Atomic clocks

Martin Fraas

Avronfest, July 2013

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Volume 29, Number 3

July, 1957

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relativistic Invariance and Quantum Phenomena*

EUGENE P. WIGNER

" For example, a clock, with a running time of a day and an accuracy of 10^{-8} second, must weigh almost a gram—for reasons stemming solely from uncertainty principles and similar considerations."

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 ∽��?

Frequency
$$\omega(t) = \omega_0 + \varphi(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Frequency
$$\omega(t) = \omega_0 + \varphi(t)$$

Clocktime $t_{clock} = \frac{1}{\omega_0} \int_0^t \omega(s) ds$

$$\begin{array}{ll} \mathsf{Frequency} & \omega(t) = \omega_0 + \varphi(t) \\ \mathsf{Clocktime} & t_{clock} = \frac{1}{\omega_0} \int_0^t \omega(s) \mathrm{d}s \end{array}$$

Clocktime variance $(\Delta t)^2 = \langle (t_{clock} - t)^2 \rangle$

 Clock

Accuracy $\left(\frac{\Delta t}{\mathrm{day}}\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Year	Clock	Accuracy $\left(\frac{\Delta t}{\mathrm{day}}\right)$
1761	Harrison's H4	0.2 s

・ロト ・ 理 ・ ・ ヨ ・ ・

∋) ∋

Year	Clock	Accuracy $\left(\frac{\Delta t}{\mathrm{day}}\right)$
1761	Harrison's H4	0.2 s
1930	Quartz	$500 \ \mu s$

・ロト ・ 理 ・ ・ ヨ ・ ・

∋) ∋

Year	Clock	Accuracy $\left(\frac{\Delta t}{\mathrm{day}}\right)$
1761	Harrison's H4	0.2 s
1930	Quartz	$500 \ \mu s$
1955	Cs Atomic Clock	$10 \ \mu s$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Year	Clock	Accuracy $\left(\frac{\Delta t}{\mathrm{day}}\right)$
1761	Harrison's H4	0.2 s
1930	Quartz	$500 \ \mu s$
1955	Cs Atomic Clock	$10 \ \mu { m s}$
2010	AI ⁺ Optical Clock	$10^{-6} \ \mu s$

・ロト ・聞ト ・ヨト ・ヨト

- 3

<ロ> <@> < E> < E> E のQの

Improvement of atomic clocks

• Employment of entangled states [Bollinger et. al. 96]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Quantum logic spectroscopy [Schmidt et. al. 05]
- Fighting noise

Improvement of atomic clocks

- Employment of entangled states [Bollinger et. al. 96]
- Quantum logic spectroscopy [Schmidt et. al. 05]
- Fighting noise
- Limits of the atomic clock accuracy [Itano et. al. 93]

Inclusion of decoherence [Huelga et. al. 97]

Improvement of atomic clocks

- Employment of entangled states [Bollinger et. al. 96]
- Quantum logic spectroscopy [Schmidt et. al. 05]
- Fighting noise
- Limits of the atomic clock accuracy [Itano et. al. 93]

- Inclusion of decoherence [Huelga et. al. 97]
- Limits on size, mass, power, etc.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Classical oscillator

$$\omega(t) = \omega_0 + \underbrace{\varphi(t)}_{}$$

Classical oscillator

$$\omega(t) = \omega_0 + \underbrace{arphi(t)}_{ ext{frequency error}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical oscillator

$$\omega(t) = \omega_0 + \underbrace{\varphi(t)}_{\text{frequency error}}$$

Quantum oscillator ω_0

Classical oscillator

$$\omega(t) = \omega_0 + \underbrace{\varphi(t)}_{\text{frequency error}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quantum oscillator ω_0 – frequency reference

Classical oscillator $\omega(t) = \omega_0 + \underbrace{\varphi(t)}_{\text{frequency error}}$

Quantum oscillator ω_0 – frequency reference

Main idea: want to adjust $\omega(t)$ to ω_0 (i.e. make $\varphi(t)$ small) by means of repeated synchronization.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical oscillator $\omega(t) = \omega_0 + \underbrace{\varphi(t)}_{\text{frequency error}}$

Quantum oscillator ω_0 – frequency reference

Main idea: want to adjust $\omega(t)$ to ω_0 (i.e. make $\varphi(t)$ small) by means of repeated synchronization.

