Inverted oscillators \& collapse of wave packets

Italo Guarneri

Avronfest, Jerusalem
July 1st, 2013
"The world is full of interesting operators" Y. Avron (2004), at the \hbar Cafe'

Table of contents

- Smilansky's model.
- Dynamics
- Spectral theory
- Multi-oscillator model \& wave packet reduction
- Band formalism.

Smilansky's "irreversible" model.

A particle in a line (coordinate x) coupled to a linear harmonic oscillator (coordinate q) by point interaction:

$$
\begin{equation*}
\hat{\mathcal{H}}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2} \frac{\partial^{2}}{\partial q^{2}}+\frac{1}{2} \omega^{2} q^{2}++\alpha q \delta\left(x-x_{0}\right) . \tag{1}
\end{equation*}
$$

$\alpha>0$ a parameter, x_{0} a fixed point. ${ }^{1}$
${ }^{1}$ SN\&MS, Proc.London Math. Soc. (3) 92(2006) "...is a striking example of a problem which in spite of its seeming simplicity exhibits many unexpected effects..."

Smilansky's "irreversible" model.

A particle in a line (coordinate x) coupled to a linear harmonic oscillator (coordinate q) by point interaction:

$$
\begin{equation*}
\hat{\mathcal{H}}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2} \frac{\partial^{2}}{\partial q^{2}}+\frac{1}{2} \omega^{2} q^{2}++\alpha q \delta\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

$\alpha>0$ a parameter, x_{0} a fixed point. ${ }^{1}$

Theorem

(M Solomyak 04; SN Naboko, M Solomyak 06) If $0<\alpha<\omega$, the spectrum of $\hat{\mathcal{H}}$ is: pure absolutely continuous in $\left[\frac{1}{2} \omega,+\infty\right)$; pure point, and finite, below $\frac{1}{2} \omega$.
${ }^{1}$ SN\&MS, Proc.London Math. Soc. (3) 92(2006) "...is a striking example of a problem which in spite of its seeming simplicity exhibits many unexpected effects..."

Smilansky's "irreversible" model.

A particle in a line (coordinate x) coupled to a linear harmonic oscillator (coordinate q) by point interaction:

$$
\begin{equation*}
\hat{\mathcal{H}}=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{1}{2} \frac{\partial^{2}}{\partial q^{2}}+\frac{1}{2} \omega^{2} q^{2}++\alpha q \delta\left(x-x_{0}\right) . \tag{1}
\end{equation*}
$$

$\alpha>0$ a parameter, x_{0} a fixed point. ${ }^{1}$

Theorem

(M Solomyak 04; SN Naboko, M Solomyak 06) If $0<\alpha<\omega$, the spectrum of $\hat{\mathcal{H}}$ is: pure absolutely continuous in $\left[\frac{1}{2} \omega,+\infty\right)$; pure point, and finite, below $\frac{1}{2} \omega$.
If $\alpha>\omega$, then : no point spectrum, and the ac spectrum acquires an additional component with multiplicity 1 that coincides with \mathbb{R}.
${ }^{1}$ SN\&MS, Proc.London Math. Soc. (3) 92(2006) "...is a striking example of a problem which in spite of its seeming simplicity exhibits many unexpected effects..."

Boxing the particle

Let the particle be confined within a box, with either hard-wall or periodic boundary conditions.

Theorem

If $\alpha<\omega$, the spectrum of $\hat{\mathcal{H}}$ is pure point. If $\alpha>\omega$, generically no pp spectrum, and absolutely continuous component of multiplicity 1 , that coincides with \mathbb{R}.

Solomyak\&Naboko's proof still works over the threshold, with minor adaptations.

Dynamics of Smilansky's model I

Dynamics of Smilansky's model II

Theorem

The time-averaged energy of the oscillator grows in time, at least exponentially fast: i.e.,

$$
\begin{equation*}
\liminf _{T \rightarrow+\infty} \frac{\ln \left(E_{\mathrm{osc}}(T)\right)}{T}>0 \tag{2}
\end{equation*}
$$

The probability distribution of the position x of the particle weakly converges to $\delta\left(x-x_{0}\right)$ in the limit $t \rightarrow+\infty$.

$$
\left.E_{\mathrm{osc}}(T)\right)=\frac{1}{T} \int_{0}^{T} d t\left(\psi(t), \hat{H}_{\mathrm{osc}} \otimes \mathbb{I} \psi(t)\right)
$$

Band formalism.

