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” For example, a clock, with a running time of a day and an
accuracy of 10−8 second, must weigh almost a gram—for reasons
stemming solely from uncertainty principles and similar
considerations.”
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Brief history of man made clocks
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Theoretical Challenges

I Improvement of atomic clocks
I Employment of entangled states [Bollinger et. al. 96]

I Quantum logic spectroscopy [Schmidt et. al. 05]

I Fighting noise

I Limits of the atomic clock accuracy [Itano et. al. 93]
I Inclusion of decoherence [Huelga et. al. 97]

I Limits on size, mass, power, etc.
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The operation of a Cesium Atomic Clock

Classical oscillator ω(t) = ω0 + ϕ(t)︸︷︷︸
frequency error

Quantum oscillator ω0 − frequency reference

Main idea: want to adjust ω(t) to ω0 (i.e. make ϕ(t) small)

by means of repeated synchronization.
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Relative evolution of the state for time τ : ρ0 7→ ρ
depends on the accumulated frequency error ϕτ :=

∫ τ
0 ϕ(s)ds

ρ0 → ρ(ϕτ ) := e−iϕτHρ0e
iϕτH
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Detection and feedback
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ϕ̂ is an estimation of ϕτ , based on the measurement outcome x .

A feedback uses ϕ̂ to adjust the original frequency error ϕ.
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The Mathematical Model

I The evolution of ϕ(t) in absence of synchronization:

ϕ(t + s) := ϕ(t) +
√

2D Ws︸︷︷︸
Wiener process

I Two fixed time scales:

T
time between two consecutive synchronizations

≥ τ
interrogation time

I A function ϕτ 7→ ρ(ϕτ )

I An estimation strategy {ρ(ϕτ ) 7→ x , x 7→ ϕ̂}.

I A linear feedback ϕ(t) 7→ ϕ(t)− ϕ̂.
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Repeated Synchronization

←→
τ

nT (n + 1)T

ϕn ϕn+1

Notation: ϕn := ϕ((n + 1)T−).

Equation for the jump:

ϕn+1 = ϕn − ϕ̂n +
√

2DWT

I The equation defines a non-linear Markovian process;

I We aim to study its stationary solutions;

I ϕn provides ϕ(t), which gives the clock time;
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Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

⇓

E[ϕ(s)] = 0 provided E[ϕ(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[ϕ− ϕ̂|ϕ] = ζϕ.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure satisfies

E[ϕ− ϕ̂|ϕ] = ζϕ, |ζ| < 1.
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Fisher information

How much information about ϕ is in ρ(ϕ)?

F (ϕ) := Tr(ρ(ϕ)L2ϕ),

1

2
{Lϕ, ρ(ϕ)} = ρ̇(ϕ).

For a pure state, F (ϕ) is the Fubini-Study metric.

Scaling: ρ(ϕ)→ ρ(τϕ), F (ϕ)→ τ2F (τϕ).

Example (Coherent states)

< x |ψ(ϕ) >=
F 1/4

(2π)1/4
exp

(
−F

4
(x − ϕ)2

)
Fisher information is inversely proportional to the width .
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Stationary states

Theorem
Let ϕn be a stationary state of an ζ-unbiased clock. Then

E[ϕ2
n]

≥ 1

τ2F

1− ζ
1 + ζ

+
2DT

1− ζ2 g(ζ,
τ

T
),

E[(tclock − t)2] ≥ t
T

ω2
0

(
1

τ2F
+

2DT

3(1− ζ)2
f (ζ,

τ

T
)

)
,

where

g(ζ, x) = ζ2 +
1 + ζ − 2ζ2

3
x ,

f (ζ, x) = 1 + ζ + ζ2 + (1 + 2ζ)(1− ζ)x + (1− ζ)2x2,

1

F
= E

[
1

F (τϕn)

]
.
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Analysis of the clock operation

Qualitative analysis of the stationary state:

I The clock time diffuses;

I For D = 0 the diffusion does not depend on the correlation
length ζ;

Quantitative analysis, the case T = τ :

I The optimal interrogation time is determined by a balance of
the dissipation and estimation precision. For fixed ζ:

4DT = (1− ζ)2
1

FT 2
.

I For the optimal time, ζ ≈ 0.35 minimize the variance of the
stationary state;
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Pieces of the Proof

I ϕn is a supermartingale =⇒ existence of a stationary state;

I Cramer-Rao type inequality: Suppose E[ϕϕ̂] = ζE[ϕ2] then

E[(ϕ− ϕ̂)2] ≥ (1− ζ)2
1

F
+ ζ2E[ϕ2];

Local CR, ζ = 0  Global CR, infζ = 1/(F + E[ϕ2]−1)

I Compute covariance of ϕ(t), e.g. E[ϕn+hϕn] = ζhE[ϕ2
n].

Integration gives variance of the clock time.
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I Analysis of the stationary state;
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I ”Central limit theorem“;

I Beyond unbiased clock, unbiased stationary state;

I Entropy production;
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