<ロ> <@> < E> < E> E のQの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Relative evolution of the state for time τ : $\rho_0 \mapsto \rho$

Relative evolution of the state for time τ : $\rho_0 \mapsto \rho$ depends on the accumulated frequency error $\varphi_\tau := \int_0^\tau \varphi(s) ds$

Relative evolution of the state for time τ : $\rho_0 \mapsto \rho$ depends on the accumulated frequency error $\varphi_\tau := \int_0^\tau \varphi(s) ds$

$$\rho_0 \to \rho(\varphi_\tau) := e^{-i\varphi_\tau H} \rho_0 e^{i\varphi_\tau H}$$

Detection and feedback

(4日) (個) (目) (目) (目) (の)()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A POVM measurement on the final state $R_{\frac{\pi}{2}}\rho$ assigns a measurement outcome x to the accumulated frequency error φ_{τ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A POVM measurement on the final state $R_{\frac{\pi}{2}}\rho$ assigns a measurement outcome x to the accumulated frequency error φ_{τ} .

 $\hat{\varphi}$ is an estimation of φ_{τ} , based on the measurement outcome x.

A POVM measurement on the final state $R_{\frac{\pi}{2}}\rho$ assigns a measurement outcome x to the accumulated frequency error φ_{τ} .

 $\hat{\varphi}$ is an estimation of φ_{τ} , based on the measurement outcome x.

A feedback uses $\hat{\varphi}$ to adjust the original frequency error φ .

• The evolution of $\varphi(t)$ in absence of synchronization:

$$\varphi(t+s) := \varphi(t) + \sqrt{2D} \underbrace{W_s}_{W_s}$$

Wiener process

(ロ)、(型)、(E)、(E)、 E) の(の)

• The evolution of $\varphi(t)$ in absence of synchronization:

$$\varphi(t+s) := \varphi(t) + \sqrt{2D} \underbrace{W_s}_{\text{Wiener process}}$$

Two fixed time scales:

Т time between two consecutive synchronizations

 $\geq extstyle au \ au$ interrogation time

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The evolution of $\varphi(t)$ in absence of synchronization:

$$\varphi(t+s) := \varphi(t) + \sqrt{2D} \underbrace{W_s}_{\text{Wiener process}}$$

Two fixed time scales:

 $T \geq time between two consecutive synchronizations$

 $\geq au_{ ext{interrogation time}}^{ au}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A function $\varphi_{\tau} \mapsto \rho(\varphi_{\tau})$

The evolution of φ(t) in absence of synchronization:

$$\varphi(t+s) := \varphi(t) + \sqrt{2D} \underbrace{W_s}_{\text{Wiener process}}$$

Two fixed time scales:

time between two consecutive synchronizations $\geq au$ interrogation time

- A function $\varphi_{\tau} \mapsto \rho(\varphi_{\tau})$
- An estimation strategy $\{\rho(\varphi_{\tau}) \mapsto x, x \mapsto \hat{\varphi}\}.$

• The evolution of $\varphi(t)$ in absence of synchronization:

$$\varphi(t+s) := \varphi(t) + \sqrt{2D} \underbrace{W_s}_{\text{Wiener process}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two fixed time scales:

time between two consecutive synchronizations $\geq au$ interrogation time

- A function $\varphi_{\tau} \mapsto \rho(\varphi_{\tau})$
- An estimation strategy $\{\rho(\varphi_{\tau}) \mapsto x, x \mapsto \hat{\varphi}\}.$
- A linear feedback $\varphi(t) \mapsto \varphi(t) \hat{\varphi}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equation for the jump:

$$\varphi_{n+1} = \varphi_n - \hat{\varphi}_n + \sqrt{2D}W_T$$

Equation for the jump:

$$\varphi_{n+1} = \varphi_n - \hat{\varphi}_n + \sqrt{2D} W_T$$

The equation defines a non-linear Markovian process;

