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ECONOMETRICA

VOLUME 43 July, 1975 NUMBER 4

VALUES OF MARKETS WITH A CONTINUUM OF TRADERS!
By ROBERT J. AUMANN

It is shown that in markets with a continuum of traders, the allocations associated with the
Shapley value are the same as the competitive allocations.

1. INTRODUCTION

THE “EQUIVALENCE PRINCIPLE” for the core? states that the core of a perfectly
competitive market coincides with the set of its competitive allocations. It is the
object of this paper to establish a similar equivalence principle for the Shapley
value [5, 21, and 23], a game theoretic concept quite different from the core. Since
the Shapley value can be interpreted in terms of “marginal worth”, it is perhaps
the game theoretic concept most closely related to traditional economic ideas.

By a “perfectly competitive’’ market we mean one in which there are many
traders, with each trader holding only a negligible proportion of the total resources
of the economy. This situation may be modelled by a continuum of traders—
specifically, by a non-atomic continuum, as in Aumann [1].

We will be dealing with ordinary Walrasian pure exchange economies; no
assumption of transferable utility will be made. The value was originally defined
[21] for games with transferable utility only, but was later [23] adapted to apply
also to games without transferable utility. It is this adaptation, itself adapted to

_non-atomic markets, that we shall use in this paper. Values are ordinarily ex-
pressed in units of utility; since we are dealing with markets that are defined a
priori in terms of preferences rather than in terms of utilities, we shall wish to
refer directly to allocations rather than to utilities. Allocations corresponding to
values in such a set-up will be called “value allocations’’; a precise definition will
be given in Section 5 below.

To establish the equivalence principle for the value, we will have to make certain
differentiability assumptions on the traders’ preferences, assumptions that are not
necessary for the core equivalence principle. Preferences satisfying these assump-
tions will be called “‘uniformly smooth.” This notion is closely related to Debreu’s
“smooth preferences” [10]. We might say that the preferences in a market are
uniformly smooth if and only if they are smooth in Debreu’s sense and the proper-
ties embodying this smoothness hold uniformly over all the traders in the market.
This, too, will be spelled out precisely below (Sections 4 and 5).

! Text of the Walras-Bowley Lecture delivered at the winter meeting of the Econometric Society
held in Toronto in December, 1972. This work was supported in part by National Science Foundation
Grant GS-40104 at the Institute for Mathematical Studies in the Social Sciences, Stanford University,

and in part by CORE, the Center for Operations Research and Econometrics at the Catholic University
of Louvain.

? For a comprehensive treatment of the core equivalence principle, see Hildenbrand [14].
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612 ROBERT J. AUMANN

Recall that an allocation x is called competitive if there is a price vector p such
that (p, x) is a competitive equilibrium. We are now ready for the statement of our
main theorem:

THEOREM 1 (Value Equivalence Theorem): In a non-atomic market with uni-
Sformly smooth preferences, the set of value allocations coincides with the set of
competitive allocations.

It should be noted that this result depends strongly on the non-atomicity of the
market, i.e., on its perfectly competitive nature. The theorem is not true in either
direction for finite markets. This is to be contrasted with the situation for the core :
competitive allocations are in the core for any market, even a finite one; there the
continuum is needed only to establish the converse, that all core allocations are
competitive.

The Value Equivalence Theorem can be interpreted in terms of social welfare
functions, and the concept of an individual’s contribution to society. Given utility
functions for the traders, we may, for any allocation x and coalition S, consider
the sum of the utilities of the members of S for the bundles assigned to them under
x. Let us think of this sum as the “welfare” of the coalition S under the allocation
x; in other words, assume the existence of an additively separable social welfare
function consistent with individual preferences. The “marginal contribution’ of
an individual trader is then the amount of welfare added to society by his presence
—i.e., the difference between the maximum levels of welfare that society as a whole
can achieve, with that trader and without him. It can be shown (see the Appendix)
that, under the conditions of Theorem 1, the marginal contribution of a trader is
almost surely the same as his “‘true’ contribution: If the traders are ordered at
random, then the marginal contribution of a trader almost surely equals the amount
added by him to the maximum welfare achievable by the coalition of traders
preceding him in the random order. This justifies our reference to the marginal
contribution of a trader simply as his “‘contribution.” Our theorem then makes
two assertions: First, that an allocation is competitive if its utility to each trader
is precisely his contribution; and conversely, that for each allocation x, individual
utility functions can be chosen (consistent with the preferences), so that the
contribution of each trader is precisely the utility of the bundle assigned to him
by x.

In brief, an allocation is competitive if and only if for some choice of the individual
utility functions, it yields to each trader precisely his contribution to the welfare of
society.

Among the precursors of this result are results of Shapley [22], Champsaur [6],
and Aumann and Shapley [5, Theorem J and Proposition 31.7]. The literature will
be more thoroughly discussed in Section 12. _

The next two sections are devoted to a review of the Shapley value, first for finite
games and then for games with a continuum of players. Section 4 is devoted to

3 Counter-examples may be found toward the end of Section 11.
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the relevant definitions of differentiability and smoothness. In Section 5 the
market model is presented, “value allocation” is defined, and the main results
are stated. In Section 6 we again discuss the intuitive content of the main theorem,
in a more leisurely manner than above. Section 7 is devoted to an illustrative
example, and Section 8 to a suggestive but unrigorous demonstration of the main
results, based on the calculus of infinitesimals. In Section 9 we discuss the intuitive
meaning of the differentiability and smoothness conditions, and Section 10 is
devoted to a similar discussion of the uniformity conditions. In Section 11 we
discuss the extraordinary relation, implicit in our results, between the basically
cardinal concept of Shapley value and the ordinal concept of competitive equilib-
rium. Section 12 is devoted to a discussion of the literature, and Sections 13
through 15 to proofs. An appendix clarifies the precise relationship between the
marginal and “‘true’ contributions of a trader.

Readers who wish to skim through the paper should perhaps read only Sections
5 and 8, and the intuitive discussion immediately following the statement of the
Value Equivalence Theorem in Section 1.

2. THE VALUE IN FINITE GAMES

Let N be a finite set; call the members of N players and the subsets of N coali-
tions. A game on N is a function v that associates with each coalition S a real
number v(S) (the worth of S), such that (&) = 0. A payoff vectoron N is a measure
on the subsets of N. Intuitively, a payoff vector is simply a function that assigns a
real number (the payoff) to each player ; such functions are in an obvious one-to-
one correspondence with the measures on N, and for reasons that are both tech-
nical and conceptual,® it is convenient to treat a payoil vector as a measure.

A null player in a game v is a player i such that v(S U {i}) = v(S) for all coalitions
S. Players i and j are called substitutes if v(S L {i}) = v(S U {;}) whenever S
contains neither i nor j. For a fixed player set N, a value is a function ¢ that
associates with each game v a payoff vector ¢u satisfying the following conditions:

ConpITION 2.1 (Additivity): (v + w) = @v + @w.

CONDITION 2.2 (Symmetry): (ov)({i]) = (@v)({j}) whenever i and j are substi-
tutes.

ConbitioN 2.3 (Efficiency): (ov)(N) = v(N).
ConDITION 2.4 (Null player condition): (¢v)({i}) = O whenever i is a null player.

PROPOSITION 2.1: For each finite player set N there is one and only one value ¢ :
it is given by the formula (pv)({i}) = E(W(S; v {i}) — v(S,)), where S; is the set of all
players preceding i in a random order on N, and E is the expectation operator when
all |N|! such orders are assigned equal probability.

4 We wish to think of the payoff to a coalition, not only to an individual.
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For a proof of Proposition 2.1 that is even simpler than the original proof [21],
see [S. Appendix Al

3. THE VALUE IN CONTINUOUS GAMES

In this section we take for the underlying player space a measurable space
(T.%¢). 1e., a set T together with a g-field ¢ of subsets of T. The members of ¢ are
coalitions, but one should not think of the points ¢ of T as individual players:
rather, one should think of an individual player as an infinitesimal subset dt of
T (cf. [5. Section 29]).

A game on (T, %) is a function ¢ from € to the real numbers such that v(¢¥) = 0.
There are various ways of extending the definition of value from the finite games
studied in Section 2 to the more general situation we have here; they are studied
in detail in [5). Here we will adopt a definition due to Kannai [15] (see also [S,
Section 17]).

Let r be a game and S a coalition; we wish to define (¢v)(S). Intuitively, one pro-
ceeds by dividing both S and T\S into a large but finite number of “small” sets
W, say n in all (see Figure 1). If one considers each of these small sets as an indi-
vidual player, then one gets a finite game by restricting v to unions of the W,.

1
In this finite game the coalition S—or more precisely the coalition of those W,
whose union is S—has a value, which we denote ¢,(S). Now if we let n - o and
the W, shrink, ¢,(S) may or may not tend to a limit. If it does, and if this limit is
independent of the various choices that must be made, then we denote the limit

(@)(S), and call it the “asymptotic value of S.”

