Quantum statistics on graphs

Jon Harrison (Baylor)
Jon Keating (Bristol)
JR (Bristol)
Adam Sawicki (Bristol)

$J^{3} 2011$
$J^{3}+$ Adam Sawicki 2013 preprint

July 3, 2013

Quantum statistics

The standard formulation is to take

$$
\mathcal{H}_{n}=\mathcal{H} \otimes \cdots \otimes \mathcal{H}, n \text {-particle Hilbert space, }
$$

and restrict to

$$
\begin{gathered}
\sigma|\Psi\rangle=(\operatorname{sgn} \sigma)^{\epsilon}|\Psi\rangle, \sigma \in S_{n} \\
\epsilon= \begin{cases}0, & \text { Bose statistics } \\
1 & \text { Fermi statistics }\end{cases}
\end{gathered}
$$

Quantum statistics

The standard formulation is to take

$$
\mathcal{H}_{n}=\mathcal{H} \otimes \cdots \otimes \mathcal{H}, n \text {-particle Hilbert space, }
$$

and restrict to

$$
\begin{gathered}
\sigma|\Psi\rangle=(\operatorname{sgn} \sigma)^{\epsilon}|\Psi\rangle, \sigma \in S_{n} \\
\epsilon= \begin{cases}0, & \text { Bose statistics } \\
1 & \text { Fermi statistics }\end{cases}
\end{gathered}
$$

Are there other possibilities?

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_{1}(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_{1}(M)$.

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_{1}(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_{1}(M)$.

If the rep'n is one-dimensional, it corresponds to a representation of $H_{1}(M)$.

Quantum mechanics on non-simply connected spaces

M, manifold, with fundamental group $\pi_{1}(M)$.

Standard quantization prescriptions depend on the choice of an irreducible rep'n of $\pi_{1}(M)$.

If the rep'n is one-dimensional, it corresponds to a representation of $H_{1}(M)$.

$$
H_{1}(M) \simeq \mathbb{Z}^{p} \oplus\left(\mathbb{Z} / d_{1} \oplus \cdots \oplus \mathbb{Z} / d_{q}\right)
$$

where d_{j} divides $d_{j+1} . \mathbb{Z}^{m}$ is free component, and $\mathbb{Z} / d_{1} \oplus \cdots \oplus \mathbb{Z} / d_{q}$ is torsion component.

Repn's of $H_{1}(M)$ are classified by p free phase factors $e^{2 \pi i \alpha_{j}}$ and q discrete phase factors $e^{2 \pi i a_{k} / d_{k}}$.

Path integrals

$M=\mathbb{R}^{2}-\{\mathbf{0}\}$, punctured plane $\pi_{1}(M)=H_{1}(M)=\mathbb{Z}$

Path integrals

$M=\mathbb{R}^{2}-\{\mathbf{0}\}$, punctured plane $\pi_{1}(M)=H_{1}(M)=\mathbb{Z}$

$$
U(\mathbf{r}, \mathbf{r}, t)=\int_{p: \mathbf{r} \xrightarrow{t} \mathbf{r}} e^{i S_{p}}
$$

Path integrals

$M=\mathbb{R}^{2}-\{\mathbf{0}\}$, punctured plane
$\pi_{1}(M)=H_{1}(M)=\mathbb{Z}$

$$
U(\mathbf{r}, \mathbf{r}, t)=\int_{p: \mathbf{r} \xrightarrow{t} \mathbf{r}} e^{i S_{p}}
$$

