Exponential Decay of Eigenfunctions of Partial Differential Operators

Ira Herbst (joint work with Erik Skibsted)

Avronfest June 30 - July 4, 2013

- I Introduction and review of some results for the Laplacian
 - Laplacian the one body problem
 - Laplacian the N-body problem
- II Results for $Q(-i\nabla)$
 - there is exponential decay
 - there is no super-exponential decay
 - the decay rate is "algebraically" determined
 - example: polynomials in the Laplacian
- III Proofs
 - decay rate σ_c determined when $< \infty$
 - decay rate $< \infty$
- IV Improvement for the bi-Laplacian

Introduction

In this talk I will consider the decay as $|x| \to \infty$ of solutions ψ to the eigenvalue problem

$$(H-\lambda)\psi=0.$$

Here H is in a class of self-adjoint partial differential operators of the form

$$H = Q(-i\nabla) + V(x)$$

where Q is a real elliptic polynomial and V is bounded. But first a review of some results for the Laplacian.

Laplacian - the one body problem

Consider solutions ψ to

$$(-\Delta + V(x) - \lambda)\psi = 0, \psi \in L^2(\mathbb{R}^d),$$

V(x) o 0 as $|x| o \infty, \lambda$ and V real. Well known results: define σ_c

$$\sigma_c = \sup\{\sigma : e^{\sigma r} \psi \in L^2(\mathbb{R}^d)\}\$$

Theorem (Combes-Thomas, Bardos-Merigot, FH2HO)

- i) If $\lambda < 0$ and V(x) = o(1) or $\lambda > 0$ and $V(x) = o(|x|^{-1})$, then $\sigma_c > 0$.
- ii) If $V(x) = O(|x|^{-1/2})$ then either $\sigma_c < \infty$ or $\psi = 0$.
- iii) If $V(x) = o(|x|^{-1/2})$ and $\sigma_c \in (0, \infty)$ then $\lambda < 0$ and $\sigma_c = \sqrt{-\lambda}$.

OPEN PROBLEM: If V is bounded or even $V(x) = O(|x|^{-\delta}), \delta > 0$, is it true that $\sigma_c < \infty$ unless $\psi = 0$?

Laplacian - the N-body problem

Consider now the N-body problem, $H=-\Delta+V, (H-\lambda)\psi=0$ where for simplicity V is a sum of fast decaying 2-body potentials plus a fast decaying N-particle interaction.

Let

$$\Sigma_c = {\sqrt{\tau - \lambda} : \tau \in T(H), \tau > \lambda}$$

T(H) is the set of thresholds of H, a closed countable set independent of the N-particle interaction.

Theorem (Froese, H)

Suppose $H, \lambda, \psi (\neq 0)$ are as above and $\lambda \notin T(H)$. Then $\sigma_c \in \Sigma_c$.

The particular value of $\sigma_c \in \Sigma_c$ will depend on the N-particle interaction as well as λ .

The point of this slide is to emphasize that there are situations (unlike the one-body problem with the Laplacian) where there may be several possibilities for the decay rate for a given λ .

Results for $Q(-i\nabla)$

We consider $L^2(\mathbb{R}^d)$ solutions ψ to

$$(Q(-i\nabla) + V(x) - \lambda)\psi = 0$$

with Q a real elliptic polynomial and $\lim_{|x|\to\infty}V(x)=0$. Consider the two conditions on a point $(\sigma,\xi,\omega)\in\mathbb{R}_+\times\mathbb{R}^d\times S^{d-1}$

$$Q(\xi + i\sigma\omega) = \lambda \tag{1}$$

$$P_{\perp}(\omega)\nabla_{\xi}Q(\xi+i\sigma\omega)=0\tag{2}$$

where $P_{\perp}(\omega)$ is the projection onto the subspace of \mathbb{R}^d perpendicular to ω .

Let

$$\Sigma_c = \{\sigma > 0 : \exists (\xi, \omega) \in \mathbb{R}^d \times S^{d-1} \text{ so that (1) and (2) are satisfied} \}$$

We will give conditions under which the decay rate σ_c is in Σ_c . Let $V=V_1+V_2$, both real and bounded.

Theorem (There is exponential decay)

Under either of the following two conditions we can conclude that $\sigma_c > 0$:

- **1** $\lambda \notin RanQ$ and V(x) = o(1) at infinity
- ② $\lambda \in RanQ$ but λ is not a critical value of Q and in addition $V_2(x) = o(|x|^{-1})$ and $\forall \alpha : \partial^{\alpha} V_1(x) = o(|x|^{-|\alpha|})$.

The next theorem eliminates the possibility of super-exponential decay (under strong conditions on the potential - too strong). Let q be the degree of the polynomial Q.

Theorem (There is no super-exponential decay)

Suppose
$$V_2(x) = O(|x|^{-(q/2+\delta)})$$
, $\partial^{\alpha} V_1(x) = O(|x|^{-(\delta+|\alpha|+q)/2})$, where $1 \le |\alpha| \le q$ and $\delta > 0$. Then $\sigma_c < \infty$ or $\psi = 0$.

Given the last two theorems we know conditions on the potential so that $\sigma_c \in (0, \infty)$. In this case we can determine the decay rate "algebraically".

Theorem (Decay rate determined)

Assume $V_2(x) = o(|x|^{-1/2})$ and $\forall \alpha : \partial^{\alpha} V_1(x) = o(|x|^{-|\alpha|})$. Suppose $\sigma_c \in (0, \infty)$. Then $\sigma_c \in \Sigma_c$.