S T\S

FIGURE 1

Formally, let I1,.II,, ... be a sequence of partitions of T into measurable sets
(i.e., members of %), such that each I1,, refines the previous partition I, .
Assume moreover that the sequence is separating, i.e., that if s and t are distinct
points in T, then for m sufficiently large, s and t are in different members of IT,,,:
this is a precise expression of the idea that the sets in the partitions shrink. For
example, if I1,, is the partition of the unit interval [0, 1] into the subintervals
[0, 127, (1/2m,.2/2™,. . ., (I — 1/2™,1], then the sequence {II,,} is separating. For
each m. let v, be the finite game on I1,, defined by v,(Z) = v({_Jyyz W), and let
oU,, beits value. Let [T, = |S, T\S}, and for each m. let S,, = (Well,,: W < S} .
S, 1s the coalition in the finite game v,, corresponding to S in the original game v.
Now let m — o 1 if (¢r,,)(S,,) has a limit, and if this limit is independent of the
choice of the sequence (I1,.11,....) (when chosen in accordance with the above
conditions), then the limit is denoted (¢v)(S). If, moreover, this is the case of all
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S €%, then ¢v is called the asymptotic value of v. Note that the asymptotic value,
if it exists, is a finitely additive measure on (T, ¥). Note also that when T is finite,
the asymptotic value coincides with the finite value.

The asymptotic value obeys conditions analogous to Conditions (2.1) through
(2.4); see [S, Sections 2 and 17, in particular Theorem F]. Specifically, we note the
efficiency condition:

G.1)  (@o)(T) = uo(T).

4. DIFFERENTIABILITY, SMOOTHNESS, AND UNIFORM SMOOTHNESS

We will be working in a Euclidean space E". Superscripts will be used to denote
coordinates. For x and y in E" we write x > y when x' > y' for all i, and x = y
when x' 2 y' for all i. The symbol x -y will denote the scalar product I, x'y'.
We will also use standard matrix notation, so that x - y = xy*, where both x and
y are considered row vectors and * denotes “transpose.” The symbol O denotes
the origin of E" as well as the number O ; no confusion will result. The non-negative
orthant {x € E": x z 0} in E" is denoted Q.

Unless otherwise specified, the word ‘function” will mean ‘real valued
function.”

A function u on Q is continuously differentiable (on Q) if it can be extended to
an open neighborhood (in E") of Q on which it is continuously differentiable.
An equivalent definition [29] is that u is continuous on Q and continuously
ditferentiable in the interior of @, and each of the partial derivatives of u can be
continuously extended from the interior of Q to Q. In that case, the row vector
of the partial derivatives of u is denoted u'; on the boundary of Q, u’ is defined
to be the unique continuous extension of u’ in the interior. A function on Q with
values in a finite dimensional Euclidean space is continuously differentiable
(C?! for short) if each of its components is continuously differentiable. A real-
valued function u on Q is twice continuously differentiable (C* for short) if both
u and u' are continuously differentiable; the matrix of second derivatives is
denoted u".

A function u on Q is called quasi-concave if for all « € [0, 1] and all x and y in Q,
uocx + (1 — @)y) 2 min (u(x), u(y))

If u is a C? function on R, define

u" u'*
u 0

)

@1 W=

where * denotes “‘transpose.” This is the bordered Hessian of u, i.e., the (n + 1) x
(n + 1)determinant in which the n x n matrix u” is bordered by the row vector v/',
by the column vector u'*, and by the number 0. When u’ > 0, define

T

4.2) u¢

where || ||, is the Euclidean norm. It may be verified [10] that u° depends only on
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the level (or indifference) surfaces of u, and not on u itself. The Gaussian curvature
of the level surface of u at x is then defined as u(x).

When n = 2, then u(x) = 1/r, where r is the radius of the circle that “best fits”
the level curve of u at x. Thus if u‘(x) = 0, then r = oo, so that the “circle” that
best fits the level curve is a straight line. Further discussion of the Gaussian
curvature can be found in Section 9 and also in [10].

Let (T, %) be a measurable space. For each t e T, let w, be a function from Q
to some Euclidean space E' (possibly [ = 1). The w, are uniformly bounded if
there is a point b in E' such that w(x) < b for all ¢t in T and x in Q. They are
uniformly bounded in compact sets if for each compact subset C of Q, there is a
point b in E such that w,(x) < b for all ¢ in Tand x in C. They are uniformly positive
(or bounded away from zero) in compact sets if for each compact subset C of €,
there is a point b > 0 in E' such that w,(x) > b for all  in T and x in C. They are
simultaneously measurable if w,(x) is measurable as a function of (¢, x), i.e., measur-
able in the product field ¥ x 4, where & is the o-field of Borel sets in Q.

A family {u,} of functions on Q is called bounded differentiable if the u, are
simultaneously measurable, uniformly bounded, and continuously differentiable
on ©, and the derivatives u; are, in compact sets, uniformly bounded and uniformly
positive. Finally, {u,} will be called uniformly smooth if it is bounded differentiable
and the following conditions are satisfied :

CONDITION 4.1: The u, are quasiconcave and twice continuously differentiable
on Q.

CONDITION 4.2: The Gaussian curvatures u are uniformly positive in compact
sets.

CONDITION 4.3: The second derivatives u; are uniformly bounded in compact sets.

5. DESCRIPTION OF MODEL AND STATEMENT OF RESULTS

The market model is basically the same as in [1]. It consists of : (i) a measurable
space (T, %), called the trader space, together with a o-additive, non-negative
measure u on %, with u(T) < oo ; (ii) the non-negative orthant Q—called the
consumption set—of a Euclidear: space E", whose dimension n represents the
number of different goods being traded in the market; (iii) a measurable function a
from T to Q called the initial allocation; and (iv) for each t in T, a relation >,
on Q, called the preference relation of t. The system consisting of these four items
is called a market. The market is called non-atomic if yu is non-atomic.

We will assume that the measurable space (T, %) is standard, i.e., that it is finite,
denumerable, or isomorphic® to the unit interval [0, 1] with the Borel sets. This
assumption is less restrictive than it sounds; any Borel subset of any Euclidean
space (or indeed, of any complete separable metric space) has this property.

5 Two measurable spaces are isomorphic if there is a one-to-one transformation from one onto the
other that preserves measurability in both directions.
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If fis a function on T, we often write [ f instead of s f(t)u(dt), and [ f instead
of [, f. We will make the following assumptions:

ASSUMPTION 5.1: [a > 0.
ASSUMPTION 5.2: a is uniformly bounded.®

Assumption 5.1 is fairly standard; it means that each commodity is actually
present in the market, though not all traders need initially hold a positive amount
of it. Assumption 5.2 is less familiar ; actually we make it only as a kind of normal-
ization, and at the expense of certain complications below, could dispense with it.
This matter will be discussed further in Section 10.

In the non-atomic case, it is best to view an individual trader as an “infinitesimal
subset” dt of T, rather than as a single point in T. Individual bundles are also
infinitesimal ; thus the initial bundles of the individual trader dt is a(t)u(dt), whereas
the point a(z) itself is to be thought of as dt’s initial bundle density (initial bundle
of dt divided by his measure). Similarly, x >, y means that dt prefers xu(dt) to
yu(dt), i.e., he prefers the bundle density x to the bundle density y. This point of
view is expounded at some length in [5, Section 29]; see also [26, Footnote 12].

Autility for arelation > on Qis areal-valued function u on Q such thatu(x) > u(y)
if and only if x > y. The preferences >, are called uniformly smooth if there exists
a uniformly smooth family of utilities for them. An intuitive discussion of uniform
smoothness will be given in Section 10.

Let U = {u,} be a bounded differentiable”’ family of utilities for the preferences.
Define a game vy on (T, %) by

(5.1) vy(S) = max {f u,(x(t))u(dt):f x = f aand x(f)eQforalltin S
N N N

Intuitively, vy(S) is the maximum total utility that S can guarantee to itself by
redistributing its total initial bundle ;e among its members. We remark that
the maximum in the definition of vy is attained [4], and the game vy has an asymp-
totic value vy [5, Proposition 31.7].

An allocation is a measurable function x from T to Q such that {x = [a. It is
called a value allocation if there exists a bounded differentiable family U of utilities
for the preferences such that for all ¢,

(52 (euy)(dt) = u(x()u(dr),
i.e., such that for all S,

63 (o)) = | uxtoyutds)

N
In words, (5.2) says that x yields each trader precisely the utility that he is assigned
by the value. An allocation x is called competitive if there exists a p in Q with

6 That is, there is a point b in Q such that a(f) < b for all &.
7 See Section 4.
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p # O (called the vector of prices) such that for almost all ¢ in T, x(t) is maximal
with respect to >, in the budget set B(t) = {xe€Q:p-x < p- a(t)}.
This completes the presentation of the basic definitions. The first result is:

PROPOSITION 5.1: In a non-atomic market, every value allocation is competitive.
Conversely, we have:

PROPOSITION 5.2: In a non-atomic market, assume that either (i) the preferences
are uniformly smooth, or (ii) there exists a bounded differentiable family of concave
utilities for the preferences. Then every competitive allocation is a value allocation.