Equation for the jump:

$$\varphi_{n+1} = \varphi_n - \hat{\varphi}_n + \sqrt{2D} W_T$$

- The equation defines a non-linear Markovian process;
- We aim to study its stationary solutions;

Equation for the jump:

$$\varphi_{n+1} = \varphi_n - \hat{\varphi}_n + \sqrt{2D} W_T$$

- The equation defines a non-linear Markovian process;
- We aim to study its stationary solutions;
- φ_n provides $\varphi(t)$, which gives the clock time;

Unbiased clock is accurate in average, $\mathbb{E}[t_{clock}] = t$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Unbiased clock is accurate in average, $\mathbb{E}[t_{clock}] = t$.

 \Downarrow

・ロト・日本・モト・モート ヨー うへで

 $\mathbb{E}[\varphi(s)] = 0$ provided $\mathbb{E}[\varphi(0)] = 0.$

Unbiased clock is accurate in average, $\mathbb{E}[t_{clock}] = t$.

∜

 $\mathbb{E}[\varphi(s)] = 0$ provided $\mathbb{E}[\varphi(0)] = 0.$

 \Downarrow (variational argument)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For some $\zeta \in \mathbb{R}$, $\mathbb{E}[\varphi - \hat{\varphi}|\varphi] = \zeta \varphi$.

Unbiased clock is accurate in average, $\mathbb{E}[t_{clock}] = t$.

 $\mathbb{E}[\varphi(s)] = 0$ provided $\mathbb{E}[\varphi(0)] = 0.$

 \Downarrow (variational argument)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For some
$$\zeta \in \mathbb{R}$$
, $\mathbb{E}[\varphi - \hat{\varphi}|\varphi] = \zeta \varphi$.

Definition (ζ -unbiased clock)

The clock is ζ -unbiased if the estimation procedure satisfies

$$\mathbb{E}[\varphi - \hat{\varphi}|\varphi] = \zeta \varphi, \quad |\zeta| < 1.$$

∜

◆□▶ <圖▶ < ≣▶ < ≣▶ = 9000</p>

How much information about φ is in $\rho(\varphi)$?

How much information about φ is in $\rho(\varphi)$?

$$\begin{aligned} F(\varphi) &:= \operatorname{Tr}(\rho(\varphi) L_{\varphi}^{2}), \\ \frac{1}{2} \{ L_{\varphi}, \, \rho(\varphi) \} &= \dot{\rho}(\varphi). \end{aligned}$$

How much information about φ is in $\rho(\varphi)$?

$$F(\varphi) := \operatorname{Tr}(\rho(\varphi)L_{\varphi}^{2}),$$
$$\frac{1}{2}\{L_{\varphi}, \rho(\varphi)\} = \dot{\rho}(\varphi).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

For a pure state, $F(\varphi)$ is the Fubini-Study metric.

How much information about φ is in $\rho(\varphi)$?

$$\begin{aligned} & F(\varphi) := \operatorname{Tr}(\rho(\varphi) L_{\varphi}^2), \\ & \frac{1}{2} \{ L_{\varphi}, \, \rho(\varphi) \} = \dot{\rho}(\varphi). \end{aligned}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For a pure state, $F(\varphi)$ is the Fubini-Study metric. Scaling: $\rho(\varphi) \rightarrow \rho(\tau\varphi)$, $F(\varphi) \rightarrow \tau^2 F(\tau\varphi)$.

How much information about φ is in $\rho(\varphi)$?

$$\begin{aligned} F(\varphi) &:= \operatorname{Tr}(\rho(\varphi) L_{\varphi}^{2}), \\ \frac{1}{2} \{ L_{\varphi}, \, \rho(\varphi) \} &= \dot{\rho}(\varphi). \end{aligned}$$

For a pure state, $F(\varphi)$ is the Fubini-Study metric. Scaling: $\rho(\varphi) \rightarrow \rho(\tau\varphi)$, $F(\varphi) \rightarrow \tau^2 F(\tau\varphi)$.