Path integrals

$$
\begin{aligned}
& M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane } \\
& \pi_{1}(M)=H_{1}(M)=\mathbb{Z}
\end{aligned}
$$

$$
U(\mathbf{r}, \mathbf{r}, t)=\int_{p: \mathbf{r} \xrightarrow{t} \rightarrow \mathbf{r}} e^{i S_{p}+i \phi[p]}
$$

$$
e^{i S_{p}+i \phi[p]}
$$

Path integrals

$$
\begin{aligned}
& M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane } \\
& \pi_{1}(M)=H_{1}(M)=\mathbb{Z}
\end{aligned}
$$

$$
U(\mathbf{r}, \mathbf{r}, t)=\int_{p: \mathbf{r} \xrightarrow{t}} e^{i S_{p}+i \phi[p]}
$$

$$
e^{i S_{p}+i \phi[p]}
$$

Unitarity and composition properties of the propagator imply that

$$
\phi[p]=\alpha \times \text { winding number }(p)
$$

Schrödinger formulation

$$
M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane }
$$

$$
\pi_{1}(M)=H_{1}(M)=\mathbb{Z}
$$

Schrödinger formulation

$$
M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane }
$$

$$
\pi_{1}(M)=H_{1}(M)=\mathbb{Z}
$$

$$
\begin{aligned}
& \mathcal{H}=L^{2}\left(\mathbb{R}^{2}-\{\mathbf{0}\}\right), \text { Hilbert space } \\
&-\nabla^{2} \rightarrow\left(\frac{1}{i} \boldsymbol{\nabla}-\mathbf{A}(\mathbf{r})\right)^{2}, \text { vector potential }
\end{aligned}
$$

Schrödinger formulation

$$
M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane }
$$

$$
\pi_{1}(M)=H_{1}(M)=\mathbb{Z}
$$

$$
\begin{aligned}
\mathcal{H} & =L^{2}\left(\mathbb{R}^{2}-\{\mathbf{0}\}\right), \text { Hilbert space } \\
-\nabla^{2} & \rightarrow\left(\frac{1}{i} \boldsymbol{\nabla}-\mathbf{A}(\mathbf{r})\right)^{2}, \text { vector potential } \\
\boldsymbol{\nabla} & \wedge \mathbf{A}=0, \quad \oint \mathbf{A} \cdot \mathbf{d r}=\alpha
\end{aligned}
$$

Schrödinger formulation

$$
M=\mathbb{R}^{2}-\{\mathbf{0}\}, \text { punctured plane }
$$

$$
\pi_{1}(M)=H_{1}(M)=\mathbb{Z}
$$

$$
\begin{aligned}
\mathcal{H} & =L^{2}\left(\mathbb{R}^{2}-\{\mathbf{0}\}\right), \text { Hilbert space } \\
-\nabla^{2} & \rightarrow\left(\frac{1}{i} \boldsymbol{\nabla}-\mathbf{A}(\mathbf{r})\right)^{2}, \text { vector potential } \\
\boldsymbol{\nabla} & \wedge \mathbf{A}=0, \quad \oint \mathbf{A} \cdot \mathbf{d r}=\alpha
\end{aligned}
$$

$\mathbf{A}=\alpha \boldsymbol{\nabla} \theta \Rightarrow \psi(\mathbf{r}) \sim r^{\min (\tilde{\alpha}, 1-\tilde{\alpha})}$, change of domain

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n},
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n},
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed
$\pi_{1}\left(C_{n}(X), *\right)$, fundamental group

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n},
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed
$\pi_{1}\left(C_{n}(X), *\right)$, fundamental group
$\pi_{1}\left(C_{n}(X)\right)$ projects into S_{n}, but they are not necessarily the same.

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n},
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed
$\pi_{1}\left(C_{n}(X), *\right)$, fundamental group
$\pi_{1}\left(C_{n}(X)\right)$ projects into S_{n}, but they are not necessarily the same. Eg,

- $X=\mathbb{R}: \quad \pi_{1}=1$

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n}
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed
$\pi_{1}\left(C_{n}(X), *\right)$, fundamental group
$\pi_{1}\left(C_{n}(X)\right)$ projects into S_{n}, but they are not necessarily the same. Eg,

- $X=\mathbb{R}: \quad \pi_{1}=1$
- $X=\mathbb{R}^{3:} \pi_{1}\left(C_{n}\right)=S_{n}, H_{1}=\mathbb{Z} / 2$