Proposition 5.2 requires either smoothness or concavity; for Proposition 5.1
neither requirement is needed. But Proposition 5.1 does require differentiability,
which is implicit in the definition of “‘value allocation”.

The Value Equivalence Theorem—stated in the introduction—is, of course, an
immediate consequence of Propositions 5.1 and 5.2.

We mention also that if in the definition of value allocation we replace ‘‘asymp-
totic value” by “mixing value” [5, Section 14, p. 115], then the Value Equivalence
Theorem and Propositions 5.1 and 5.2 remain true without any change. The
proofs are as in Sections 13 through 15; one merely has to replace the word

“asymptotic’ by the word “mixing”.

6. INTERPRETATION

The simplest interpretation is essentially the one sketched in the introduction
(after the statement of the Value Equivalence Theorem). It involves an additively
separable social welfare function, defined by a family U = {u,} of utilities. It is
best to think of trader dt’s utility for the bundle xu(dt) as u,(x)u(dt). Then
) o U(x(®)p(dr) is society’s level of welfare under the allocation x; and vy(S) is the
maximum level of welfare that the coalition S can achieve by its own efforts.
Thus vy(S) measures the power or bargaining strength of the coalition S; and
given the bargaining strengths, v, may be considered the ‘‘equitable” payoff
distribution. Hence a value allocation (see (5.2)) is one that yields each trader
precisely his “equity”’ in the market ; i.e., an allocation x whose utility u,(x(t))u(dt)
to each trader dt is precisely (puvy)(dt).

Here we used the word “‘equity”’ in describing the value, whereas in the introduc-
tion we referred to the traders’ “contributions”. The assertion that the value
constitutes an equitable payoff distribution is based on its axiomatic definition
(see Conditions 2.1 through 2.4). That it also may be thought of in terms of the
players’ contributions is a consequence of Proposition 2.1 (see also Step 5 of
Section 7, and the Appendix). These two interpretations are simply two sides of
the same coin—two ways of looking at the same concept.
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It should be noted that for a given family U of utilities, there will in general®
be at most one such x, and usually none; to obtain the set of all value allocations,
one must allow U to vary. An illustrative example will be analyzed in Section 7.

There is a certain conceptual analogy between the process of determining a
value allocation and that of determining a competitive allocation. To find a
competitive allocation, one assigns prices to the commodities. Given the initial
allocation, these prices generate individual demands. If the demands thus generated
are feasible—i.e., if they can be obtained by reallocating the total initial supply—
then we have a competitive allocation.

To find a value allocation, one assigns a utility function to each trader. Given
the initial allocation, these utility functions generate a payoff distribution—the
value. If this payoff distribution is feasible—i.e., if it can be obtained by reallocating
the total initial supply—then we have a value allocation. The utility functions here
play a role similar to that of the prices in the case of competitive allocations.
Prices enable us to evaluate bundles of goods; utility functions enable us to
evaluate coalitions of players. Workers in general equilibrium theory have in the
past been loath to compare utilities ; but there is some reason to believe that such
comparisons play a significant role in economic activity. Workers in areas such as
growth, income distribution, and taxation have recognized this and have been
quite willing to assume social welfare functions and the utility comparisons they
imply. The fact that there are certain conceptual difficulties involved in such
comparisons does not permit us, ostrich-like, to ignore them. The analysis outlined
here suggests that society may be generating utility comparisons by means of a
mechanism similar to the familiar supply and demand mechanism that generates
prices; more bluntly, that ‘“‘social welfare” is a function of power rather than an
ethical construct. ,

The above interpretation of the Value Equivalence Theorem—i.e., in terms of
social welfare functions—is open to a certain objection; though not crippling,
it bears discussion. The games v discussed in Sections 2 and 3 are usually interpreted
as “side payment” or “transferable utility”” (TU) games. Essentially, this means
that the payoffs are assumed to be in a single, desirable commodity ; that (S) is
the total payoff that S can get for its members ; and that S can get for its members
any payoff totalling v(S), as is for example the case when the players can freely
transfer the single good among each other. The markets defined in Section 6,
on the other hand, cannot be considered TU games: the payoff is in terms of the
personal utilities u,, which are not “commodities”, and are certainly not transfer-
able. How, then, can TU theory be relevant to these markets?

Naturally, one can answer that though the TU view of a game v is the usual one,
it is not the only possible one, and that in the current application the social welfare
view is preferred. But it is also possible to justify the notion of value allocation
directly in terms of the TU view. One can think of markets in terms of production,
as follows: there are n raw materials, not in themselves consumable, and one
desirable consumer commodity, which for simplicity we shall call food. Each

8 For example, whenever the u, are strictly concave.
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trader dt starts out with a bundle a(t)u(dt) of raw materials, and with no food.
The traders may exchange raw materials. If, after the exchange, dt holds a bundle
xu(dt) of raw materials, he can produce from it an amount u(x)u(dt) of food.
Transfers of food are forbidden.

A little reflection will convince the reader that this is conceptually entirely
equivalent to the usual view of a market.

Since food transfers are forbidden, this cannot be viewed as a TU game. But
suppose now that food transfers are legalized.® Then each coalition S can produce
an amount vy(S) of food, which it can divide among its members in any way it
pleases. Therefore the situation is well represented by the TU game vy .

In general, the value guvy of vy is not achievable without actual transfers of food
(cf. Section 7). Specifically, we will have

6.1)  (pvo)(dt) = u(x(O)udr) + {(dt),

where x is an allocation of resources that achieves vy(T), i.e., such that vy(T) =
[ u(x(2))u(dr), and {(dt) is the net intake of food by dt resulting from food transfers
(rather than from his own production). These transfers clearly sum to 0, ie.,
{T) = [;{(dt) = 0; but for individual traders they will usually not vanish, i.e.,
the measure ¢ will not vanish identically.

Suppose now that { does happen to vanish identically ; then (6.1) reduces to (5.2),
ie., x is a value allocation. This means that the value @vy is achievable directly
by means of the resource allocation x, without any transfers of food. In this case
x is called a value allocation.

If x is a value allocation, one can think of the traders going to market under
the impression that food transfers will be permitted. This leads them to trade
so as to arrive at the value of the associated game vy ; i.e., they will reach the
allocation x, but will undertake no subsequent food transfers. After going home,
they hear that food transfers have been forbidden. Fortunately, nobody wanted
to transfer food anyway. Thus, to arrive at a value allocation, one must only
think about food transfers—imagine them—they don’t actually have to be possible.
The “transferable utility” does not really have to be transferable, because in the end
nobody wants to transfer it.

Basically, this argument uses what is sometimes called the principle of inde-
pendence of irrelevant alternatives (cf. [18]). We agree that when food may be
transferred, then among all possible outcomes, an outcome that is in some sense
best is to give to player dt the allocation x(t)u(dt). But this allocation does not
require the transfer of food, and so a fortiori it should be best when such transfers
are forbidden.

We close this section with a few words about the notion of “equity’ and its
connection with the Shapley value. We stated above that the value of a game v
is calculated by taking into account the bargaining strengths of players and
coalitions, as reflected in the worths v(S). Thus the more a player can get for
himself, acting alone or in concert with other players, the more the value will

 Economies of this kind (i.e., with legalized food transfers) are called TU markets.
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assign to him. Some readers may feel that this smacks more of power politics—of
“might makes right”—than of what is commonly considered equity or fairness.
Wouldn’t it be more appropriate to adopt a point of view similar to that of Rawls
[20] or of some of the recent literature on income redistribution,'® which ignore
the power structure of society and treat people in a basically egalitarian way?
We think not. Criteria of equity that do not take power considerations into
account have a pleasing air of symmetry and abstract perfection ; they appeal to
our philosophical, ethical senses. But what would make society adopt such
criteria? And even if adopted, what chance do they have of surviving the attacks
of pressure groups, large and small? For better or for worse, economic realities
are dictated not by ethical considerations, but by the exercise of economic power.
We are not suggesting that the more egalitarian considerations are not worthy
of study; but we do think that the kind of criterion exemplified by the Shapley
value—which some readers might prefer to call a ‘“‘reasonable compromise”
rather than an ‘“‘equitable solution”—is more relevant to economic reality.