The particle is moving in a circle \mathbb{S} parametrized by $x \in[-\pi,+\pi]$ with a distinguished point $O(x=0)$.

$$
\begin{gather*}
\mathcal{H}=\int_{\mathbb{R}}^{\oplus} d q H_{\alpha}(q)+\mathbb{I} \otimes H^{o s c} \\
H_{\alpha}(q)=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\alpha q \delta(x) \\
\psi(x, q)=\sum_{n=0}^{+\infty} Q_{n}(q) \phi_{q, n}(x) \\
H_{\alpha}(q) \phi_{q, n}=W_{n}(q) \phi_{q, n}, \quad \phi_{q, n} \in L^{2}(\mathbb{S}) . \tag{3}
\end{gather*}
$$

Band formalism, II

$$
\begin{gathered}
(\psi, \mathcal{H} \psi)=\left(\psi, \mathbb{I} \otimes H_{\omega}^{(\mathrm{osc})} \psi\right)+ \\
+\sum_{n=0}^{+\infty} \int_{\mathbb{R}} d q W_{n}(q)\left|Q_{n}(q)\right|^{2} \\
\geq\left(\psi, \mathbb{I} \otimes \tilde{H}_{\alpha, \omega} \psi\right)+ \\
+\sum_{n=1}^{+\infty} \int_{\mathbb{R}} d q(n-1 / 2)\left|Q_{n}(q)\right|^{2} \\
\tilde{H}_{\alpha, \omega}=-\frac{1}{2} \frac{d^{2}}{d q^{2}}+\frac{1}{2} \omega^{2} q^{2}+W_{0}^{-}(q) \\
W_{0}^{-}(q)=\frac{1}{2}(1-\operatorname{sign}(q)) W_{0}(q)
\end{gathered}
$$

A diversion on inverted oscillators

$$
\begin{equation*}
H_{i \omega}^{(\text {osc })}=\frac{p^{2}}{2}-\frac{1}{2} \omega^{2} q^{2}=H_{\omega}^{(\text {osc })}-\omega^{2} q^{2} \tag{4}
\end{equation*}
$$

on the $H_{\omega}^{(\text {osc })}$ eigenbasis, matrix elements $\left(H_{i \omega}^{(\text {osc })}\right)_{n m} \neq 0$ only if $m-n= \pm 2$.

$$
2 \omega H_{n, n+2}=-\sqrt{(n+1)(n+2)}, \quad 2 \omega H_{n, n-2}=-\sqrt{n(n-1)}
$$

$u(k, E)$: amplitude of the (even) formal eigenfunction of energy E at $n=2 k$

$$
\begin{gather*}
u(k+2, E)+p(k, E) u(k+1)+q(k) u(k, E)=0 \\
p(k, E) \sim \frac{E}{\omega} \frac{1}{k}, \quad q(k) \sim 1-\frac{1}{k} \tag{5}
\end{gather*}
$$

1

BA\&WL Theory

Birkhoff (1911), Adams (1928), Wong and Li (1993). Provides asymptotic $(n \rightarrow \infty)$ approximations for solutions of 2nd order difference equations of the form

$$
C(n+2)+p(n) C(n+1)+q(n) C(n)=0
$$

whenever the coefficients have asymptotic expansions $p(n) \sim \sum_{r} a(r) n^{-r}$ and $q(n) \sim \sum_{r} b(r) n^{-r}$.

BA\&WL Theory

Birkhoff (1911), Adams (1928), Wong and Li (1993). Provides asymptotic $(n \rightarrow \infty)$ approximations for solutions of 2nd order difference equations of the form

$$
C(n+2)+p(n) C(n+1)+q(n) C(n)=0
$$

whenever the coefficients have asymptotic expansions $p(n) \sim \sum_{r} a(r) n^{-r}$ and $q(n) \sim \sum_{r} b(r) n^{-r}$.
"Normal", linearly independent solutions exist, which have the asymptotic form:

$$
\begin{gathered}
C_{ \pm}^{\star}(n) \sim \sigma_{ \pm}^{n} n^{\alpha} \sum_{s=0}^{\infty} c_{ \pm}(s) n^{-s} \\
{\sigma_{ \pm}}^{2}+a(0) \sigma_{ \pm}+b(0)=0, \quad \alpha_{ \pm}=\frac{a(1) \sigma_{ \pm}+b(1)}{a(0) \sigma_{ \pm}+2 b(0)} .
\end{gathered}
$$

(assuming $\sigma_{+} \neq \sigma_{-}$)

Application to the inverted oscillator

$$
\phi(2 n, E) \sim \frac{1}{\sqrt{n}} \cos \left(E \log (n) / 2 \omega+n \frac{\pi}{4}+\beta(E)\right)
$$

consistent with $q \rightarrow+\infty$ asymptotics: G.Barton, Ann. Phys. 166 (1986)
\Rightarrow ac spectrum.
ac spectrum $+n^{-1 / 2}$ eigfs decay \Rightarrow exponential growth of energy.