Bose/Fermi alternative

Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977) X, one-particle configuration space

$$
C_{n}(X)=\left(X^{n}-\Delta_{n}\right) / S_{n},
$$

configuration space of n indistinguishable particles, with coincident configurations Δ_{n} removed
$\pi_{1}\left(C_{n}(X), *\right)$, fundamental group
$\pi_{1}\left(C_{n}(X)\right)$ projects into S_{n}, but they are not necessarily the same. Eg,

- $X=\mathbb{R}: \quad \pi_{1}=1$
- $X=\mathbb{R}^{3}: \pi_{1}\left(C_{n}\right)=S_{n}, H_{1}=\mathbb{Z} / 2$

Bose/Fermi alternative

- $X=\mathbb{R}^{2}: \pi_{1}\left(C_{n}\right)=$ braid group, $H_{1}\left(C_{n}\right)=\mathbb{Z}$
$\left(C_{2} \sim \mathbb{R}^{2}-\{\mathbf{0}\}\right)$
Anyon statistics, $e^{i \alpha}$

What about many-particle graphs?

Combinatorial and metric graphs

G, combinatorial graph
$V=\{1, \ldots, N\}$, vertices
$E=\{\{j, k\}\}$, edges (undirected)

Take G to be simple (no loops or parallel edges) and connected.
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & e(j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

symmetric off-diagonal, $\left(A^{p}\right)_{j k} \neq 0$ for p large d_{j}, degree of vertex j

Combinatorial and metric graphs

Γ, metric graph
$V=\{1, \ldots, N\}$, vertices
$E=\{\{j, k\}\}$, edges (undirected)

Take G to be simple (no loops or parallel edges) and connected.
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & e(j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

symmetric off-diagonal, $\left(A^{p}\right)_{j k} \neq 0$ for p large
d_{j}, degree of vertex j
Associate an interval $\left[0, L_{j k}\right]$ to each edge $\{j, k\}$.
Identify endpoints with coincident vertices.

$$
\Gamma=\sqcup_{i} I_{i} / \sim,
$$

1-dimensional cell complex

Quantum metric graph

$\Psi=\left\{\psi_{e}\left(x_{e}\right)\right\}$, wavefunction
$H=\sum_{e}\left(-i \frac{d}{d x_{e}}-A_{e}\left(x_{e}\right)\right)^{2}+\phi_{e}\left(x_{e}\right)$, Hamiltonian
Boundary conditions on ψ_{e} 's required to make H self-adjoint Eg, Neumann conditions,
ψ_{e} continuous at vertices,
$\sum_{e \mid j \in e} \psi_{e}^{\prime}(j)=0$, sum of outgoing derivatives vanishes
See, eg, Berkolaiko and Kuchment 2013

n-particle quantum metric graphs

Γ, metric graph

$$
\Gamma_{2}:=C_{2}(\Gamma)=\left\{\Gamma \times \Gamma-\Delta_{2}\right\} / S_{2_{2}}
$$

$\Psi=\left\{\psi_{e f}\left(x_{e}, y_{f}\right)\right\}$, wavefunctions

n-particle quantum metric graphs

Γ, metric graph

$$
\Gamma_{2}:=C_{2}(\Gamma)=\left\{\Gamma \times \Gamma-\Delta_{2}\right\} / S_{2_{2}}
$$

3
$\Psi=\left\{\psi_{e f}\left(x_{e}, y_{f}\right)\right\}$, wavefunctions

To start, take

$$
H_{e f}=-\left(\frac{\partial^{2}}{\partial x_{e}^{2}}+\frac{\partial^{2}}{\partial y_{f}^{2}}\right)
$$

Require boundary conditions which render H self-adjoint.
Then try to incorporate rep'n of $\pi_{1} \ldots$
Balachandran and Ercolessi (1991), Aneziris (1994), Bolte and Kerner (2011)

n-particle quantum metric graphs

Γ, metric graph

$$
\Gamma_{2}:=C_{2}(\Gamma)=\left\{\Gamma \times \Gamma-\Delta_{2}\right\} / S_{2_{2}}
$$

3
$\Psi=\left\{\psi_{e f}\left(x_{e}, y_{f}\right)\right\}$, wavefunctions

To start, take

$$
H_{e f}=-\left(\frac{\partial^{2}}{\partial x_{e}^{2}}+\frac{\partial^{2}}{\partial y_{f}^{2}}\right)
$$

Require boundary conditions which render H self-adjoint.
Then try to incorporate rep'n of $\pi_{1} \ldots$
Balachandran and Ercolessi (1991), Aneziris (1994), Bolte and Kerner (2011)

The topology is more easily incorporated in the combinatorial setting. . .

