbb{Z}^p \oplus (\mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_q),$

where d_j divides d_{j+1} . \mathbb{Z}^m is free component, and $\mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_q$ is torsion component.

Repn's of $H_1(M)$ are classified by p free phase factors $e^{2\pi i \alpha_j}$ and q discrete phase factors $e^{2\pi i a_k/d_k}$.

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane $\pi_1(M) = H_1(M) = \mathbb{Z}$

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane $\pi_1(M) = H_1(M) = \mathbb{Z}$

$$U(\mathbf{r}, \mathbf{r}, t) = \int_{p: \mathbf{r} \stackrel{t}{\longrightarrow} \mathbf{r}} e^{iS_p}$$

4 / 22

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane $\pi_1(M) = H_1(M) = \mathbb{Z}$

$$U(\mathbf{r}, \mathbf{r}, t) = \int_{p: \mathbf{r} \stackrel{t}{\longrightarrow} \mathbf{r}} e^{iS_p}$$

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane $\pi_1(M) = H_1(M) = \mathbb{Z}$

$$U(\mathbf{r}, \mathbf{r}, t) = \int_{p: \mathbf{r} \stackrel{t}{\longrightarrow} \mathbf{r}} e^{iS_p + i\phi[p]}$$

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane $\pi_1(M) = H_1(M) = \mathbb{Z}$

$$U(\mathbf{r}, \mathbf{r}, t) = \int_{p: \mathbf{r} \stackrel{t}{\longrightarrow} \mathbf{r}} e^{iS_p + i\phi[p]}$$

Unitarity and composition properties of the propagator imply that

 $\phi[p] = \alpha \times \mathrm{winding} \ \mathrm{number}(p)$

 $M=\mathbb{R}^2-\{\mathbf{0}\}$, punctured plane

 $\pi_1(M) = H_1(M) = \mathbb{Z}$

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane

 $\pi_1(M) = H_1(M) = \mathbb{Z}$

 $\mathcal{H} = L^2(\mathbb{R}^2 - \{\mathbf{0}\}),$ Hilbert space

$$-\nabla^2
ightarrow \left(rac{1}{i} {oldsymbol
abla} - {f A}({f r})
ight)^2$$
, vector potential

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane

 $\pi_1(M) = H_1(M) = \mathbb{Z}$

 $\mathcal{H} = L^2(\mathbb{R}^2 - \{\mathbf{0}\}),$ Hilbert space

 $-\nabla^2 \rightarrow \left(\frac{1}{i} \nabla - \mathbf{A}(\mathbf{r})\right)^2$, vector potential

$$\mathbf{\nabla} \wedge \mathbf{A} = 0, \quad \oint \mathbf{A} \cdot \mathbf{dr} = \alpha$$

 $M = \mathbb{R}^2 - \{\mathbf{0}\}$, punctured plane

 $\pi_1(M) = H_1(M) = \mathbb{Z}$

 $\mathcal{H} = L^2(\mathbb{R}^2 - \{\mathbf{0}\}),$ Hilbert space

 $-\nabla^2 \rightarrow \left(\frac{1}{i} \nabla - \mathbf{A}(\mathbf{r})\right)^2$, vector potential

$$\nabla \wedge \mathbf{A} = 0, \quad \oint \mathbf{A} \cdot \mathbf{dr} = \alpha$$

 $\mathbf{A} = \alpha \nabla \theta \Rightarrow \psi(\mathbf{r}) \sim r^{\min(\tilde{\alpha}, 1 - \tilde{\alpha})},$ change of domain

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

 $\pi_1(C_n(X), *)$, fundamental group

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

 $\pi_1(C_n(X), *)$, fundamental group

 $\pi_1(C_n(X))$ projects into S_n , but they are not necessarily the same.