Example (Coherent states)

How much information about φ is in $\rho(\varphi)$?

$$F(\varphi) := \operatorname{Tr}(\rho(\varphi)L_{\varphi}^{2}),$$
$$\frac{1}{2}\{L_{\varphi}, \rho(\varphi)\} = \dot{\rho}(\varphi).$$

For a pure state, $F(\varphi)$ is the Fubini-Study metric. Scaling: $\rho(\varphi) \rightarrow \rho(\tau\varphi)$, $F(\varphi) \rightarrow \tau^2 F(\tau\varphi)$.

Example (Coherent states)

$$< x | \psi(arphi) > = rac{F^{1/4}}{(2\pi)^{1/4}} \exp\left(-rac{F}{4}(x-arphi)^2
ight)$$

How much information about φ is in $\rho(\varphi)$?

$$\begin{aligned} & F(\varphi) := \operatorname{Tr}(\rho(\varphi) L_{\varphi}^2), \\ & \frac{1}{2} \{ L_{\varphi}, \, \rho(\varphi) \} = \dot{\rho}(\varphi). \end{aligned}$$

For a pure state, $F(\varphi)$ is the Fubini-Study metric. Scaling: $\rho(\varphi) \rightarrow \rho(\tau\varphi)$, $F(\varphi) \rightarrow \tau^2 F(\tau\varphi)$.

Example (Coherent states)

$$< x | \psi(arphi) > = rac{F^{1/4}}{(2\pi)^{1/4}} \exp\left(-rac{F}{4}(x-arphi)^2
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fisher information is inversely proportional to the width .

(ロ) (個) (E) (E) (E) の(の)

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock. Then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{E}[\varphi_n^2] \ge \frac{1}{\tau^2 F} \frac{1-\zeta}{1+\zeta} +$$

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock. Then

$$\mathbb{E}[\varphi_n^2] \geq \frac{1}{\tau^2 F} \frac{1-\zeta}{1+\zeta} + \frac{2DT}{1-\zeta^2} g(\zeta, \frac{\tau}{T}),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock. Then

$$\mathbb{E}[\varphi_n^2] \geq \frac{1}{\tau^2 F} \frac{1-\zeta}{1+\zeta} + \frac{2DT}{1-\zeta^2} g(\zeta, \frac{\tau}{T}),$$
$$\mathbb{E}[(t_{clock} - t)^2] \geq t \frac{T}{\omega_0^2} \left(\frac{1}{\tau^2 F} + \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock. Then

$$\mathbb{E}[\varphi_n^2] \ge \frac{1}{\tau^2 F} \frac{1-\zeta}{1+\zeta} + \frac{2DT}{1-\zeta^2} g(\zeta, \frac{\tau}{T}),$$
$$\mathbb{E}[(t_{clock} - t)^2] \ge t \frac{T}{\omega_0^2} \left(\frac{1}{\tau^2 F} + \frac{2DT}{3(1-\zeta)^2} f(\zeta, \frac{\tau}{T})\right),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let φ_n be a stationary state of an ζ -unbiased clock. Then

$$\mathbb{E}[\varphi_n^2] \ge \frac{1}{\tau^2 F} \frac{1-\zeta}{1+\zeta} + \frac{2DT}{1-\zeta^2} g(\zeta, \frac{\tau}{T}),$$
$$\mathbb{E}[(t_{clock} - t)^2] \ge t \frac{T}{\omega_0^2} \left(\frac{1}{\tau^2 F} + \frac{2DT}{3(1-\zeta)^2} f(\zeta, \frac{\tau}{T})\right),$$

where

$$g(\zeta, x) = \zeta^2 + \frac{1+\zeta-2\zeta^2}{3}x,$$

$$f(\zeta, x) = 1+\zeta+\zeta^2 + (1+2\zeta)(1-\zeta)x + (1-\zeta)^2x^2,$$

$$\frac{1}{F} = \mathbb{E}\left[\frac{1}{F(\tau\varphi_n)}\right].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Analysis of the clock operation

