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Hn = H⊗ · · · ⊗ H, n-particle Hilbert space,

and restrict to

σ|Ψ〉 = ( sgnσ)ǫ|Ψ〉, σ ∈ Sn

ǫ =

{

0, Bose statistics

1 Fermi statistics

Are there other possibilities?
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M , manifold, with fundamental group π1(M).

Standard quantization prescriptions depend on the choice of

an irreducible rep’n of π1(M).

If the rep’n is one-dimensional, it corresponds to a

representation of H1(M).

H1(M) ≃ Z
p ⊕ (Z/d1 ⊕ · · · ⊕ Z/dq) ,

where dj divides dj+1. Zm is free component, and

Z/d1 ⊕ · · · ⊕ Z/dq is torsion component.

Repn’s of H1(M) are classified by p free phase factors

e2πiαj and q discrete phase factors e2πiak/dk .
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M = R
2 − {0}, punctured plane

π1(M) = H1(M) = Z

U(r, r, t) =

∫

p:r
t
−→r

eiSp+iφ[p]

Unitarity and composition properties of the propagator imply

that

φ[p] = α× winding number(p)
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M = R
2 − {0}, punctured plane

π1(M) = H1(M) = Z

H = L2(R2 − {0}),Hilbert space

−∇2 →

(

1

i
∇−A(r)

)2

, vector potential

∇ ∧A = 0,

∮

A · dr = α

A = α∇θ ⇒ ψ(r) ∼ rmin(α̃,1−α̃), change of domain
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X , one-particle configuration space

Cn(X) = (Xn −∆n)/Sn,

configuration space of n indistinguishable particles, with

coincident configurations ∆n removed
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Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977)

X , one-particle configuration space

Cn(X) = (Xn −∆n)/Sn,

configuration space of n indistinguishable particles, with

coincident configurations ∆n removed

π1(Cn(X), ∗), fundamental group

π1(Cn(X)) projects into Sn, but they are not necessarily

the same. Eg,

• X = R: π1 = 1

• X = R
3: π1(Cn) = Sn, H1 = Z/2

Bose/Fermi alternative

• X = R
2: π1(Cn) = braid group, H1(Cn) = Z

(C2 ∼ R
2 − {0})

Anyon statistics, eiα

What about many-particle graphs?
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G, combinatorial graph

V = {1, . . . , N}, vertices

E = {{j, k}}, edges (undi-

rected)

Take G to be simple (no loops or parallel edges) and

connected.

A, adjacency matrix

Ajk =

{

1, e(j, k) ∈ E,

0, otherwise,

symmetric off-diagonal, (Ap)jk 6= 0 for p large

dj , degree of vertex j
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Γ, metric graph

V = {1, . . . , N}, vertices

E = {{j, k}}, edges (undi-

rected)

Take G to be simple (no loops or parallel edges) and

connected.

A, adjacency matrix

Ajk =

{

1, e(j, k) ∈ E,

0, otherwise,

symmetric off-diagonal, (Ap)jk 6= 0 for p large

dj , degree of vertex j
Associate an interval [0, Ljk] to each edge {j, k}.

Identify endpoints with coincident vertices.

Γ = ⊔iIi/ ∼,

1-dimensional cell complex
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0 1

3

2

x12 L23

L13

L12

L01

Ψ = {ψe(xe)}, wavefunction

H =
∑

e

(

−i d
dxe

−Ae(xe)
)2

+ φe(xe), Hamiltonian

Boundary conditions on ψe’s required to make H self-adjoint

Eg, Neumann conditions,

ψe continuous at vertices,
∑

e|j∈e

ψ′
e(j) = 0, sum of outgoing derivatives vanishes

See, eg, Berkolaiko and Kuchment 2013
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Γ2 := C2(Γ) = {Γ× Γ−∆2}/S2

0 1

3

2

x12

y23

Ψ = {ψef (xe, yf )}, wavefunctions
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Γ2 := C2(Γ) = {Γ× Γ−∆2}/S2

0 1

3

2
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y23

Ψ = {ψef (xe, yf )}, wavefunctions

To start, take

Hef = −

(

∂2

∂x2e
+

∂2

∂y2f

)

Require boundary conditions which render H self-adjoint.