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

 $\pi_1(C_n(X), *)$, fundamental group

 $\pi_1(C_n(X))$ projects into S_n , but they are not necessarily the same. Eg,

• $X = \mathbb{R}$: $\pi_1 = 1$

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

 $\pi_1(C_n(X), *)$, fundamental group

 $\pi_1(C_n(X))$ projects into S_n , but they are not necessarily the same. Eg,

- $X = \mathbb{R}$: $\pi_1 = 1$
- $X = \mathbb{R}^3$: $\pi_1(C_n) = S_n$, $H_1 = \mathbb{Z}/2$ Bose/Fermi alternative

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$C_n(X) = (X^n - \Delta_n)/S_n,$$

configuration space of n indistinguishable particles, with coincident configurations Δ_n removed

 $\pi_1(C_n(X), *)$, fundamental group

 $\pi_1(C_n(X))$ projects into S_n , but they are not necessarily the same. Eg,

- $X = \mathbb{R}$: $\pi_1 = 1$
- $X = \mathbb{R}^3$: $\pi_1(C_n) = S_n$, $H_1 = \mathbb{Z}/2$ Bose/Fermi alternative
- $X = \mathbb{R}^2$: $\pi_1(C_n) = \text{braid group}, H_1(C_n) = \mathbb{Z}$ $(C_2 \sim \mathbb{R}^2 - \{\mathbf{0}\})$ Anyon statistics, $e^{i\alpha}$

What about many-particle graphs?

Combinatorial and metric graphs

G, combinatorial graph

$$V = \{1, \ldots, N\}$$
, vertices

$$E \ = \ \{\{j,k\}\}, \ { t edges} \ ({ t undi-rected})$$

Take G to be simple (no loops or parallel edges) and connected.

A, adjacency matrix

$$A_{jk} = \begin{cases} 1, & e(j,k) \in E, \\ 0, & \text{otherwise}, \end{cases}$$

symmetric off-diagonal, $(A^p)_{jk} \neq 0$ for p large d_j , degree of vertex j

Combinatorial and metric graphs

 Γ , metric graph

 $V = \{1, \ldots, N\}$, vertices

 $E = \{\{j, k\}\}, \text{ edges (undirected)}\}$

Take G to be simple (no loops or parallel edges) and connected.

A, adjacency matrix

$$A_{jk} = egin{cases} 1, & e(j,k) \in E, \ 0, & ext{otherwise}, \end{cases}$$

symmetric off-diagonal, $(A^p)_{jk} \neq 0$ for p large

 d_j , degree of vertex jAssociate an interval $[0, L_{jk}]$ to each edge $\{j, k\}$. Identify endpoints with coincident vertices.

$$\Gamma = \sqcup_i I_i / \sim,$$

1-dimensional cell complex

Quantum metric graph

 $\Psi = \{\psi_e(x_e)\},$ wavefunction $H = \sum_e \left(-i\frac{d}{dx_e} - A_e(x_e)\right)^2 + \phi_e(x_e),$ Hamiltonian Boundary conditions on ψ_e 's required to make H self-adjoint

Eg, Neumann conditions,

 ψ_e continuous at vertices,

 $\sum_{e|j \in e} \psi_e'(j) = 0, \mbox{ sum of outgoing derivatives vanishes }$

See, eg, Berkolaiko and Kuchment 2013

n-particle quantum metric graphs

 $\Psi = \{\psi_{ef}(x_e, y_f)\},$ wavefunctions

n-particle quantum metric graphs

 $\Psi = \{\psi_{ef}(x_e, y_f)\},$ wavefunctions

To start, take

$$H_{ef} = -\left(\frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_f^2}\right)$$

Require boundary conditions which render H self-adjoint. Then try to incorporate rep'n of $\pi_1 \dots$

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte and Kerner (2011)

n-particle quantum metric graphs

 $\Psi = \{\psi_{ef}(x_e, y_f)\},$ wavefunctions

To start, take

$$H_{ef} = -\left(\frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_f^2}\right)$$

Require boundary conditions which render H self-adjoint. Then try to incorporate rep'n of $\pi_1 \dots$

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte and Kerner (2011)

The topology is more easily incorporated in the combinatorial setting...