Qualitative analysis of the stationary state:
Analysis of the clock operation

Qualitative analysis of the stationary state:

- The clock time diffuses;
- For D = 0 the diffusion does not depend on the correlation length ζ;

Analysis of the clock operation

Qualitative analysis of the stationary state:

- The clock time diffuses;
- For D = 0 the diffusion does not depend on the correlation length ζ;

Quantitative analysis, the case $T = \tau$:

The optimal interrogation time is determined by a balance of the dissipation and estimation precision. For fixed ζ:

$$4DT = (1-\zeta)^2 \frac{1}{FT^2}$$

 For the optimal time, ζ ≈ 0.35 minimize the variance of the stationary state;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• φ_n is a supermartingale \implies existence of a stationary state;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- φ_n is a supermartingale \implies existence of a stationary state;
- ▶ Cramer-Rao type inequality: Suppose $\mathbb{E}[\varphi \hat{\varphi}] = \zeta \mathbb{E}[\varphi^2]$ then

$$\mathbb{E}[(\varphi - \hat{\varphi})^2] \ge (1 - \zeta)^2 \frac{1}{F} + \zeta^2 \mathbb{E}[\varphi^2];$$

- φ_n is a supermartingale \implies existence of a stationary state;
- ► Cramer-Rao type inequality: Suppose $\mathbb{E}[\varphi \hat{\varphi}] = \zeta \mathbb{E}[\varphi^2]$ then

$$\mathbb{E}[(\varphi - \hat{\varphi})^2] \ge (1 - \zeta)^2 \frac{1}{F} + \zeta^2 \mathbb{E}[\varphi^2];$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local CR, $\zeta = 0$

- φ_n is a supermartingale \implies existence of a stationary state;
- ▶ Cramer-Rao type inequality: Suppose $\mathbb{E}[\varphi \hat{\varphi}] = \zeta \mathbb{E}[\varphi^2]$ then

$$\mathbb{E}[(\varphi - \hat{\varphi})^2] \ge (1 - \zeta)^2 \frac{1}{F} + \zeta^2 \mathbb{E}[\varphi^2];$$

Local CR, $\zeta = 0 \quad \rightsquigarrow \quad \text{Global CR, inf}_{\zeta} = 1/(F + \mathbb{E}[\varphi^2]^{-1})$

- φ_n is a supermartingale \implies existence of a stationary state;
- ▶ Cramer-Rao type inequality: Suppose $\mathbb{E}[\varphi \hat{\varphi}] = \zeta \mathbb{E}[\varphi^2]$ then

$$\mathbb{E}[(\varphi - \hat{\varphi})^2] \ge (1 - \zeta)^2 \frac{1}{F} + \zeta^2 \mathbb{E}[\varphi^2];$$

• Compute covariance of $\varphi(t)$, e.g. $\mathbb{E}[\varphi_{n+h}\varphi_n] = \zeta^h \mathbb{E}[\varphi_n^2]$.

- φ_n is a supermartingale \implies existence of a stationary state;
- ▶ Cramer-Rao type inequality: Suppose $\mathbb{E}[\varphi \hat{\varphi}] = \zeta \mathbb{E}[\varphi^2]$ then

$$\mathbb{E}[(\varphi - \hat{\varphi})^2] \ge (1 - \zeta)^2 \frac{1}{F} + \zeta^2 \mathbb{E}[\varphi^2];$$

Compute covariance of φ(t), e.g. E[φ_{n+h}φ_n] = ζ^hE[φ²_n]. Integration gives variance of the clock time. Conclusions & Outlooks

Conclusions:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ = ● のへで

Conclusions & Outlooks

Conclusions:

Mathematically minded model of atomic clocks;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analysis of the stationary state;

Conclusions & Outlooks

Conclusions:

- Mathematically minded model of atomic clocks;
- Analysis of the stationary state;

Outlooks:

- "Central limit theorem";
- Beyond unbiased clock, unbiased stationary state;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Entropy production;

Happy Birthday Yosi!