7. AN EXAMPLE

This section is devoted to a trivial but nonetheless instructive example. Consider
an economy in which there is only one commodity, which is desired by all traders
(ie., for all ¢,x>,y if and only if x > y). Let the initial bundle density be 1 for
half the traders (say the set S;), and 3 for the other half (say S; = T\S,). Of
course one would not expect any trading to take place in such a situation, but
let us follow through our formal analysis and look for value allocations. Let u be
any strictly concave function on the nonnegative reals that is bounded, differen-
tiable, and strictly increasing (e.g., 1 — 1/(x + 1)). Set u, = u for all ¢; for simplicity,
let w(T) = 1. Then vy(S,) = (1/2)u(1), vy(S3) = (1/2)u(3), and vy(T) = u(2). Since
u is strictly concave, it follows that vy(T) > vy(S;) + vy(S3); in other words,
trading is socially beneficial. To obtain the full benefit from trading, society must
choose an allocation that actually yields a total utility of vy(T) = u(2). The only
such allocation is xo(¢) = 2. But this cannot be a value allocation, as it is highly
inequitable: it does not differentiate at all between the players in S, and S5, and
in fact assigns to traders in S; bundles smaller than their initial bundles! Hence
there isno value allocation at all associated with this choice of the u,—no allocation
that is both socially optimal, and divides the benefits from trading equitably
among the traders.

If one calculates'! @uvy, one finds that it assigns densities u(2) — w/(2) and
u(2) + u'(2) to the players in S, and S5, respectively'? (see Figure 2). But to achieve
such a payoff distribution one would have to start by assigning a density of 2 units
of the single commodity to all traders, and then one would have to “transfer utility”’

10 See, for example, Sheshinski [25] and the papers quoted there.

1 Step 5 of Section 8 or Lemma 13.2.

'2When u(x) = 1 — 1/(x + 1), then u(2) = u'(2) = 5/9 = u(1) + 1/18, and u(2) + w(2) = 7/9 =
u(3) + 1/36. Thus the value dictates a gain in utility (over that of the initial bundle) for all traders,
but a smaller gain for S; than for S,. “Equitable” is not necessarily “equal”.
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FIGURE 2

in the amount of ¥'(2) from S; to S;—an impossible (indeed meaningless)
proceeding,

Since this choice of U does not lead to a value allocation, the question arises,
which choice does? A trivial answer is provided by taking u, = w for all ¢, where
w(x) = x in an interval including [1, 3]. In that case, there is no social benefit
from trading, and so the initial allocation is also a (in fact, the) value allocation.

But there is also a more instructive answer. Consider the u, in our first example,
ie., u(x) =1 — 1/(x + 1). If we multiply these u, by some o > 1 for t € S5, and
leave them unchanged for te S, then we are assigning a higher social benefit
to consumption by S; than by S;,—consumption by S; is considered ‘“‘more
valuable”.! As a result, maximum social welfare will be attained by assigning a
higher commodity density to S5 than to S, . In particular, if « is sufficiently high,
maximum social welfare will be attained by transferring goods from S; to S;.
We have already seen that if o = 1, then maximum social welfare is attained by
transferring from S5 to S, . For an appropriate intermediate a, therefore, maximum
social welfare is attained precisely at the initial allocation, i.e., without any transfers.
Of course this does not necessarily imply that the value is then also achieved
without any transfers, but it may be verified that that is in fact the case.

When there is more than one commodity, value allocations will in general
involve transfers of commodities; but the utilities must be chosen so that no
“transfer of utility” is required.

8. AN UNRIGOROUS DEMONSTRATION OF THE RESULTS

The proof of our results relies heavily on the theory of non-atomic games
developed in Aumann-Shapley [5]; when spelled out, it is long and involved.
On the other hand, it is comparatively easy to ‘“‘demonstrate’ the theorem in

13 Because the members of S; are more powerful, in that their initial bundles are greater.
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terms of the calculus of infinitesimals and one or two other rough conceptual
tools; that is what we shall do in this section. Such a demonstration, though
unrigorous, gives insight into the situation and shows why one would expect the
theorem to hold.

In Steps 1 through 5 of the demonstration, U = {u,} is a fixed bounded differen-
tiable family of utilities, and x is an allocation at which vy(T) is achieved, i.e.,
such that

81 T = | i)

The universal quantifier (“for all t”’) is to be understood in each one of these steps.
STEP 1: (x(f), u,(x(¢))) is on the boundary of the convex hull of the graph of u,.
When n = 1, this asserts that the situation cannot be as pictured in Figure 3.

Indeed, if it were, we could split dt into two players, dt, and dt,, and give them

densities x,; and x,, respectively. The total utility that dt would get in this way
would be yuidt) rather than u,(x(¢))u(dt). Thus dt, and so also T as a whole, would

U (x(——— ———— =

X4 x(t) Xo

FIGURE 3

benefit from the split; this contradicts the efficiency of the value. The argument
for arbitrary » is similar, except that it may be necessary to split dt into n traders
dt,,...,dt,. We are of course making strong use of the non-atomicity of the
market in this step.

STEP 2: u)(x(t)) = uy(x(s)) for all s and t.
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Since the demonstration is in any case unrigorous, we assume without twinges
of conscience that we are in the interior,!* i.e., that x(f) > 0, x(s) > 0. Let n = 1.
If the assertion were false, say u,(x(t)) > ul(x(s)), then society could gain by moving
X(¢) to the right and x(s) to the left, in contradiction to the efficiency of the value
(see Figure 4). The argument is similar for general n.

L 3

x(t) " x(s)
FIGURE 4

Set p = uy(x(t)); by Step 3, p does not depend on ¢.
STEP 3: For all x in Q, u,(x(¢)) — u,(x) =Z p- (x(t) — x).
From Step 2 it follows that the hyperplane with slope p through the graph of u,

at x = x(t) is tangent to the graph there ; from Step 1 that this hyperplane supports
the graph. This is precisely what is asserted here (see Figure 5).

Ut (X(T))"Ut (X) ﬁ

> @
> 4
=
=

FIGURE 5

4 Of course no such assumption is used in the rigorous proof. Even the statement of the step is false
without the “interior” assumption, and must be replaced by a more complicated statement.
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STEP 4: x(f) is maximal with respect to the preference relation >, in
{x:p-x € p-x(t)}

Indeed, if p- x < p- x(t), then from Step 3 it follows that u,(x) < u,(x(t)).

Step 4 asserts that the prices p are efficiency prices. When the u, are concave,
Steps 2, 3, and 4 are well-known even in the finite case; the p' are the “‘shadow
prices” in the maximization that defines vy(T). The non-atomicity enables the
establishment of Step 1, and so the extension to non-concave u,.

The following step is crucial :

STEP 5: (puy)(dt) = (ulx(t)) + P - (alt) — x(©))p(dr).

To demonstrate this, let us first calculate the marginal contribution vy(T) —
vy(T\dt) of dt to society. Since vy(T) is achieved at x, trader dt will, after joining
the rest of society, consume x(t)u(dt), whereas he has contributed a(t)p(dt). Therefore
his net contribution of commodities to society is (a(t) — x(t))u(dt). Thisis distributed
among all other traders, each of whom will receive only an infinitesimal portion
of this (in itself infinitesimal) bundle. Therefore the bundle density of each trader
will change by only an infinitesimal amount, and so by Step 2, the utility of each
trader will change by p times the increment in his bundle. Hence the total increment
in utility to all members of T due to the distribution of (a(t) — x(t))u(dt) among
them is p - (a(t) — x(t))u(dt). But over and above his contribution of goods to
society, dt himself will get utility out of his consumption of x(z)u(dt), and this
additional utility, which is u,(x(¢))u(dt), also must be taken into account when
calculating the marginal contribution of dt. We conclude that

(82)  vy(T) — vy(T\dt) = (u(x(x)) + p-(alt) — x(£))pu(dr).

Now let S be the set of traders up to dt in a random ordering of all the traders.
Because of the many traders, the randomly chosen coalition S will almost surely
be an almost perfect sample of the population of all traders (insofar as the distribu-
tion of utilities and initial bundles is concerned). Hence the contribution
vy(S) — vy(S\dt) of dt to S is almost surely the same as his marginal contribution
vy(T) — vy(T\dt) to all of society. Hence the expectation of his contribution to
S—which is precisely (vy)(dt)—is also the same as his marginal contribution.
Step 5 thus follows from (8.2).

STEP 6: Every value allocation is competitive.

A value allocation x necessarily satisfies (8.1), since by (5.3) and the efficiency of
the value (3.1) we have [ u,(x(t))u(dt) = (ovy)(T) = vy(T). From (5.4) and Step 5
we then obtain p-(a(t) — x(t)) = O for all t. Thus p-a(t) = p- x(t), and so from
Step 4 it follows that (p, x) is a competitive equilibrium.

Step 6 is identical with Proposition 5.1, and thus the demonstration of the latter
is complete.
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STEP 7: If the preferences have concave utilities, then every competitive allocation
is a value allocation.