G, simple connected combinatorial graph

 $V = \{1, \ldots, N\}$, vertices

 $E = \{(j,k)\},$ edges A, adjacency matrix

$$A_{jk} = egin{cases} 1, & (j,k) \in E, \ 0, & ext{otherwise}. \end{cases}$$

G, simple connected combinatorial graph

 $V = \{1, \ldots, N\}$, vertices

 $E = \{(j,k)\},$ edges A, adjacency matrix

$$A_{jk} = egin{cases} 1, & (j,k) \in E, \ 0, & ext{otherwise}. \end{cases}$$

Quantum model

 $|\Psi\rangle = \sum_{j} \psi_{j} |j\rangle \in \mathbb{C}^{N}$, N-dimensional Hilbert space $|j\rangle$, state for particle at vertex j

G, simple connected combinatorial graph

 $V = \{1, \ldots, N\}$, vertices

 $E = \{(j, k)\},$ edges A, adjacency matrix

$$A_{jk} = egin{cases} 1, & (j,k) \in E, \ 0, & ext{otherwise}. \end{cases}$$

Quantum model

 $|\Psi\rangle = \sum_{j} \psi_{j} |j\rangle \in \mathbb{C}^{N}$, N-dimensional Hilbert space $|j\rangle$, state for particle at vertex j

 $H, N \times N$ hermitian matrix, Hamiltonian

Eg, KE = A - D, $D_{jk} = v_j \delta_{jk}$, discrete Laplacian

$$H_{jk} = 0$$
 unless $j = k$ or $A_{jk} = 1$

Short-time dynamics involves transitions to adjacent vertices.

G, simple connected combinatorial graph

 $V = \{1, \ldots, N\}$, vertices

 $E = \{(j, k)\},$ edges A, adjacency matrix

$$A_{jk} = egin{cases} 1, & (j,k) \in E, \ 0, & ext{otherwise}. \end{cases}$$

Quantum model

 $|\Psi\rangle = \sum_{j} \psi_{j} |j\rangle \in \mathbb{C}^{N}$, N-dimensional Hilbert space $|j\rangle$, state for particle at vertex j

 $H, N \times N$ hermitian matrix, Hamiltonian

Eg, KE = A - D, $D_{jk} = v_j \delta_{jk}$, discrete Laplacian

$$H_{jk} = 0$$
 unless $j = k$ or $A_{jk} = 1$

Short-time dynamics involves transitions to adjacent vertices.

Hamiltonians can be parameterised by 1-dimensional repn's of the first homology group...

π_1 and H_1 for combinatorial graph

For a combinatorial graph $G \dots$

 (j_0, \ldots, j_p) , path, sequence of adjacent vertices $c = (j_0, \ldots, j_p = j_0)$, cycle on G, starts and ends at j_0 C(G, *), cycles which start and end at *

Regard cycles which differ by retracings as equivalent.

$$\pi_1^c(G) = \mathcal{C}(G, *) / \sim,$$

fundamental group of G.

Unchanged by adding/removing vertices of degree 2.

π_1 and H_1 for combinatorial graph

For a combinatorial graph $G \dots$

 (j_0, \ldots, j_p) , path, sequence of adjacent vertices $c = (j_0, \ldots, j_p = j_0)$, cycle on G, starts and ends at j_0 C(G, *), cycles which start and end at *

Regard cycles which differ by retracings as equivalent.

$$\pi_1^c(G) = \mathcal{C}(G, *) / \sim,$$

fundamental group of G.

Unchanged by adding/removing vertices of degree 2.

$$\pi_1^c(G) \cong \pi_1(\Gamma)$$

 $\pi_1^c(G)$ is the free group on β elements, where

$$\beta = |E| - |V| + 1$$

$$H_1^c(G) = \mathbb{Z}^\beta$$

Gauge potentials

 Ω_{jk} , real antisymmetric, is gauge potential $\Omega_{jk} = 0$ if $A_{jk} = 0$