Spectral Analysis over threshold.

Expansion in normalized Hermite functions (HO eigenfunctions):

$$
\psi(x, q)=\sum_{n=0}^{\infty} \psi_{n}(x) h_{n}(q)
$$

identifies the Hilbert space of the system as $\mathfrak{H}=\ell^{2}\left(\mathbb{N}_{0}\right) \otimes L_{+}^{2}(\mathbb{S})$ of sequences $\left\{\psi_{n}(x)\right\}_{n \in \mathbb{N}_{0}}, \psi_{n}(x) \in L^{2}(\mathbb{S}), \psi$ even, $\sum_{n}\left\|\psi_{n}\right\|^{2}<+\infty$.

Hamiltonian

$\left\{\psi_{n}(x)\right\} \mapsto\left\{L_{n} \psi_{n}(x)\right\}, L_{n}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\left(n+\frac{1}{2}\right) \omega$ with periodic bdary conditions and matching conditions at $x=0$:

$$
\psi_{n}^{\prime}(0+)-\psi_{n}^{\prime}(0-)=2 \alpha(2 \omega)^{-1}\left(\sqrt{n+1} \psi_{n+1}(0)+\sqrt{n} \psi_{n-1}(0)\right)
$$

Formal Eigenfunction

Sequences $\left\{u_{n}(x, E)\right\}$ that solve $L_{n} u_{n}(x, E)=E u_{n}(x, E)$ for all integer $n \geq 0$ and satisfy the matching conditions. May be written as

$$
u_{n}(x, E)=C(n, E) v_{n}(x, E)
$$

where $v_{n}(x)=$ normalized sol. of $L_{n} v_{n}=E v_{n}$, and constants $C(n, E)$ satisfy:

2nd order Difference Equation

$$
h_{2}(n, E) C(n+2, E)+h_{1}(n, E) C(n+1, E)+h_{0}(n, E) C(n, E)=0
$$

with "initial" condition: $h_{2}(-1, E) C(1, E)=-h_{1}(-1, E) C(0, E)$.

details

$$
\begin{gather*}
h_{2}(n, E)=\alpha \sqrt{n+2} \rho_{n+2}(E) \cos \left(k_{n+2}(E) \pi\right) \\
h_{1}(n, E)=\sqrt{2 \omega} k_{n+1}(E) \rho_{n+1}(E) \sin \left(k_{n+1}(E) \pi\right) \\
h_{0}(n, E)=\alpha \sqrt{n+1} \rho_{n}(E) \cos \left(k_{n}(E) \pi\right) \\
\rho_{n}(E)=\left(\pi+k_{n}(E)^{-1} \sin \left(2 k_{n}(E) \pi\right)\right)^{-1 / 2}, \\
k_{n}(E)=\sqrt{2 E-(2 n+1) \omega} \tag{3}
\end{gather*}
$$

BA\&WL again

'Exceptional' energies E : those which are either branch points or zeros for some coefficient $h_{2}(n, E), h_{1}(n, E)$.

Theorem

If $\alpha>\omega$ then for all non-exceptional E, a formal eigenfunction exists, and has the $n \rightarrow \infty$ asymptotics

$$
\begin{gathered}
C(n, E) \sim \frac{1}{\sqrt{\pi n}} \cos (n \theta-\lambda E \log (n)+\zeta(E))+O\left(n^{-3 / 2}\right) \\
\theta=\arccos (\omega / \alpha), \quad \lambda=\frac{1}{2}\left(\alpha^{2}-\omega^{2}\right)^{-1 / 2}
\end{gathered}
$$

The phase $\zeta(E)$ is a C^{1} function of E in any interval containing no exceptional energies.

BA\&WL again

'Exceptional' energies E : those which are either branch points or zeros for some coefficient $h_{2}(n, E), h_{1}(n, E)$.

Theorem

If $\alpha>\omega$ then for all non-exceptional E, a formal eigenfunction exists, and has the $n \rightarrow \infty$ asymptotics

$$
\begin{gathered}
C(n, E) \sim \frac{1}{\sqrt{\pi n}} \cos (n \theta-\lambda E \log (n)+\zeta(E))+O\left(n^{-3 / 2}\right) \\
\theta=\arccos (\omega / \alpha), \quad \lambda=\frac{1}{2}\left(\alpha^{2}-\omega^{2}\right)^{-1 / 2}
\end{gathered}
$$

The phase $\zeta(E)$ is a C^{1} function of E in any interval containing no exceptional energies.
$\sum_{n}|C(n, E)|^{2}$ diverges logarithmically

Spectral Expansion

Theorem

For $\Psi(E)$ a function on \mathbb{R} compactly supported away from exceptional points, and for any $n \in \mathbb{N}_{0}$, define $\psi_{n}(x)=\int d E \Psi(E) u_{n}(x, E)$. Then:

1) $\left\{\psi_{n}(x)\right\}_{n \in \mathbb{N}_{0}} \in \mathfrak{H}$,
2) the map $\imath: \Psi \mapsto\left\{\psi_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ extends to a unitary isomorphism of $L^{2}(\mathbb{R})$ onto an absolutely continuous subspace of the Hamiltonian $\hat{\mathcal{H}}$,
3) $\forall t \in \mathbb{R}, \imath\left(e^{-i E t} \Psi\right)=e^{-i \hat{\mathcal{H}} t} \imath(\Psi)$.