Let {w,) be a family of concave utilities, and let (p, x) be a competitive equilibrium.
From the concavity it follows that for all ¢+ and x, w,(x(t)) — w(x) = wi(x(t))-
(x(t) — x),and hence, asin Step 4 above, that the hyperplane through x(¢) orthogonal
to wi(x(t)) supports the indifference surface of u, through x(t). Hence w;(x(t)) must
be proportional to p. So if we define a family U = {u,} of different utilities for the
same preferences by multiplying each w, by an appropriate constant (which may
depend on t), then we obtain p = u,(x(t)) for all t. Hence u,(x(t)) — u(x) =
p - (x(t) — x) for all t. From this it follows that if y is another allocation, then
[ ux(O)p(d) — [, u PO Z p-[(x —p) = p-[(a — a) = 0, s0 that vy(T) is
achieved at x, ie., (8.1) holds. Hence, by Step 5, (¢pvy)(dt) = (u,(x(t)) + p - (a(t) —
x(t)))u(dr). Since (p, x) is a competitive equilibrium, p - a(t) = p - x(t), and hence
(pvy)(dt) = ux(t))u(dr). But this is precisely the definition (5.2) of value allocation,
and so the proof of Step 7 is complete.

STEP 8: Uniformly smooth preferences can be represented by concave utilities.

For a time it was thought likely that all preferences with quasi-concave utilities
could be represented also by concave utilities ; that this is not the case was shown
by examples of de Finetti [7] and Fenchel [12], which will be considered in more
detail in Section 9 below. At this point we cannot ‘“‘demonstrate’’ this step, but
perhaps this matter will be clearer to the reader after he has read the discussion in
Section 9.

We add that in independent work, Mas-Collel [17] and Kannai [16] have
shown that all preferences having quasi-concave utilities can be approximated by
preferences having concave utilities, so that Step 8 is “approximately’ true even
without the smoothness condition.

Proposition 5.2 is, of course, an immediate consequence of Steps 7 and 8. Since
Proposition 5.1 has already been established (see Step 6), the demonstration of
the Value Equivalence Theorem is complete. The most crucial steps in this
demonstration are probably 5 and 8.

9. DISCUSSION OF SMOOTHNESS AND SOME COUNTER-EXAMPLES

This section is devoted to the differentiability and smoothness conditions for
individuals; the uniformity conditions will be discussed in the next section.

If the utilities u, are not differentiable, the TU game vy will in general not have
an asymptotic value,!’ so one cannot even begin to speak of a value allocation.
Moreover, though @vy may exist under certain circumstances even when the
utilities are not differentiable,'® value theory for the game vy is in this case quite

!5 See [5, Example 33.9], especially the end of the discussion of that example.
16 See Footnote 15.
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undeveloped, and we would not be able to apply the basic tools from [5] that we
need for the proof of our theorem.!’

So much for the first-order differentiability. Next, we discuss smoothness,
which is needed to ensure that the preferences have concave utilities;'® the
importance of this will soon become apparent.

Smoothness has three basic ingredients: quasi-concavity, positive Gaussian
curvature, and positive gradients. We discuss the three ingredients separately.

Without quasi-concavity—e.g., for a preference order like that pictured in
Figure 6—we will obviously not be able to find concave utilities (the preferred sets
{x:u(x) = y} are convex if u is concave). Moreover, it is then easy to find an
example with a competitive allocation that is not a value allocation. Let all traders
have the same preferences, and the same initial bundle a(t) = a, as pictured in

a=initial bundle

FIGURE 6

Figure 6. Then there is a unique competitive allocation, namely a; the prices will
of course be the p indicated in Figure 6. But now we will argue that a cannot be a
value allocation. Indeed, if it were, then there would, in particular, have to exist
a bounded differentiable family U = {u,} such that the maximum in the definition
of vy(T) is achieved when x = a. By the argument of Step 1 of Section 7 (which
can easily be made precise), it would follow that (a, u,(a)) would have to be on the
boundary of the convex hull of the graph of u,. If that were the case, there would
exist a supporting hyperplane to the graph through (q, u,(a)); and it would neces-
sarily pass through (x, u(x)). Since the hyperplane supports the graph and passes
through both these points on the graph, it follows that u;(a@) = u;(x). But we have
constructed the preferences so that though u,(x) has the same direction as u,(a),
it must have a larger magnitude (the indifference curves are closer). Hence a
cannot be a value allocation. Indeed, since every value allocation is competitive,
and a is the only competitive allocation, there will be no value allocation at all.

17 Specifically, Lemma 13.2. On the basis of the available evidence, it seems reasonable to conjecture
that without differentiability, something like Proposition 5.1 will still go through, but Proposition 5.2
will not.

'8 More precisely, utilities that are concave over the relevant part of Q.
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The requirement of positive Gaussian curvature says that the indifference
surfaces should never be too “flat”—at any point in any direction. Specifically,
for x in Q, consider the hyperplane H, tangent at x to the indifference surface I,
through x. Let G, be the line orthogonal to H, at x (i.e., the line spanned by the
gradient at x of a utility function), and let L be any line in H, through x. We may
take G, and L as coordinate axes in the plane P, ; spanned by them. The situation
is pictured in Figure 7. Let f be the function (of distance along L) whose graph

G

IyNPy L = graph of f

FIGURE 7

is the intersection of the indifference surface I, with the plane P, ;. Then the
requirement of positive Gaussian curvature says'® that the second derivative f”
be positive at the origin of P, ; ; i.e., that the indifference surface not be “too flat”
at x in the direction L, and that this be true for all x and all L through x in H,.

In economic terms, positive Gaussian curvature is equivalent?® to finite
elasticity of substitution.?! Another familiar characterization is that the quadratic
form xu”x* be positive definite when restricted to the plane ' - x = 0.

The following example of an otherwise well-behaved preference relation with
vanishing Gaussian curvature that has no concave utility is due to W. Fenchel [12].
Consider the relation pictured in Figure 8, with straight indifference curves that
are not parallel.?? If u is any C! utility for those preferences, the gradient of u at x
has the same direction as the gradient at a; but it has a larger magnitude, since the
indifference curves are closer at x. These facts enable us to apply an argument
exactly as in our discussion of quasi-concavity, and to deduce that u cannot be
concave; and moreover, that in the market M in which all the traders have the
preference relations of Figure 8 and initial bundles a(t) = a, the competitive
allocation a is not a value allocation and in fact there is no value allocation.??

19 Given quasi-concavity.

20 See Footnote 19.

21 1 am indebted for this observation to C. C. von Weisziicker.

22 In Figure 8 the indifference curves, when extended, all pass through a single point outside (and to
the left of) Q. But this feature is not crucial ; what is needed is only that the indifference curves be straight
and closer at x than at y.

23 In this case there is more than one competitive allocation x, since x(f) may be essentially anywhere
on the indifference curve of a as long as [ x = [ a. However, the argument that none of the competitive

allocations can be value allocations—and hence that there is no value allocation—is not essentially
different from the one we had before.
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FIGURE 8

There is another argument for these facts that is of some interest. Let us think
of Figure 8 as a contour map, the “height” being the differentiable utility u.
The contour lines are closer at x than at y, which means the ground is steeper there.
In particular, the ground rises faster along the dashed line perpendicular to the
indifference curve at x than it falls along the parallel dashed line starting at y.
So if one were to string a telegraph line along the dotted line and pull it taut,
it would pass over the indifference curve containing x and y. This means that u
cannot be concave. Moreover, in the market M defined in the previous paragraph,
our telegraph line and an argument similar to that of Step 1 of Section 7 show
that a cannot be a value allocation and in fact that there is no value allocation.
Moreover, it is fairly clear that this argument goes through even under strict quasi-
concavity,?* as long as the indifference curves are still “very flat” at a, provided,
of course, that the tangents to the indifference curves near a are “markedly non-
parallel”, e.g., that they all pass through the same point (outside of Q).

We come now to the requirement that the gradients ' be positive. This prevents
the “de Finetti phenomenon” [7]: the presence of two points x and a such that

9.1) u(x) = u(a), u'(@)=0, and u'(x)>0

(see Figure 9). If (9.1) holds for some C! utility u, it holds for all such utilities;
what it means is that the indifference curves are infinitely more bunched up near x
than near a. Under (9.1) u cannot be concave, because that, together with u'(a) = 0,
would imply that the maximum of u along the line perpendicular to the indifference
surface (dotted in the figure) is reached at a; this is impossible if the preferences
are monotone.

Consider finally a market, all of whose traders have the same utility obeying (9.1),
and the same initial bundle a(t) = a. If the utilities are strictly quasi-concave.
then the only competitive allocation is x = a. If @ were a value allocation, there
would exist a family U = {u,} of utilities such that vy(T) is achieved at a. This
would imply?® that (a, u,(a)) is on the boundary of the convex hull of the graph

24 That is, u(ex + (1 — a)y) > min (u(x), u(y)) for o € (0, 1).
25 Step 1 of Section 8.
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FIGURE 9

of u, for each . But since u,(a) = 0, this supporting hyperplane would be flat,
and this would contradict the monotonicity of 4,. Thus a is not a value allocation
and indeed, there is no value allocation.

