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”The world is full of interesting operators”
Y. Avron (2004) , at the ~ Cafe’
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Smilansky’s ”irreversible” model.

A particle in a line (coordinate x) coupled to a linear harmonic oscillator (coordinate
q) by point interaction:

Ĥ = −
1

2

∂2

∂x2
−

1

2

∂2

∂q2
+

1

2
ω2q2 + + α q δ(x − x0) . (1)

α > 0 a parameter, x0 a fixed point. 1

Theorem

(M Solomyak 04; SN Naboko, M Solomyak 06) If 0 < α < ω, the
spectrum of Ĥ is: pure absolutely continuous in [ 1

2ω,+∞); pure
point, and finite, below 1

2ω.
If α > ω, then : no point spectrum , and the ac spectrum acquires
an additional component with multiplicity 1 that coincides with R.

1SN&MS, Proc.London Math. Soc. (3) 92(2006) ”...is a striking example
of a problem which in spite of its seeming simplicity exhibits many unexpected
effects...”
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Boxing the particle

Let the particle be confined within a box, with either hard-wall or periodic boundary

conditions.

Theorem

If α < ω, the spectrum of Ĥ is pure point. If α > ω, generically no
pp spectrum, and absolutely continuous component of multiplicity
1, that coincides with R.

Solomyak&Naboko’s proof still works over the threshold, with minor adaptations .



Dynamics of Smilansky’s model I



Dynamics of Smilansky’s model II

Theorem

The time-averaged energy of the oscillator grows in time, at least
exponentially fast: i.e.,

lim inf
T→+∞

ln(Eosc(T ))

T
> 0 . (2)

The probability distribution of the position x of the particle weakly
converges to δ(x − x0) in the limit t → +∞.

Eosc(T )) = 1
T

∫ T
0 dt (ψ(t), Ĥosc ⊗ Iψ(t)) .



Band formalism.

The particle is moving in a circle S parametrized by x ∈ [−π,+π] with a distinguished

point O (x = 0).

H =

∫ ⊕
R

dq Hα(q) + I⊗ Hosc ,

Hα(q) = −1
2

d2

dx2 + αq δ(x) .

ψ(x , q) =
+∞∑
n=0

Qn(q) φq,n(x) ,

Hα(q)φq,n = Wn(q)φq,n , φq,n ∈ L2(S) . (3)





Band formalism, II

(ψ, Hψ) = (ψ, I⊗ H(osc)
ω ψ) +

+
+∞∑
n=0

∫
R

dq Wn(q)|Qn(q)|2

≥ (ψ, I⊗ H̃α,ω ψ)+

+
+∞∑
n=1

∫
R

dq (n − 1/2)|Qn(q)|2 .

H̃α,ω = −1

2

d2

dq2
+

1

2
ω2q2 + W−

0 (q)

W−
0 (q) = 1

2 (1− sign(q))W0(q)



A diversion on inverted oscillators

H
(osc)
iω =

p2

2
− 1

2
ω2q2 = H(osc)

ω − ω2q2 (4)

on the H
(osc)
ω eigenbasis, matrix elements (H

(osc)
iω )nm 6= 0 only if

m − n = ±2.

2ωHn,n+2 = −
√

(n + 1)(n + 2) , 2ωHn,n−2 = −
√

n(n − 1).

u(k ,E ): amplitude of the (even) formal eigenfunction of energy E
at n = 2k

u(k + 2,E ) + p(k ,E )u(k + 1) + q(k)u(k,E ) = 0

p(k ,E ) ∼ E
ω

1
k , q(k) ∼ 1 − 1

k (5)

1



BA&WL Theory

Birkhoff (1911), Adams (1928), Wong and Li (1993). Provides asymptotic
(n→∞) approximations for solutions of 2nd order difference equations of the
form

C(n + 2) + p(n)C(n + 1) + q(n)C(n) = 0

whenever the coefficients have asymptotic expansions p(n) ∼
∑

r a(r)n−r and
q(n) ∼

∑
r b(r)n−r .

”Normal”, linearly independent solutions exist, which have the asymptotic form:

C?
±(n) ∼ σ±

nnα±
∞∑
s=0

c±(s)n−s ,

σ±
2 + a(0)σ± + b(0) = 0 , α± =

a(1)σ± + b(1)

a(0)σ± + 2b(0)
.

(assuming σ+ 6= σ−)
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Application to the inverted oscillator

φ(2n,E ) ∼ 1√
n

cos
(
E log(n)/2ω + nπ4 + β(E )

)
consistent with q → +∞ asymptotics : G.Barton, Ann. Phys. 166 (1986)

⇒ ac spectrum.
ac spectrum + n−1/2 eigfs decay ⇒ exponential growth of

energy.