Spectral Expansion

Theorem

For $\Psi(E)$ a function on \mathbb{R} compactly supported away from exceptional points, and for any $n \in \mathbb{N}_{0}$, define $\psi_{n}(x)=\int d E \Psi(E) u_{n}(x, E)$. Then:

1) $\left\{\psi_{n}(x)\right\}_{n \in \mathbb{N}_{0}} \in \mathfrak{H}$,
2) the map $\imath: \Psi \mapsto\left\{\psi_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ extends to a unitary isomorphism of $L^{2}(\mathbb{R})$ onto an absolutely continuous subspace of the Hamiltonian $\hat{\mathcal{H}}$,
3) $\forall t \in \mathbb{R}, \imath\left(e^{-i E t} \Psi\right)=e^{-i \hat{\mathcal{H}} t} \imath(\Psi)$.

Multi-Oscillator case: Wave operators

(Evans, Solomyak, 2005) The wave operators:

$$
\Omega^{ \pm}=\lim _{t \rightarrow \pm \infty} e^{i \mathcal{H} t} e^{-i \hat{\mathcal{H}}^{(b)} t}
$$

exist and are complete.
Above: $\hat{\mathcal{H}}^{(b)}$. Below: $\hat{\mathcal{H}}$.

Collapse

If $\alpha>\omega$ then, for any ψ in the absolutely continuous subspace of \mathcal{H}, the probability distribution of the particle converges weakly as $t \rightarrow \pm \infty$ to a superposition of δ functions supported in the interaction points:
$\int_{\mathbb{R}^{N}}^{\cdots} \ldots d q_{1} \ldots d q_{N}\left|\psi\left(x, q_{1}, \ldots, q_{N}, t\right)\right|^{2} \underset{t \rightarrow \pm \infty}{\longrightarrow} \sum_{j=1}^{N} \gamma_{j}^{ \pm} \delta\left(x-x_{j}\right)$,
where:

$$
\begin{equation*}
\gamma_{j}^{ \pm}=\left\|P_{j} \Omega_{ \pm}\left(\mathcal{H}^{(b)}, \mathcal{H}\right) \psi\right\|^{2} \tag{6}
\end{equation*}
$$

and P_{j} denotes projection onto $\mathfrak{H}_{j}=L^{2}\left(B_{j}\right) \otimes L^{2}\left(\mathbb{R}^{N}\right),\left(B_{j}: j\right.$-th box).

Decoherence

Corollary

For all initial ψ in the absolutely continuous subspace of \mathcal{H}, the reduced density matrix $\operatorname{Tr}\left(\hat{B} \hat{S}_{\psi}(t)\right)=(\psi(t), \hat{B} \otimes \hat{\mathbb{I}} \psi(t))$ for all bounded \hat{B}, satisfies:

$$
\lim _{t \rightarrow \pm \infty}\left(\phi, \hat{S}_{\psi}(t) \varphi\right)=0
$$

for all $\phi, \varphi \in L^{2}(\mathbb{S})$.

Band formalism

Born-Oppenheimer-like description: oscillator dynamics described by the "ground-band Hamiltonian"

$$
-\frac{1}{2} \frac{\partial^{2}}{\partial q_{1}^{2}}+\ldots-\frac{1}{2} \frac{\partial^{2}}{\partial q_{N}^{2}}+\frac{1}{2} \omega^{2}\left(q_{1}^{2}+\ldots+q_{N}^{2}\right)+W\left(q_{1}, \ldots, q_{N}\right)
$$

where $W\left(q_{1}, \ldots\right)$ is the ground state energy of the particle Hamiltonian

$$
-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\alpha \sum_{1}^{N} q_{j} \delta\left(x-x_{j}\right)
$$

parametrically dependent on q_{1}, \ldots, q_{N}.

"Phase transition"

Classical version

$$
\begin{gather*}
V(x, q)=\left(1-a x^{2}\right) \exp \left(a x^{2}\right)+ \\
b q^{2} \operatorname{sign}(q) \exp (-c|q x|) \tag{7}
\end{gather*}
$$