Quantum combinatorial graphs

G, simple connected combinatorial graph
$V=\{1, \ldots, N\}$, vertices
$E=\{(j, k)\}$, edges
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & (j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Quantum combinatorial graphs

G, simple connected combinatorial graph
$V=\{1, \ldots, N\}$, vertices
$E=\{(j, k)\}$, edges
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & (j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Quantum model

$|\Psi\rangle=\sum_{j} \psi_{j}|j\rangle \in \mathbb{C}^{N}, N$-dimensional Hilbert space $|j\rangle$, state for particle at vertex j

Quantum combinatorial graphs

G, simple connected combinatorial graph
$V=\{1, \ldots, N\}$, vertices
$E=\{(j, k)\}$, edges
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & (j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Quantum model

$|\Psi\rangle=\sum_{j} \psi_{j}|j\rangle \in \mathbb{C}^{N}, N$-dimensional Hilbert space
$|j\rangle$, state for particle at vertex j
$H, N \times N$ hermitian matrix, Hamiltonian
Eg, $K E=A-D, D_{j k}=v_{j} \delta_{j k}$, discrete Laplacian
$H_{j k}=0$ unless $j=k$ or $A_{j k}=1$
Short-time dynamics involves transitions to adjacent vertices.

Quantum combinatorial graphs

G, simple connected combinatorial graph
$V=\{1, \ldots, N\}$, vertices
$E=\{(j, k)\}$, edges
A, adjacency matrix

$$
A_{j k}= \begin{cases}1, & (j, k) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Quantum model

$|\Psi\rangle=\sum_{j} \psi_{j}|j\rangle \in \mathbb{C}^{N}, N$-dimensional Hilbert space $|j\rangle$, state for particle at vertex j
$H, N \times N$ hermitian matrix, Hamiltonian
$\mathrm{Eg}, K E=A-D, D_{j k}=v_{j} \delta_{j k}$, discrete Laplacian
$H_{j k}=0$ unless $j=k$ or $A_{j k}=1$
Short-time dynamics involves transitions to adjacent vertices.
Hamiltonians can be parameterised by 1 -dimensional repn's of the first homology group. . .

π_{1} and H_{1} for combinatorial graph

For a combinatorial graph G . . .
$\left(j_{0}, \ldots, j_{p}\right)$, path, sequence of adjacent vertices
$c=\left(j_{0}, \ldots, j_{p}=j_{0}\right)$, cycle on G, starts and ends at j_{0}
$\mathcal{C}(G, *)$, cycles which start and end at $*$
Regard cycles which differ by retracings as equivalent.

$$
\pi_{1}^{c}(G)=\mathcal{C}(G, *) / \sim
$$

fundamental group of G.
Unchanged by adding/removing vertices of degree 2.

π_{1} and H_{1} for combinatorial graph

For a combinatorial graph $G \ldots$
$\left(j_{0}, \ldots, j_{p}\right)$, path, sequence of adjacent vertices
$c=\left(j_{0}, \ldots, j_{p}=j_{0}\right)$, cycle on G, starts and ends at j_{0}
$\mathcal{C}(G, *)$, cycles which start and end at *
Regard cycles which differ by retracings as equivalent.

$$
\pi_{1}^{c}(G)=\mathcal{C}(G, *) / \sim,
$$

fundamental group of G.
Unchanged by adding/removing vertices of degree 2.

$$
\pi_{1}^{c}(G) \cong \pi_{1}(\Gamma)
$$

$\pi_{1}^{c}(G)$ is the free group on β elements, where

$$
\begin{gathered}
\beta=|E|-|V|+1 \\
H_{1}^{c}(G)=\mathbb{Z}^{\beta}
\end{gathered}
$$