Gauge potentials

 Ω_{jk} , real antisymmetric, is gauge potential $\Omega_{jk} = 0$ if $A_{jk} = 0$ $c = (j, k, l, \dots, n, j)$, cycle $\Omega(c) = \Omega_{jk} + \Omega_{kl} + \dots \Omega_{nj}$, flux through c

Gauge potentials

 Ω_{jk} , real antisymmetric, is gauge potential $\Omega_{jk} = 0$ if $A_{jk} = 0$ $c = (j, k, l, \dots, n, j)$, cycle $\Omega(c) = \Omega_{jk} + \Omega_{kl} + \dots \Omega_{nj}$, flux through cEg, gauge transformations.

$$\psi_j \to e^{i\theta_j}\psi_j,$$

 $H_{jk} \to e^{i(\theta_j - \theta_k)}H_{jk}$
Gauge potentials

 Ω_{jk} , real antisymmetric, is gauge potential $\Omega_{jk} = 0$ if $A_{jk} = 0$ $c = (j, k, l, \dots, n, j)$, cycle $\Omega(c) = \Omega_{jk} + \Omega_{kl} + \dots \Omega_{nj}$, flux through cEg, gauge transformations.

$$\psi_j \to e^{i\theta_j}\psi_j,$$

 $H_{jk} \to e^{i(\theta_j - \theta_k)}H_{jk}$

 Ω determined (up to gauge) by $c\mapsto e^{i\Omega(c)}$.

Gauge potentials

 Ω_{jk} , real antisymmetric, is gauge potential $\Omega_{jk} = 0$ if $A_{jk} = 0$ $c = (j, k, l, \dots, n, j)$, cycle $\Omega(c) = \Omega_{jk} + \Omega_{kl} + \dots + \Omega_{nj}$, flux through cEg, gauge transformations.

$$\psi_j \to e^{i\theta_j}\psi_j,$$

 $H_{jk} \to e^{i(\theta_j - \theta_k)}H_{jk}$

 Ω determined (up to gauge) by $c\mapsto e^{i\Omega(c)}.$

 $\Omega \mapsto H(\Omega)$, Hamiltonians parameterised by rep'n of $H_1(G)$.

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

 K_3

A c_2 cycle – two particles exchanged around a cycle.

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

Y graph

A Y-cycle – two particles exchanged on a Y junction.

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

Lasso

An AB-cycle – one particle goes around a cycle

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

$$G_n = C_n(G) = \{V^n - \Delta_n\}/S_n$$

Regard as combinatorial graph...

Edges on G_n correspond to moving one particle along an edge of G while keeping the others fixed.

Examples (n = 2)

Lasso

This is an example of a contractible cycle.

We will contractible cycles on G_n as trivial.

We will contractible cycles on G_n as trivial.

We will contractible cycles on G_n as trivial.

Contractible cycles are generated by pairs of disjoint edges of G.

We will contractible cycles on G_n as trivial.

Contractible cycles are generated by pairs of disjoint edges of G.

 $\pi_1^c(G_n)$, combinatorial fundamental group of G_n

 $T^{c}(G_{n})$, subgroup generated by contractible cycles

We will contractible cycles on G_n as trivial.

Contractible cycles are generated by pairs of disjoint edges of G.

 $\pi_1^c(G_n)$, combinatorial fundamental group of G_n

 $T^{c}(G_{n})$, subgroup generated by contractible cycles

If G is sufficiently subdivided, then

$$\pi_1^c(G_n)/T^c(G_n) \cong \pi_1(\Gamma_n)$$

Abrams (2000)

Sufficiently subdivided: Every path in G between vertices of degree not equal to two passes through at least n edges, and every cycle in G contains at least n + 1 edges (can always be achieved by adding vertices to subdivide edges)

Topological gauge potentials

Abelian statistics on G_n determined by a gauge potential $(\Omega_n)_{JK}$, where

 $\Omega_n(c) = 0 \mod 2\pi$ for every contractible cycle

We'll call these topological gauge potentials.