10. DISCUSSION OF THE UNIFORMITY CONDITIONS

An individual preference relation is smooth [10] if it has a quasi-concave C?
utility function with an everywhere strictly positive gradient and indifference
curves that have everywhere positive Gaussian curvature. This implies that in
each compact subset of €, the gradient 4’ is bounded and bounded away from 0,
the Gaussian curvature is bounded away from 0, and the second derivative u” is
bounded. Uniform smoothness of a family {u,} requires that the bounds involved
in these three statements be independent of ¢ (though they may, of course, depend
on the compact subset of Q). It also requires?® that the utilities u, be bounded over
all of Q (i.e., not only compact subsets), uniformly in .

Of these four requirements, one (about Gaussian curvatures) is stated directly
in terms of preferences; but the others are stated in utility terms, and it would be
desirable to see what they say about the preferences. The last one—about a uniform
bound for the u~—places no restriction on the preferences; if u, are utilities
satisfying the other restrictions but possibly not uniformly bounded, then
(4, — u(0))/1 + u, — u,0)) will satisfy all the requirements. The requirement
relating to upper and lower positive bounds for the gradient u; has two aspects:
that relating to the direction and that relating to the magnitude. That relating to
the direction has an obvious interpretation in terms of the indifference surfaces
(in the two-dimensional case, it simply says that the indifference curves have

26 This reduirement could be replaced by the far weaker requirement that u(x) = o(||x|)), integrably
in t (see [4] or [5, Section 31, especially (31.2)]).
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uniformly bounded slopes). To understand the requirement relating to the magni-
tudes of the gradients, note that whereas these magnitudes of course depend on
the choice of a utility, the ratio between the magnitudes at two points x and y
on the same indifference surface depends only on the preferences. This ratio is
required to be bounded and bounded away from zero.

As for the uniform boundedness of the second derivatives, this is intuitively
less clear, but it too can presumably be interpreted in terms of the preferences.

It is perhaps worthwhile to state that a sufficient condition for the family {u}
to be uniformly smooth is that (i) each of the , be smooth, (ii) the 4, be bounded
over €, uniformly in ¢, and (iii) {,} be contained in a compact subset of the space %
of C? utility functions on Q, endowed with the topology of C? uniform convergence
" on compact sets.?”’ '

Assumption 5.2, that @ is uniformly bounded, is merely a normalization:
if it fails, it is always possible to make it hold simply by replacing the underlying
measure u by the measure v defined by v(S) = [sZi_; at)u(dr). In the new
representation, all initial bundle densities would be < (1,...,1). But such a
transformation would change also the utilities, and this would lead to complica-
tions in the statement of the uniformity conditions. Thus if we wanted to dispense
with Assumption 5.2, we would have to replace the fixed compact sets in Conditions
4.2 and 4.3 by sets varying with ¢ in such a way so that the maximal distance from
the origin is a bounded multiple of £7_ | a'(¢). In other words, the “‘size” of a trader
is essentially determined by the size of his initial bundle (not by his measure),
and when speaking about bounds of various kinds we must really scale them to the
size of the trader. It is in order to avoid these complications that we made the
normalization in Assumption 5.2.

11. THE THEORY IN A CARDINAL CONTEXT

The definition of the market model in this paper is an ordinal one; that is, it
involves only the preferences (and initial bundles) of the traders, and not any
specific choice of utility functions u,. In the definition of “value allocation”,
the u, are not fixed, but are allowed to range over all appropriate utility functions
that represent the given preferences. Hence the concept of value allocation is also
an ordinal one; i.e., whether or not a given x is a value allocation depends only on
the preferences (and initial bundles) of the traders.

A purely ordinal model of this kind is, however, not the traditional setting for
a value theory. In this section we will consider the Shapley value in a model in
which it should feel more at home—one that specifies the cardinal utilities of the
traders, rather than just their ordinal preferences. By this we mean a model in
which the traders have an intrinsic numerical scale on which the intensity of their
preferences can be measured. Thus, it becomes meaningful to say not only that x

27 A sub-basis for this topology consists of sets of the form W(w, ¢, C), defined for each win %, ¢ > 0,
and compact subset C of Q to be the set of all u in % such that for all x in C, lu(x) — w(x)| <,
llu'(x) — w'(x)|| <& and u"(x) — w'(x)| < e It is weaker than the Whitney topology discussed in [27],
so that if a set is compact in the Whitney topology, it is a fortiori compact in this topology.
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is preferred to y, and y to z, as in an ordinal context; one can go further and say,
for example, that y is relatively close to x on the preference scale (e.g., 75 of the
way between z and x). One can lend operational significance to this kind of
statement by the method of von Neumann and Morgenstern[28], i.e., by referring
to lotteries with prizes x, y, and z. But this is by no means the only possible inter-
pretation. For example, cardinal utilities can be defined by the method of Debreu
[9] in the case of independent commodities, or when the set of commodities can be
partitioned into independent ‘‘factors” (i.e., sets of commodities); or one can
define them by the method of “‘just noticeable differences” (cf. Fishburn [13,
p. 18ff. and p. 80ff.]). If one wishes, one can also simply accept intensity of prefer-
ences as a fact of life that is not to be ignored, and so assume that cardinal utilities
are given a priori. In any case, in our application it makes no difference how the
cardinal utilities are derived, as long as they are in fact given for all traders.

Formally, call two functions u and v on Q equivalent if there are real numbers
o and B, with a > 0, such that u = av + f; and define a preference scale on Q
to be an equivalence class of functions on 2. A member of the equivalence class
is called a cardinal utility for that preference scale. Preference scales play the
same role in cardinal contexts that preference relations play in ordinal contexts.
A cardinal utility is to a preference scale what a utility is to a preference relation ;
i.e., a representation by means of a numerical function.

It should be particularly noted that though specifying preference scales for all
traders enables each trader to compare the intensities of his own preferences,
it allows no interpersonal comparisons—no comparison of the intensities of
preference of different traders. Our definition of preference scale embodies the
familiar statement that “‘cardinal utilities are determined only up to an additive
and a positive multiplicative constant”. Thus if we are given cardinal utilities for
all traders we can multiply them by arbitrary constants that are different for the
different traders, without changing the preference scales, so that no consistent
comparisons can be based on such utilities.

To stress the ordinal character of the markets and utilities defined in Section 5,
we will henceforth in this section refer to them as ordinal markets and ordinal
utilities.

Define a cardinal market in exactly the same way as an ordinal market, except
that the preference relations >, are replaced by preference scales 4,. Adopt
Assumptions 5.1 and 5.2; define non-atomic, allocation, and competitive allocation
as in an ordinal market. Define a cardinal value allocation to be an allocation x
such that there is a bounded differentiable family U = {u,} of cardinal utilities
for the preference scales z, for which (5.3) holds®® for all S in %, where the game vy
is defined by (5.1). All this is the same as in Section 5, except that we have replaced
the preference relations by preference scales.

There are of course relationships between the ordinal and the cardinal concepts.
A preference scale 4 and a preference relation > are called associated if the cardinal
utilities for 4 are ordinal utilities for >. There is exactly one preference relation

28 Or equivalently, (5.2) holds for all ¢ in T.
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associated with each preference scale, but generally many scales with each relation.
A cardinal and an ordinal market are associated if the ordinal market is obtained
from the cardinal market by replacing each of the scales 4, by the associated
relation >>,. It is easy to see that the value allocations in an ordinal market are
precisely those allocations x that are cardinal value allocations in some associated
cardinal market.

Asanillustration, consider a cardinal market .4, with two traders,say T = {1, 2}.
Let u; and u, be cardinal utilities for £, and 4,, and let us assume that they are
strictly concave. An outcome can be viewed as a pair (u;(p(1)), u,(»(2))), where y is
an allocation ; the set X of all outcomes is compact and convex. There is exactly
one cardinal value allocation x, and it is such that (u,(x(1)), u,(x(2))) is the solution?®
to the “Bargaining Problem” of Nash [18], with outcome set X and conflict
payoff (u,(a(1)), u(a(2))).

Next, consider the ordinal market .#, associated with .#,. From an argument
of Shapley [23, Sec. 3], it follows that every Pareto optimal allocation x with
x(1) >, a(1) and x(2) >, a(2) is a value allocation in .4, ; in fact, every such x is
the unique cardinal value allocation in some cardinal market associated with
My . Thus, in two-trader markets, the cardinal value allocations depend strongly
on the preference scales of the traders, not only on their preference relations;
which is of course what one would expect. A priori, moreover, there is every
reason to expect that the situation is similar also when there are more than two
traders, and also in the case of continuous markets. But exactly here we are in for
a surprise.