Gauge potentials

$$
\begin{gathered}
H \rightarrow H(\Omega) \\
H_{j k} \rightarrow e^{i \Omega_{j k}} H_{j k}
\end{gathered}
$$

$\Omega_{j k}$, real antisymmetric, is gauge potential $\Omega_{j k}=0$ if $A_{j k}=0$

Gauge potentials

$$
\begin{aligned}
H & \rightarrow H(\Omega) \\
H_{j k} & \rightarrow e^{i \Omega_{j k}} H_{j k}
\end{aligned}
$$

$\Omega_{j k}$, real antisymmetric, is gauge potential
$\Omega_{j k}=0$ if $A_{j k}=0$
$c=(j, k, l, \ldots, n, j)$, cycle
$\Omega(c)=\Omega_{j k}+\Omega_{k l}+\cdots \Omega_{n j}$, flux through c

Gauge potentials

$$
\begin{aligned}
H & \rightarrow H(\Omega) \\
H_{j k} & \rightarrow e^{i \Omega_{j k}} H_{j k}
\end{aligned}
$$

$\Omega_{j k}$, real antisymmetric, is gauge potential
$\Omega_{j k}=0$ if $A_{j k}=0$
$c=(j, k, l, \ldots, n, j)$, cycle
$\Omega(c)=\Omega_{j k}+\Omega_{k l}+\cdots \Omega_{n j}$, flux through c
Eg, gauge transformations.

$$
\begin{aligned}
\psi_{j} & \rightarrow e^{i \theta_{j}} \psi_{j} \\
H_{j k} & \rightarrow e^{i\left(\theta_{j}-\theta_{k}\right)} H_{j k}
\end{aligned}
$$

Gauge potentials

$$
\begin{aligned}
H & \rightarrow H(\Omega) \\
H_{j k} & \rightarrow e^{i \Omega_{j k}} H_{j k}
\end{aligned}
$$

$\Omega_{j k}$, real antisymmetric, is gauge potential
$\Omega_{j k}=0$ if $A_{j k}=0$
$c=(j, k, l, \ldots, n, j)$, cycle
$\Omega(c)=\Omega_{j k}+\Omega_{k l}+\cdots \Omega_{n j}$, flux through c
Eg, gauge transformations.

$$
\begin{aligned}
\psi_{j} & \rightarrow e^{i \theta_{j}} \psi_{j} \\
H_{j k} & \rightarrow e^{i\left(\theta_{j}-\theta_{k}\right)} H_{j k}
\end{aligned}
$$

Ω determined (up to gauge) by $c \mapsto e^{i \Omega(c)}$.

Gauge potentials

$$
\begin{gathered}
H \rightarrow H(\Omega) \\
H_{j k} \rightarrow e^{i \Omega_{j k}} H_{j k}
\end{gathered}
$$

$\Omega_{j k}$, real antisymmetric, is gauge potential
$\Omega_{j k}=0$ if $A_{j k}=0$
$c=(j, k, l, \ldots, n, j)$, cycle
$\Omega(c)=\Omega_{j k}+\Omega_{k l}+\cdots \Omega_{n j}$, flux through c
Eg, gauge transformations.

$$
\begin{aligned}
\psi_{j} & \rightarrow e^{i \theta_{j}} \psi_{j} \\
H_{j k} & \rightarrow e^{i\left(\theta_{j}-\theta_{k}\right)} H_{j k}
\end{aligned}
$$

Ω determined (up to gauge) by $c \mapsto e^{i \Omega(c)}$.
$\Omega \mapsto H(\Omega)$, Hamiltonians parameterised by rep'n of $H_{1}(G)$.

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
K_{3}

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
K_{3}

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
K_{3}

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
K_{3}

$(1,3)$

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
K_{3}
$(1,3)$

$(2,3)$

A c_{2} cycle - two particles exchanged around a cycle.

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Y graph

$(2,3)$

A Y-cycle - two particles exchanged on a Y junction.