Correspond to a 1d rep'n of $\pi_1(\Gamma_n)$,

 $c \mapsto \exp(i\Omega(c))$

Topological gauge potentials

Abelian statistics on G_n determined by a gauge potential $(\Omega_n)_{JK}$, where

 $\Omega_n(c) = 0 \mod 2\pi$ for every contractible cycle

We'll call these topological gauge potentials.

Correspond to a 1d rep'n of $\pi_1(\Gamma_n)$,

$$c \mapsto \exp(i\Omega(c))$$

Given n-particle Hamiltonian H_n , e.g. sum of 1-particle discrete Laplacians, abelian statistics is incorporated via

$$H_n(\Omega)_{JK} = \exp(i(\Omega_n)_{JK})(H_n)_{JK}$$

Problem: Calculate $H_1(\Gamma_n)$ in terms of graph invariants. . . Ko and Park 2012 (discrete Morse theory) Harrison, Keating, JR and Sawicki 2013

Key relation

Key relation

 $\Omega(Y) = \Omega(AB) + \Omega(c_2)$
Key relation

 $\Omega(Y) = \Omega(AB) + \Omega(c_2)$

Y's, *AB*'s, and c_2 's span $H_1(G_n) \ldots$

A graph is k-connected if it cannot be disconnected by removing k - 1 vertices.

A graph is k-connected if it cannot be disconnected by removing k - 1 vertices.

1-connected, not 2-connected

A graph is k-connected if it cannot be disconnected by removing k - 1 vertices.

2-connected, not 3-connected

A graph is k-connected if it cannot be disconnected by removing k - 1 vertices.

3-connected, not 4-connected

$$H_1(G_n) = \mathbb{Z}^{\beta} \oplus \begin{cases} \mathbb{Z}, & \text{if } G \text{ is planar,} \\ \mathbb{Z}/2, & \text{if } G \text{ is nonplanar.} \end{cases}$$

(follows from key relation and structure theorems for 3-connected graphs)

$$H_1(G_n) = \mathbb{Z}^{\beta} \oplus \begin{cases} \mathbb{Z}, & \text{if } G \text{ is planar,} \\ \mathbb{Z}/2, & \text{if } G \text{ is nonplanar.} \end{cases}$$

3-connected planar graphs: β AB phases and 1 anyon phase (like \mathbb{R}^2).

 K_4 : 3 AB phases, 1 anyon phase

$$H_1(G_n) = \mathbb{Z}^{\beta} \oplus \begin{cases} \mathbb{Z}, & \text{if } G \text{ is planar,} \\ \mathbb{Z}/2, & \text{if } G \text{ is nonplanar.} \end{cases}$$

3-connected planar graphs: β AB phases and 1 anyon phase (like \mathbb{R}^2).

 K_4 : 3 AB phases, 1 anyon phase

3-connected nonplanar graphs: β AB phases and 1 sign (like \mathbb{R}^{3+1}).

 K_5 : 6 AB phases, 1 sign

$$H_1(G_n) = \mathbb{Z}^{\beta} \oplus \begin{cases} \mathbb{Z}, & \text{if } G \text{ is planar,} \\ \mathbb{Z}/2, & \text{if } G \text{ is nonplanar.} \end{cases}$$

 $\Omega(AB_1) \neq \Omega(AB_2)$, in general

$$H_1(G_n) = \mathbb{Z}^{\beta} \oplus \begin{cases} \mathbb{Z}, & \text{if } G \text{ is planar,} \\ \mathbb{Z}/2, & \text{if } G \text{ is nonplanar.} \end{cases}$$

A puzzle, perhaps...

G may be decomposed into 3-connected components and cycles. . .

 $\mu(x_i, y_i)$, # of connected components at two-vertex cut x_i, y_i

$$N_2 = \sum_{i \frac{1}{2}} (\mu(x_i, y_i) - 1)(\mu(x_i, y_i) - 2)$$

 N_3 , # of planar 3-connected components

 N'_3 , # of nonplanar 3-connected components

G may be decomposed into 3-connected components and cycles. . .