Then try to incorporate rep’n of π1 . . .

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte

and Kerner (2011)
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Γ, metric graph

Γ2 := C2(Γ) = {Γ× Γ−∆2}/S2

0 1

3

2

x12

y23

Ψ = {ψef (xe, yf )}, wavefunctions

To start, take

Hef = −

(

∂2

∂x2e
+

∂2

∂y2f

)

Require boundary conditions which render H self-adjoint.

Then try to incorporate rep’n of π1 . . .

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte

and Kerner (2011)

The topology is more easily incorporated in the combinatorial

setting. . .
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G, simple connected combi-

natorial graph

V = {1, . . . , N}, vertices

E = {(j, k)}, edges

0 1

3

2

A, adjacency matrix

Ajk =

{

1, (j, k) ∈ E,

0, otherwise.
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G, simple connected combi-

natorial graph

V = {1, . . . , N}, vertices

E = {(j, k)}, edges

0 1

3

2

A, adjacency matrix

Ajk =

{

1, (j, k) ∈ E,

0, otherwise.

Quantum model

|Ψ〉 =
∑

j ψj |j〉 ∈ C
N , N -dimensional Hilbert space

|j〉, state for particle at vertex j

H , N ×N hermitian matrix, Hamiltonian

Eg, KE = A−D, Djk = vjδjk, discrete Laplacian

Hjk = 0 unless j = k or Ajk = 1

Short-time dynamics involves transitions to adjacent vertices.

Hamiltonians can be parameterised by 1-dimensional repn’s

of the first homology group. . .
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For a combinatorial graph G . . .

(j0, . . . , jp), path, sequence of adjacent vertices

c = (j0, . . . , jp = j0), cycle on G, starts and ends at j0

C(G, ∗), cycles which start and end at ∗

Regard cycles which differ by retracings as equivalent.

πc1(G) = C(G, ∗)/ ∼,

fundamental group of G.

Unchanged by adding/removing vertices of degree 2.
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For a combinatorial graph G . . .

(j0, . . . , jp), path, sequence of adjacent vertices

c = (j0, . . . , jp = j0), cycle on G, starts and ends at j0

C(G, ∗), cycles which start and end at ∗

Regard cycles which differ by retracings as equivalent.

πc1(G) = C(G, ∗)/ ∼,

fundamental group of G.

Unchanged by adding/removing vertices of degree 2.

πc1(G)
∼= π1(Γ)

πc1(G) is the free group on β elements, where

β = |E| − |V |+ 1

Hc
1(G) = Z

β



Gauge potentials

12 / 22

H → H(Ω)

Hjk → eiΩjkHjk

Ωjk, real antisymmetric, is gauge potential

Ωjk = 0 if Ajk = 0
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H → H(Ω)

Hjk → eiΩjkHjk

Ωjk, real antisymmetric, is gauge potential

Ωjk = 0 if Ajk = 0

c = (j, k, l, . . . , n, j), cycle

Ω(c) = Ωjk +Ωkl + · · ·Ωnj , flux through c

Eg, gauge transformations.

ψj → eiθjψj ,

Hjk → ei(θj−θk)Hjk

Ω determined (up to gauge) by c 7→ eiΩ(c).

Ω 7→ H(Ω), Hamiltonians parameterised by rep’n of

H1(G).



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

K3



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

K3



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

K3



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

K3



n-particle combinatorial graph

13 / 22

Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

K3

A c2 cycle – two particles exchanged around a cycle.
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Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

Y graph

A Y -cycle – two particles exchanged on a Y junction.
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Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

Lasso

An AB-cycle – one particle goes around a cycle
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Gn = Cn(G) = {V n −∆n}/Sn

Regard as combinatorial graph. . .

Edges on Gn correspond to moving one particle along an

edge of G while keeping the others fixed.

Examples (n = 2)

Lasso

This is an example of a contractible cycle.
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We will contractible cycles on Gn as trivial.

Contractible cycles are generated by pairs of disjoint edges

of G.