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3
$(0,2)$
$(0,3)$
$(1,2)$

$(1,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3

$(0,3)$
$(1,2)$
$(2,3)$
$(1,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3
$(0,2)$

$(0,3)$
$(2,3)$
$(1,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3
$(0,2)$

$(0,3)$
$(1,2)$
$(1,3)$

An $A B$-cycle - one particle goes around a cycle

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3
$(0,2)$

$(0,3)$
$(2,3)$
$(1,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3

$(2,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3

$(0,3)$
$(1,2)$
$(2,3)$
$(1,3)$

n-particle combinatorial graph

$$
G_{n}=C_{n}(G)=\left\{V^{n}-\Delta_{n}\right\} / S_{n}
$$

Regard as combinatorial graph. . .

Edges on G_{n} correspond to moving one particle along an edge of G while keeping the others fixed.

Examples ($n=2$)
Lasso

3
$(0,2)$

$(0,3)$
$(1,2)$
$(1,3)$

This is an example of a contractible cycle.

Contractible cycles

We will contractible cycles on G_{n} as trivial.

Contractible cycles

We will contractible cycles on G_{n} as trivial.

Contractible cycles

We will contractible cycles on G_{n} as trivial.
Contractible cycles are generated by pairs of disjoint edges of G.

Contractible cycles

We will contractible cycles on G_{n} as trivial.
Contractible cycles are generated by pairs of disjoint edges of G.
$\pi_{1}^{c}\left(G_{n}\right)$, combinatorial fundamental group of G_{n}
$T^{c}\left(G_{n}\right)$, subgroup generated by contractible cycles

Contractible cycles

We will contractible cycles on G_{n} as trivial.
Contractible cycles are generated by pairs of disjoint edges of G.
$\pi_{1}^{c}\left(G_{n}\right)$, combinatorial fundamental group of G_{n}
$T^{c}\left(G_{n}\right)$, subgroup generated by contractible cycles

If G is sufficiently subdivided, then

$$
\pi_{1}^{c}\left(G_{n}\right) / T^{c}\left(G_{n}\right) \cong \pi_{1}\left(\Gamma_{n}\right)
$$

Abrams (2000)
Sufficiently subdivided: Every path in G between vertices of degree not equal to two passes through at least n edges, and every cycle in G contains at least $n+1$ edges (can always be achieved by adding vertices to subdivide edges)

Topological gauge potentials

Abelian statistics on G_{n} determined by a gauge potential $\left(\Omega_{n}\right)_{J K}$, where

$$
\Omega_{n}(c)=0 \quad \bmod 2 \pi \text { for every contractible cycle }
$$

We'll call these topological gauge potentials.
Correspond to a 1d rep'n of $\pi_{1}\left(\Gamma_{n}\right)$,

$$
c \mapsto \exp (i \Omega(c))
$$

Topological gauge potentials

Abelian statistics on G_{n} determined by a gauge potential $\left(\Omega_{n}\right)_{J K}$, where

$$
\Omega_{n}(c)=0 \quad \bmod 2 \pi \text { for every contractible cycle }
$$

We'll call these topological gauge potentials.
Correspond to a 1d rep'n of $\pi_{1}\left(\Gamma_{n}\right)$,

$$
c \mapsto \exp (i \Omega(c))
$$

Given n-particle Hamiltonian H_{n}, e.g. sum of 1-particle discrete Laplacians, abelian statistics is incorporated via

$$
H_{n}(\Omega)_{J K}=\exp \left(i\left(\Omega_{n}\right)_{J K}\right)\left(H_{n}\right)_{J K}
$$

Problem: Calculate $H_{1}\left(\Gamma_{n}\right)$ in terms of graph invariants...
Ko and Park 2012 (discrete Morse theory) Harrison, Keating, JR and Sawicki 2013

Key relation

Key relation

$$
\Omega(Y)=\Omega(A B)+\Omega\left(c_{2}\right)
$$

Key relation

3

$$
\Omega(Y)=\Omega(A B)+\Omega\left(c_{2}\right)
$$

Y^{\prime} 's, $A B$'s, and c_{2} 's span $H_{1}\left(G_{n}\right) \ldots$

Connectivity

A graph is k-connected if it cannot be disconnected by removing $k-1$ vertices.