Spectral Analysis over threshold.

Expansion in normalized Hermite functions (HO eigenfunctions):

ψ(x , q) =
∞∑
n=0

ψn(x) hn(q) ,

identifies the Hilbert space of the system as H = `2(N0)⊗ L2
+(S) of sequences

{ψn(x)}n∈N0 , ψn(x) ∈ L2(S), ψ even,
∑
n

‖ψn‖2 < +∞.

Hamiltonian

{ψn(x)} 7→ {Lnψn(x)}, Ln = −1
2

d2

dx2 + (n + 1
2 )ω with periodic

bdary conditions and matching conditions at x = 0:

ψ′n(0+)− ψ′n(0−) = 2α(2ω)−1
(√

n + 1ψn+1(0) +
√

nψn−1(0)
)



Formal Eigenfunctions

Sequences {un(x ,E )} that solve Lnun(x ,E ) = Eun(x ,E ) for all
integer n ≥ 0 and satisfy the matching conditions. May be written
as

un(x ,E ) = C (n,E ) vn(x ,E )

where vn(x) = normalized sol. of Lnvn = Evn, and constants
C (n,E ) satisfy:

2nd order Difference Equation

h2(n,E )C (n + 2,E ) + h1(n,E )C (n + 1,E ) + h0(n,E )C (n,E ) = 0 , (n ≥ 0)

with ”initial” condition:
h2(−1,E )C (1,E ) = −h1(−1,E )C (0,E ) .





BA&WL again

’Exceptional’ energies E : those which are either branch points or zeros for some
coefficient h2(n,E), h1(n,E) .

Theorem

If α > ω then for all non-exceptional E, a formal eigenfunction exists, and has the
n→∞ asymptotics

C(n,E) ∼
1
√
πn

cos(nθ − λE log(n) + ζ(E)) + O(n−3/2)

θ = arccos(ω/α) , λ = 1
2

(α2 − ω2)−1/2 .

The phase ζ(E) is a C1 function of E in any interval containing no exceptional
energies.

∑
n |C(n,E)|2 diverges logarithmically
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Spectral Expansion

Theorem

For Ψ(E ) a function on R compactly supported away from
exceptional points, and for any n ∈ N0, define
ψn(x) =

∫
dE Ψ(E )un(x ,E ). Then:

1) {ψn(x)}n∈N0 ∈ H,
2) the map ı : Ψ 7→ {ψn(x)}n∈N0 extends to a unitary isomorphism
of L2(R) onto an absolutely continuous subspace of the
Hamiltonian Ĥ,
3)∀t ∈ R, ı

(
e−iEtΨ

)
= e−iĤt ı(Ψ) .
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Multi-Oscillator case: Wave operators

Above: Ĥ(b). Below: Ĥ.

(Evans, Solomyak, 2005) The
wave operators:

Ω± = lim
t→±∞

e iHte−iĤ
(b)t

exist and are complete.



Collapse

If α > ω then, for any ψ in the absolutely continuous subspace of
H, the probability distribution of the particle converges weakly as
t → ±∞ to a superposition of δ functions supported in the
interaction points:∫
· · ·
∫

RN

dq1 . . . dqN |ψ(x , q1, . . . , qN , t)|2 −→
t→±∞

N∑
j=1

γ±j δ(x − xj) ,

where:
γ±j = ‖Pj Ω±(H(b),H)ψ‖2 , (6)

and Pj denotes projection onto Hj = L2(Bj)⊗ L2(RN), (Bj : j-th
box).



Decoherence

Corollary

For all initial ψ in the absolutely continuous subspace of H, the
reduced density matrix Tr

(
B̂Ŝψ(t)

)
=
(
ψ(t), B̂ ⊗ Îψ(t)

)
for all

bounded B̂, satisfies:

lim
t→±∞

(
φ , Ŝψ(t)ϕ

)
= 0

for all φ, ϕ ∈ L2(S).



Band formalism

Born-Oppenheimer-like description: oscillator dynamics described
by the ”ground-band Hamiltonian”

−1

2

∂2

∂q2
1

+ . . .− 1

2

∂2

∂q2
N

+
1

2
ω2(q2

1 + . . .+ q2
N) + W (q1, . . . , qN)

where W (q1, . . .) is the ground state energy of the particle
Hamiltonian

−1

2

d2

dx2
+ α

N∑
1

qjδ(x − xj)

parametrically dependent on q1, . . . , qN .



”Phase transition”
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Classical version

V (x , q) = (1− ax2) exp(ax2) +

bq2 sign(q) exp(−c|qx |) (7)