PropoSITION 11.1: In a non-atomic cardinal market, assume that there is a
bounded differentiable family of concave cardinal utilities for the preference scales.
Then the set of cardinal value allocations coincides with the set of competitive
allocations.

The surprising aspect of this is that it asserts equality between the ordinal
concept of “competitive allocation” and the cardinal concept of “cardinal value
allocation.” Non-atomicity turns the concept of ‘“cardinal value allocation”
into an ordinal concept—it does not depend on the preference scales, but only on
the preference relations. It is to be noted that this is so only when we confine
ourselves to preference scales with concave cardinal utilities ; even then, though,
it is a startling and somewhat mysterious phenomenon.

On the intuitive, unrigorous level, we can demonstrate Proposition 11.1 by
the methods of Section 8—in particular, it follows from Step 6 and the demonstra-
tion of Step 7. A rigorous proof will be given in Section 14.

Like the Value Equivalence Theorem, Proposition 11.1 (which might be called
the “Cardinal Value Equivalence Theorem™) depends strongly on the non-
atomicity : for finite markets, it is false in both directions. Indeed, we can easily
find a two-trader market .#, of the type discussed above which has a unique

2% That is, the maximum of (z, — uy(a(1))(z, — u,(a(2))) over ze X is achieved when z =

(14 (x(1)), ux(x(2))).
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competitive allocation and a unique cardinal value allocation, which are dif-
ferent from each other.

The ordinal market .#, associated with such an .#, also shows that the Value
Equivalence Theorem is false in finite markets, since in .4, there are many value
allocations that are not competitive. It is also false in the converse direction:
there are finite markets with competitive allocations that are not value alloca-
tions. For an example, take T = {1,2,3}, n = 2, y(x) = \/xl + 1+ \/xz + 1
for all ¢, a(1) = (2,0), a2) = (1, 1), a(3) = (0,2). There is a unique competitive
allocation x, given by x(1) = x(2) = x(3) = (1, 1). Note that x(2) = a(2), so that at
x, trader 2 gets only his “‘personal minimum’’ (what he can guarantee to himself
without trading). But any value allocation must yield trader 2 more than his per-
sonal minimum, since for any choice of utility functions, he contributes at least
his personal minimum in all orderings of the players, and contributes more than
his personal minimum in the orderings (1,2, 3) and (3, 2, 1). Therefore x is not a
value allocation.

In game theoretic terms, a cardinal market is an example of a non-transferable
utility (NTU) game,*°® or what is more commonly called a ‘“‘game without side
payments” (see [2 or 3]). Shapley [23] has adapted the value notion to NTU
games; our definition of “cardinal value allocation” is essentially a specializa-
tion to markets of Shapley’s NTU value. There is absolutely no reason to expect
the NTU value to be invariant under monotonic concave (but non-linear) trans-
formations of the utilities; but Proposition 11.1 asserts that this is precisely
what happens in a large class of NTU games, namely the non-atomic cardinal
markets. It appears that the game theoretic condition underlying this phenomenon
is the “homogeneity” of non-atomic markets : the payoffs available to the mem-
bers of a' coalition depend only on its composition, not on-its size; and one may
vary the size of a coalition at will, almost without affecting its composition.>*

12. DISCUSSION OF THE LITERATURE

Though the material of this paper has many roots in previous work, we will
here only touch on some of the highlights. Perhaps the first general theorem con-
necting the value and the competitive equilibrium was established by, Shapley
[22], using the so-called “transferable utility (TU) markets”*? in an asymptotic
model with a fixed finite number of types of traders, in which the number of traders
of each type is allowed to tend to co. In a TU market with concave differentiable
utilities there is a unique competitive payoff,3* and Shapley proved that the values

39 NTU games are generally defined in terms of a specific choice of cardinal utilities, not in terms of
preference scales. However, since all concepts associated with such games are usually required to be
“invariant” under monotonic linear transformations of the utilities, we are essentially dealing with
games defined in terms of preference scales.

31 Cf. [5, Chapter V]. A more familiar term for homogeneity is “‘constant returns to scale,” as
applied to coalitions rather than production processes; increasing or decreasing the scale of a coalition
will not affect the possibilities open to its members.

32 Cf. Footnote 9.

33 That is, payoff corresponding to a competitive equilibrium.
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of the TU games corresponding to the finite markets converge to this payoff See
also Shapley and Shubik [24] for a discussion of this work.

Recently, Aumann and Shapley [5] studied the value problem in the context of -
a TU non-atomic market. Assuming differentiability but not concavity, they
showed that a TU non-atomic market has a unique competitive payoff, that the
corresponding TU game has a value, and that the two coincide. No assumption
of finite number of types was used.

In a parallel development Champsaur [6] studied the value problem in an
asymptotic finite-type framework, but using general Walrasian markets (the
kind studied here) rather than TU markets. He considered a special class of
cardinal value allocations, namely those obtained by assigning to traders of the
same type not only the same preference scale, but actually the same cardinal
utility.>* In that case, traders of the same type get the same utility payoffs ; thus if
m is the number of types and k the number of traders of each type, then for each k
we get a vector w, e E™ representing the utility payoffs of the various types.
Champsaur [6] showed that as k — 0o, every limit point of {w,} must be a competi-
tive payoff. However, he did not prove the converse, that every competitive payoff
is such a limit point. Concavity was assumed, but not differentiability.

Thus the situation can be summed up in Table 1.

TABLE 1
TU Walrasian
Asymptotic, finitely many types  Shapley [22] Champsaur [6]
Non-atomic continuum Aumann and Shapley [5] This paper

Finally, we mention the important paper of Negishi [19], who was the first to
use TU markets to prove a theorem about NTU markets ; many of the underlying
ideas of the current paper will be seen to be closely related to those of Negishi.

13. PROOF OF PROPOSITION 5.1

We start out by recalling a number of definitions, results, and notations from
Aumann-Shapley [5].

Let us be given a non-atomic market as described in Section 5, and a family
U = {u,} of utilities. Define vy by (5.1).

34 No such assumption is made in our treatment. Every trader may be of a different type; and even
if there are many traders of the same type, they may be assigned different cardinal utilities, and in the
ordinal case, even different preference scales. Nevertheless, there is implicit in our model a situation
that is in principle similar to that of Champsaur. No matter how one assigns the cardinal utilities,
one can, because of the non-atomicity, partition practically all the traders (i.e.. all but a set of arbitrarily
small measure) into a finite number of sets of equal measure, in each of which all the traders will have
approximately the same cardinal utilities and initial bundles. In some sense, it is this that is responsible
for the value equivalence phenomenon. (Compare the discussion of the core equivalence phenomenon
at the top of [1, p. 49]; there the Debreu—Scarf asymptotic model plays a role similar to that played by
the Champsaur model here.)
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LEMMA 13.1: If the family U is bounded differentiable, then the maximum in the
definition of vy(S) is attained for all S, and the asymptotic value vy of v, exists.

Proof: This is an immediate consequence of [5, Proposition 31.7], which asserts
these conclusions (among others) under conditions on U that are considerably
weaker than bounded differentiability.

If x is an allocation, write u(x) for the function on T whose value at ¢ is u,(x(t)).
A transferable utility competitive equilibrium (TUCE) for U is a pair (x, p),

where x is an allocation and p € Q, such that for all te T, u,(x) — p- (x — a(t))
attains its maximum (over x € Q) at x = x(t).

LeEMMA 13.2: If (x, p) is any TUCE for U, then for all S€ €,
[ w0 = p- v = @) = (r0)®)
N

Proof: This is an immediate consequence of [5, Proposition 32.3] (see the remark
following the statement of the proposition), which asserts this conclusion (as
well as some others) under Assumption 5.1 and conditions on U that are con-
siderably weaker than those that define bounded differentiability.

Write x > y if x Z y and x # y. The function u, is called increasing if x > y
implies u,(x) > u,(y).

LemMA 13.3: Let (x, p) be a TUCE for U, such that for almost all t in T,
p- (x(t)— a(t)) = 0. Assume that the u, are increasing. Then x is a competitive
allocation.

ProoF: From the fact that the u, are increasing it follows that p # 0. Since x is
by definition an allocation, we must therefore only show that for almost all ¢,
the function u, is maximized over the budget set {xeQ:p-x < p-a(t)} by
x = x(t). Suppose, indeed, that it were not. Then for a set of t’s of positive measure
there is a y in Q such that u,(y) > u(x(t)) and p -y < p - a(t). For almost all of those
t’s we will have u(y) — p-(y — a(t)) Z u(y) > u(x(t)) = u(x(t) — p- (x(t) — al?)),
in contradiction to the assumption that (x, p) is a TUCE.