Connectivity

A graph is k-connected if it cannot be disconnected by removing $k-1$ vertices.

1-connected, not 2-connected

Connectivity

A graph is k-connected if it cannot be disconnected by removing $k-1$ vertices.

2-connected, not 3-connected

Connectivity

A graph is k-connected if it cannot be disconnected by removing $k-1$ vertices.

3-connected, not 4-connected

3-connected graphs

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta} \oplus \begin{cases}\mathbb{Z}, & \text { if } G \text { is planar, } \\ \mathbb{Z} / 2, & \text { if } G \text { is nonplanar. }\end{cases}
$$

(follows from key relation and structure theorems for 3 -connected graphs)

3-connected graphs

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta} \oplus \begin{cases}\mathbb{Z}, & \text { if } G \text { is planar, } \\ \mathbb{Z} / 2, & \text { if } G \text { is nonplanar. }\end{cases}
$$

3-connected planar graphs: $\beta \mathrm{AB}$ phases and 1 anyon phase (like \mathbb{R}^{2}).

$K_{4}: 3 \mathrm{AB}$ phases, 1 anyon phase

3-connected graphs

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta} \oplus \begin{cases}\mathbb{Z}, & \text { if } G \text { is planar, } \\ \mathbb{Z} / 2, & \text { if } G \text { is nonplanar. }\end{cases}
$$

3-connected planar graphs: β AB phases and 1 anyon phase (like \mathbb{R}^{2}).

$K_{4}: 3 \mathrm{AB}$ phases, 1 anyon phase

3-connected nonplanar graphs: β AB phases and 1 sign (like $\left.\mathbb{R}^{3+1}\right)$.

$K_{5}: 6 \mathrm{AB}$ phases, 1 sign

3-connected graphs

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta} \oplus \begin{cases}\mathbb{Z}, & \text { if } G \text { is planar, } \\ \mathbb{Z} / 2, & \text { if } G \text { is nonplanar. }\end{cases}
$$

$\Omega\left(A B_{1}\right) \neq \Omega\left(A B_{2}\right)$, in general

3-connected graphs

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta} \oplus \begin{cases}\mathbb{Z}, & \text { if } G \text { is planar, } \\ \mathbb{Z} / 2, & \text { if } G \text { is nonplanar. }\end{cases}
$$

A puzzle, perhaps...

2-connected graphs

G may be decomposed into 3-connected components and cycles. . .

2-connected graphs

G may be decomposed into 3-connected components and cycles. . .

2-connected graphs

G may be decomposed into 3-connected components and cycles. . .

2-connected graphs

G may be decomposed into 3-connected components and cycles. . .

2-connected graphs

G may be decomposed into 3-connected components and cycles...

$\mu\left(x_{i}, y_{i}\right)$, \# of connected components at two-vertex cut x_{i}, y_{i}
$N_{2}=\sum_{i} \frac{1}{2}\left(\mu\left(x_{i}, y_{i}\right)-1\right)\left(\mu\left(x_{i}, y_{i}\right)-2\right)$
N_{3}, \# of planar 3-connected components
N_{3}^{\prime}, \# of nonplanar 3-connected components

2-connected graphs

G may be decomposed into 3-connected components and cycles...

$\mu\left(x_{i}, y_{i}\right)$, \# of connected components at two-vertex cut x_{i}, y_{i}
$N_{2}=\sum_{i} \frac{1}{2}\left(\mu\left(x_{i}, y_{i}\right)-1\right)\left(\mu\left(x_{i}, y_{i}\right)-2\right)$
N_{3}, \# of planar 3-connected components
N_{3}^{\prime}, \# of nonplanar 3-connected components

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta+N_{2}+N_{3}} \oplus(\mathbb{Z} / 2)^{N_{3}^{\prime}}
$$

2-connected graphs

G may be decomposed into 3-connected components and cycles...