 $\mu(x_i, y_i)$, # of connected components at two-vertex cut x_i, y_i

$$N_2 = \sum_{i=1}^{\infty} \frac{1}{2} (\mu(x_i, y_i) - 1) (\mu(x_i, y_i) - 2)$$

 N_3 , # of planar 3-connected components

 N'_3 , # of nonplanar 3-connected components

$$H_1(G_n) = \mathbb{Z}^{\beta + N_2 + N_3} \oplus (\mathbb{Z}/2)^{N'_3}$$

G may be decomposed into 3-connected components and cycles. . .

 $\mu(x_i, y_i)$, # of connected components at two-vertex cut x_i, y_i

$$N_2 = \sum_{i=1}^{\infty} \frac{1}{2} (\mu(x_i, y_i) - 1) (\mu(x_i, y_i) - 2)$$

 N_3 , # of planar 3-connected components

 N'_3 , # of nonplanar 3-connected components

$$H_1(G_n) = \mathbb{Z}^{\beta + N_2 + N_3} \oplus (\mathbb{Z}/2)^{N'_3}$$

Chain of 3-connected components

G may be decomposed into 3-connected components and cycles. . .

 $\mu(x_i, y_i)$, # of connected components at two-vertex cut x_i, y_i

$$N_2 = \sum_{i \frac{1}{2}} (\mu(x_i, y_i) - 1)(\mu(x_i, y_i) - 2)$$

 N_3 , # of planar 3-connected components

 N'_3 , # of nonplanar 3-connected components

$$H_1(G_n) = \mathbb{Z}^{\beta + N_2 + N_3} \oplus (\mathbb{Z}/2)^{N'_3}$$

Building-up principle: $H_1(G_n)$ is independent of n for $n \ge 2$. Prescription for n-particle gauge potential in terms of 2-particle gauge potential.

G may be decomposed into 2-connected components. . .

G may be decomposed into 2-connected components. . .

G may be decomposed into 2-connected components...

 μ , # of connected components at one-vertex cut x_i

u, # of edges at one-vertex cut x_i

$$N_1(x_i) = \binom{n+\mu-2}{\mu-1}(\nu-2) - \binom{n+\mu-2}{\mu-2} - (\nu-\mu-1)$$
$$N_1 = \sum_i N_1(x_i)$$

G may be decomposed into 2-connected components. . .

 μ , # of connected components at one-vertex cut x_i

u, # of edges at one-vertex cut x_i

$$N_1(x_i) = \binom{n+\mu-2}{\mu-1}(\nu-2) - \binom{n+\mu-2}{\mu-2} - (\nu-\mu-1)$$
$$N_1 = \sum_i N_1(x_i)$$

$$H_1(G_n) = \mathbb{Z}^{\beta + N_1 + N_2 + N_3} \oplus (\mathbb{Z}/2)^{N'_3}$$

Depends on number of particles.

G may be decomposed into 2-connected components...

 μ , # of connected components at one-vertex cut x_i

u, # of edges at one-vertex cut x_i

$$N_1(x_i) = \binom{n+\mu-2}{\mu-1}(\nu-2) - \binom{n+\mu-2}{\mu-2} - (\nu-\mu-1)$$
$$N_1 = \sum_i N_1(x_i)$$

$$H_1(G_n) = \mathbb{Z}^{\beta + N_1 + N_2 + N_3} \oplus (\mathbb{Z}/2)^{N'_3}$$

Depends on number of particles.

n-particle Y graph: $\binom{n}{2}$ phases

How phases might arise

 $\mathcal{H} = \mathbb{C}^d$ (fast) $imes \mathbb{C}^D$ (slow)

$$H_{Jr,Ks} = h_{rs}(J)\delta_{JK} + \epsilon H_{JK}\delta_{rs}$$

Adiabatic approximation introduces gauge potential in slow Hamiltonian . . .

$$\Omega_{JK} \sim \operatorname{Im} \langle v(J) | v(K) \rangle$$

Can regard J, r as multiparticle indices. Ω_{JK} does not automatically satisfy the topological condition.

21/22

An engineer's questions

- physical effects
- physical models

Happy Birthday, Yosi!