πc1(Gn), combinatorial fundamental group of Gn

T c(Gn), subgroup generated by contractible cycles

If G is sufficiently subdivided, then

πc1(Gn)/T
c(Gn) ∼= π1(Γn)

Abrams (2000)

Sufficiently subdivided: Every path in G between vertices of

degree not equal to two passes through at least n edges,

and every cycle in G contains at least n+ 1 edges (can

always be achieved by adding vertices to subdivide edges)
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Abelian statistics on Gn determined by a gauge potential

(Ωn)JK , where

Ωn(c) = 0 mod 2π for every contractible cycle

We’ll call these topological gauge potentials.

Correspond to a 1d rep’n of π1(Γn),

c 7→ exp(iΩ(c))
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Abelian statistics on Gn determined by a gauge potential

(Ωn)JK , where

Ωn(c) = 0 mod 2π for every contractible cycle

We’ll call these topological gauge potentials.

Correspond to a 1d rep’n of π1(Γn),

c 7→ exp(iΩ(c))

Given n-particle Hamiltonian Hn, e.g. sum of 1-particle

discrete Laplacians, abelian statistics is incorporated via

Hn(Ω)JK = exp(i(Ωn)JK)(Hn)JK

Problem: Calculate H1(Γn) in terms of graph invariants. . .

Ko and Park 2012 (discrete Morse theory)

Harrison, Keating, JR and Sawicki 2013
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Key relation
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Ω(Y ) = Ω(AB) + Ω(c2)

Y ’s, AB’s, and c2’s span H1(Gn) . . .
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removing k − 1 vertices.
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H1(Gn) = Z
β ⊕

{

Z, if G is planar,

Z/2, if G is nonplanar.

(follows from key relation and structure theorems for

3-connected graphs)
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H1(Gn) = Z
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{

Z, if G is planar,

Z/2, if G is nonplanar.

3-connected planar graphs: β AB phases and 1 anyon

phase (like R
2).

K4: 3 AB phases, 1 anyon phase
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H1(Gn) = Z
β ⊕

{

Z, if G is planar,

Z/2, if G is nonplanar.

3-connected planar graphs: β AB phases and 1 anyon

phase (like R
2).

K4: 3 AB phases, 1 anyon phase

3-connected nonplanar graphs: β AB phases and 1 sign (like

R
3+1).

K5: 6 AB phases, 1 sign
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H1(Gn) = Z
β ⊕

{

Z, if G is planar,

Z/2, if G is nonplanar.

Ω(AB1) 6= Ω(AB2), in general
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H1(Gn) = Z
β ⊕

{

Z, if G is planar,

Z/2, if G is nonplanar.

A puzzle, perhaps. . .
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G may be decomposed into 3-connected components and

cycles. . .

µ(xi, yi), # of connected components at two-vertex cut

xi, yi

N2 =
∑

i
1

2
(µ(xi, yi)− 1)(µ(xi, yi)− 2)

N3, # of planar 3-connected components

N ′
3, # of nonplanar 3-connected components

H1(Gn) = Z
β+N2+N3 ⊕ (Z/2)N

′

3

Building-up principle: H1(Gn) is independent of n for

n ≥ 2. Prescription for n-particle gauge potential in terms of

2-particle gauge potential.
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G may be decomposed into 2-connected components. . .

µ, # of connected components at one-vertex cut xi

ν, # of edges at one-vertex cut xi

N1(xi) =
(n+µ−2

µ−1

)

(ν − 2)−
(n+µ−2

µ−2

)

− (ν − µ− 1)

N1 =
∑

iN1(xi)

H1(Gn) = Z
β+N1+N2+N3 ⊕ (Z/2)N

′

3

Depends on number of particles.

n-particle Y graph:
(

n
2

)

phases
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H = C
d (fast) × C

D (slow)

HJr,Ks = hrs(J)δJK + ǫHJKδrs

Adiabatic approximation introduces gauge potential in slow

Hamiltonian . . .

ΩJK ∼ Im 〈v(J)|v(K)〉

Can regard J , r as multiparticle indices. ΩJK does not

automatically satisfy the topological condition.
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• physical effects

• physical models

Happy Birthday, Yosi!
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