$\mu\left(x_{i}, y_{i}\right)$, \# of connected components at two-vertex cut x_{i}, y_{i}
$N_{2}=\sum_{i} \frac{1}{2}\left(\mu\left(x_{i}, y_{i}\right)-1\right)\left(\mu\left(x_{i}, y_{i}\right)-2\right)$
N_{3}, \# of planar 3-connected components
N_{3}^{\prime}, \# of nonplanar 3-connected components

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta+N_{2}+N_{3}} \oplus(\mathbb{Z} / 2)^{N_{3}^{\prime}}
$$

Chain of 3-connected components

2-connected graphs

G may be decomposed into 3-connected components and cycles...

$\mu\left(x_{i}, y_{i}\right)$, \# of connected components at two-vertex cut x_{i}, y_{i}
$N_{2}=\sum_{i} \frac{1}{2}\left(\mu\left(x_{i}, y_{i}\right)-1\right)\left(\mu\left(x_{i}, y_{i}\right)-2\right)$
N_{3}, \# of planar 3-connected components
N_{3}^{\prime}, \# of nonplanar 3-connected components

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta+N_{2}+N_{3}} \oplus(\mathbb{Z} / 2)^{N_{3}^{\prime}}
$$

Building-up principle: $H_{1}\left(G_{n}\right)$ is independent of n for $n \geq 2$. Prescription for n-particle gauge potential in terms of 2 -particle gauge potential.

1-connected graphs

G may be decomposed into 2-connected components. . .

1-connected graphs

G may be decomposed into 2-connected components. . .

1-connected graphs

G may be decomposed into 2-connected components. . .

μ, \# of connected components at one-vertex cut x_{i}
ν, \# of edges at one-vertex cut x_{i}
$N_{1}\left(x_{i}\right)=\binom{n+\mu-2}{\mu-1}(\nu-2)-\binom{n+\mu-2}{\mu-2}-(\nu-\mu-1)$
$N_{1}=\sum_{i} N_{1}\left(x_{i}\right)$

1-connected graphs

G may be decomposed into 2-connected components. . .

μ, \# of connected components at one-vertex cut x_{i}
ν, \# of edges at one-vertex cut x_{i}
$N_{1}\left(x_{i}\right)=\binom{n+\mu-2}{\mu-1}(\nu-2)-\binom{n+\mu-2}{\mu-2}-(\nu-\mu-1)$
$N_{1}=\sum_{i} N_{1}\left(x_{i}\right)$

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta+N_{1}+N_{2}+N_{3}} \oplus(\mathbb{Z} / 2)^{N_{3}^{\prime}}
$$

Depends on number of particles.

1-connected graphs

G may be decomposed into 2-connected components. . .

μ, \# of connected components at one-vertex cut x_{i}
ν, \# of edges at one-vertex cut x_{i}
$N_{1}\left(x_{i}\right)=\binom{n+\mu-2}{\mu-1}(\nu-2)-\binom{n+\mu-2}{\mu-2}-(\nu-\mu-1)$
$N_{1}=\sum_{i} N_{1}\left(x_{i}\right)$

$$
H_{1}\left(G_{n}\right)=\mathbb{Z}^{\beta+N_{1}+N_{2}+N_{3}} \oplus(\mathbb{Z} / 2)^{N_{3}^{\prime}}
$$

Depends on number of particles.

$$
n \text {-particle } Y \text { graph: }\binom{n}{2} \text { phases }
$$

How phases might arise

$$
\mathcal{H}=\mathbb{C}^{d}(\text { fast }) \times \mathbb{C}^{D}(\text { slow })
$$

$$
H_{J r, K s}=h_{r s}(J) \delta_{J K}+\epsilon H_{J K} \delta_{r s}
$$

Adiabatic approximation introduces gauge potential in slow Hamiltonian ...

$$
\Omega_{J K} \sim \operatorname{Im}\langle v(J) \mid v(K)\rangle
$$

Can regard J, r as multiparticle indices. $\Omega_{J K}$ does not automatically satisfy the topological condition.

An engineer's questions

- physical effects
- physical models

Happy Birthday, Yosi!