Example: $Q(\xi) = G(\xi^2)$

We take degree of Q=q. Then degree G=q/2. We assume $\sigma \in (0,\infty)$. With $z=(\xi+i\sigma\omega)^2$ the critical equations (1) and (2) which determine the possible decay rates σ reduce to

$$G(z) = \lambda$$

 $G'(z)P_{\perp}(\omega)\xi = 0$

Except for at most (q-2)/2 λ 's (arising from non-simple roots of $G-\lambda$), these equations reduce to $G((|\xi|+i\sigma)^2)=\lambda$.

If $G(-\Delta) = \prod_{j=1}^{n} (\Delta^2 - \sigma_j^4)$, $0 < \sigma_1 < \dots < \sigma_n$, all these σ 's occur as decay rates for embedded eigenvalue 0 with different compact support potentials.

In fact for any real λ except possibly for the at most (q-2)/2 exceptional ones, any $\sigma \in \Sigma_c$ is a decay rate σ_c for some real compact support potential and some eigenfunction ψ .

Proof: decay rate σ_c determined when $\sigma_c \in (0, \infty)$

We only give some of the main ingredients of the proofs.

Condition (1) above, $Q(\xi + i\sigma\omega) = \lambda$, involves an energy estimate for the state $e^{\sigma r}\psi$ which we do not discuss here.

To understand Condition (2), $P_{\perp}(\omega)\nabla_{\xi}Q(\xi+i\sigma\omega)=0$, we use commutator methods with a special *conjugate operator* dependent on a parameter σ constructed as follows. First decompose $Q(\xi+i\eta)$ into its real and imaginary parts:

$$Q(\xi + i\eta) = X(\xi, \eta) + iY(\xi, \eta)$$

Let

$$a(x,\xi) = rY(\xi,\sigma\omega(x))$$

Then the conjugate operator A is defined as the operator with Weyl symbol a:

$$A = Op^w(a)$$

Note that if $Q(p) = p^2$, then $A = \sigma(x \cdot p + p \cdot x)$, $p = -i\nabla$. To get an idea where this comes from note that $Q(p + i\sigma\omega) = e^{\sigma r}Q(p)e^{-\sigma r}$ and

$$i[Q(p), e^{\sigma r} A e^{\sigma r}] = e^{\sigma r} (i[\tilde{X}, A] + 2 \operatorname{Re} \tilde{Y} A) e^{\sigma r},$$

where $\tilde{X}=\operatorname{Re}(e^{\sigma r}Q(p)e^{-\sigma r})$ and $\tilde{Y}=\operatorname{Im}(e^{\sigma r}Q(p)e^{-\sigma r})$. To leading order the symbol of the operator between exponentials to the right has symbol

$$r\{X,Y\} + 2rY^2 + \{X,r\}Y.$$
 (3)

We can calculate the Poisson bracket $\{X, Y\}$ using the Cauchy - Riemann equations:

$$\{X,Y\} = |P_{\perp}(\omega)\nabla_{\xi}Q(\xi + i\sigma\omega)|^2$$

The last term in (3) can be bounded by the middle term and something of lower order.

Absence of super-exponential decay, $\sigma_c < \infty$

Two key points:

♦ No pseudo-differential operators. Exact computations.

$$\Diamond r = |x| \rightarrow r = \langle x \rangle - \langle x \rangle^{1-\epsilon} + 1$$
 (Rodnianski - Tao)

Let $\mathbf{a} = \mathbf{p} - i\sigma\omega$, $\omega = \nabla r$. The eigenvalue equation for $\psi_{\sigma} = e^{\sigma r}\psi$ is

$$(Q(a^*) + V - \lambda)\psi_{\sigma} = 0$$

Thus

$$<\psi_{\sigma}, ([Q(a), Q(a^*)] + |Q(a) + V_1 - \lambda|^2)\psi_{\sigma}> = -<\psi_{\sigma}, (2\text{Re}[Q(a), V_1] + |V_2|^2)\psi_{\sigma}>$$

Another key point: $P := [a, a^*] \ge c\sigma r^{-(1+\epsilon)}$

We extract positivity from $[Q(a), Q(a^*)]$. Write the commutator as a sum of Wick ordered operators. Let $J_m = (j_1, ..., j_m), K_m = (k_1, ..., k_m)$. Then

$$[Q(a), Q(a^*)] = F + E$$

$$F = \sum_{m=1}^{q} \sum_{J_m, K_m} \partial_{J_m} Q(a^*) P_{J_m, K_m} \partial_{K_m} Q(a) / m!$$

Here $\partial_{J_m} = \partial_{j_1} \cdots \partial_{j_m}$, $\partial_{K_m} = \partial_{k_1} \cdots \partial_{k_m}$, $P_{J_m,K_m} = P_{j_1,k_1} \cdots P_{j_m,k_m}$ and E is negligible for large σ .

Note for example that the term with m = q is bounded below by

$$c\sigma^q r^{-q(1+\epsilon)}$$
.

Improvement for the bi-Laplacian

Theorem (Improved super-exponential decay result)

Take
$$Q(-i\nabla) = (-\Delta)^{q/2}, q = 2, 4.$$

Suppose

$$V_2(x) = O(|x|^{-q/4-\delta})$$

 $\partial^{\alpha} V_1(x) = O(|x|^{-(\delta+q/2+|\alpha|)/2}) \text{ for } 1 \le |\alpha| \le q/2, \text{ and } \delta > 0.$

Then $\sigma_c < \infty$.

This theorem replaces q by q/2 in the assumptions on the potential for $Q(-i\nabla)=(-\Delta)^{q/2}, q=2,4$.