PROOF OF PROPOSITION 5.1 : Let x be a value allocation, and let U be the bounded
differentiable family of utilities for the market such that for all S € &,

(131)  (gug)(S) = f u(x).
S

In particular, vy(T) = (pvy)(T) = [ u(x), i.e., the maximum in the definition of
vy(T) is attained at x. Therefore by [5, Proposition 32.1], there is a p such that
(%, p) is a TUCE with respect to U. Hence, by Lemma 13.2, for all S € € we have

(132)  (pvo)(S) = fs (w(x) — p- (x — @),
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Combining (13.1) and (13.2), we see that [sp-(x — a) = O for all Se%. Hence
p - (x(t) — a(?)) = 0 almost everywhere. But members of a bounded differentiable
family are by definition increasing, since u; > 0. Hence by Lemma 13.3, x is compe-
- titive. Thus the proof of Proposition 8.1 is complete.

14. TOWARD THE PROOF OF PROPOSITION 5.2

In this section we prove Proposition 5.2 under Hypothesis (ii), and also Proposi-
tion 11.1.

Let x € Q. A continuously differentiable function u on R is called concave over
Q at x (or simply concave at x) if for all y in Q, u(y) — u(x) € w'(x)- (y — x). It
should be noted that this concept-is not a local one; it depends on the behavior of
u on all of Q, not only near x.

REMARK 14.1: A concave continuously differentiable function u on Q is concave
over Q at each x in Q.

ProoF: First let x be the interior of Q. For 0 £ 0 < 1, define f(0) = u(@y +
(I — 0)x). Then fis concave and continuously differentiable on [0, 1] and hence
u(y) — u(x) = f(1) — f(0) £ f'(0) = w'(x)- (y — x). If x is on the boundary of @,
one obtains the result by a limiting argument from the interior case.

Let b in Q be a uniform bound on the initial allocation &, i.e., a(t) < b for all ¢;
such a bound exists by Assumption 5.2.
For x € E", set | x| = max;|x.

LEMMA 14.1: Let x be a competitive allocation, with prices p. Let {w,} be a
bounded differentiable family of utilities such that the w, are concave at each x with
lIxll S max; b'/ min; p'. Then there is a measurable function o on T, bounded and
bounded away from 0, such that for the family U = {u,} of utilities defined by
u, = a(t)w,, we have (pvy)(S) = [su(x) for all Se%. In particular, x is a value
allocation.

ProoF: We will find an « such that (x, p) is a TUCE for U, i.e, such that for
almost all t in T, we have that for all y in Q,

(14.1)  u(y) — ulx() Sp-(y — x(1)).

Since x is a competitive allocation with prices p, and the u, are increasing, it follows
that p > 0, and that

(142) p-a(t) = p-x(t) for almost all ¢.

Hence for almost all ¢ we have that for all y in Q,

(14.3)  w(y) > wx(®) =p-y > p-x(0).
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For the time being, consider a fixed ¢ satisfying (14.3) for all y in Q; let w = w,
and x = x{t). Note that for each i, p'’x' L p-x = p-a(t) S p-b < max; b'. Hence

max b’
(144 x| § ——,

min p
and so w is concave at x. Assume first that x # 0; let j = j(t) be such that x/ > 0.
Set

J

14.5 = =
(143 @ =al) =0
where w/is the jth derivative of w. We wish to prove (14.1). Without loss of generality
assume j = 1.

We first show that for all i,

(14.6)  p' = awi(x).

Indeed, suppose p' < aw(x). By (14.5)and j = 1, it follows that p'/p* < wi(x)/w(x).

Let 0 be such that
P wi(x)

14.7 — <0

(14.7) p' = wl(x)’

and consider a point of the form x, = x + (—0s,0,...,0,s,0,...,0), where the
term s occurs in the ith coordinate; if s > 0 is sufficiently small, then x € Q,
since’ x! > 0. Letting s — 0+, we find dw(x,)/ds = —Ow'(x) + wi(x) > 0, by
(14.7). Hence for s > O sufficiently small, w(x;) > w(x). But then from (14.3) it
follows that p-x, = p- x, i.e., —p'0s + p's > 0, contradicting (14.7). This proves
(14.6).

Next, let i be such that x' > 0. Then we claim that

(14.8)  p; € awi(x).

Indeed, suppose p' > awi(x). Reasoning as in the proof of (14.6), we find a 6 such
that (p'/p!) > 0 > (wi(x)/w'(x)). Letting x, = x + (6s,0,...,0, —s,0,...,0), we
note that x, e Q for small s, since x' > 0. Consideration of dw(x,)/ds then leads to
a contradiction as before, so (14.8) is proved.

Let L = {i:x' > 0} and M = {i: x' = 0}. From (14.6) and (14.8) it follows that
p' = awi(x) for ie L and p' = aw'(x) for ie M. If ye Q, then for ie M we have
¥ — x' = y' = 0; hence aw'(x)(y' — x') € p'()} — x'), with equality holding for
ie L. From the concavity of w at f it then follows that u(y) — u(x) = a(w(y) —
w(x)) S ow'(x)- (y — x) £ p- (v — x), which is what (14.1) asserts. Thus a(t) is
defined and (14.1) is established when x(t) # 0.

Suppose next that x = x(t) = 0. Set o = a(t) = min; p/max; w'(0). The con-
cavity of w at O then gives u(y) — u4,(0) = a(w(y) — w(0)) £ aw'(0)-y S p-y,
which is again what (14.1) asserts.
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The measurability of « is easily verified. To show that « is bounded and bounded
away from 0, note that p is a constant > 0, and w; is by assumption bounded and
bounded away from O in compact sets; in particular, therefore, it is bounded and
bounded away from O in the compact set

max b’
%yeQ:IIyII§ : },

min p’
i

to which, by (14.4), all the x(t) belong.

Thus we have shown that U is bounded differentiable and (x, p) is a TUCE.
From Lemma 13.2 and (14.2), we then deduce that for all Se€ ¥, (pvy)(S) =
s (u(x) — p-(x — @) = [su(x). This completes the proof of Lemma 14.1.

From Remark 14.1 and Lemma 14.1 it follows that if there exists a bounded
differentiable family of concave utilities for the preferences, then every competi-
tive allocation is a value allocation. This yields Proposition 5.2 under Hypothesis
(i), and together with Proposition 5.1 (proved in the previous section), also
Proposition 11.1.

15. PROOF OF THE VALUE EQUIVALENCE THEOREM

In view of Proposition 5.1 and Lemma 14.1, it remains only to prove that if the
preferences are uniformly smooth, then we can find a bounded differentiable
family of utilities that is concave over Q in an arbitrarily large set. Specifically, we
will prove

LEMMA 15.1: Let U = {u,} be a uniformly smooth family of utilities for the given
preferences. Then for every y > 0 there exists a bounded differentiable family {w,}
of utilities such that the w, are concave over Q at each x with ||x|| £ y.

REMARK : Necessary and sufficient conditions for a preference relation to
possess a concave utility have been obtained by Fenchel [12]. His conditions imply,
as a special case, that under appropriate conditions, smooth preferences have
concave utilities. Here, however, we have found it more convenient not to use his
result, but to prove what is needed “from scratch.”” This is done for a number of
reasons: First, we are interested only in a comparatively simple sufficient condi-
tion ; whereas the mere statement of Fenchel’s necessary and sufficient condition
is complex and lengthy. Second, we need a uniform result for a family of prefer-
ences, whereas Fenchel’s result applies to a single preference relation ; therefore
even if we used his result we would have to reprove it in the “uniformized” version.
Finally, his conditions do not apply exactly here; for example, he considers an
open rather than a closed domain of definition. Nevertheless, we will lean heavily
on his methods, and there is no question that the principle that *“smooth
preferences have concave utilities” is to be attributed to Fenchel.

PRrOOF: Let u} = du,/0x;. Since u, is bounded differentiable, u, is uniformly
bounded and uniformly positive in compact sets. Hence there is a 6 > 0 such that
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for all t and all x in Q with || x| £ y, we have

i

(15.1)  min 0.

i n
X U
i=1

Obviously, d £ 1/n. Let I' = {x€ Q: x £ 2y/6}, and let 4 be the interior of I'. Set
h(0) = —e™ % where ¢ > 0 is a parameter that will be fixed later. We first wish to
show that when ¢ is sufficiently large, h o u, is concave on 4 for all ¢ (i.e., hou|4 is
concave for all t). For simplicity of notation, we will for the time being suppress the
" subscript ¢, i.e., we will write u, = u.

It is well known (see, for example, [11, p. 51]) that a C? function w on a convex
open set is concave if and only if the matrix w” = w”(x) of its second partial deriva-
tives is negative semidefinite for each x, i.e., yw”y* £ O for all y in E", where *
denotes “transpose.” A straightforward calculation yields (hou)’ = £e™u" —
Eu*u’), where ' is a row vector. Thus we must show that u” — &u'*u’ is negative
semidefinite for appropriate £. We will in fact show that for ¢ sufficiently large,

\Y

(15.2)  u” — &u'*u’' is negative definite at each x in 4,

i.e., that y(u" — &u'*u')y* < 0 for all y # 0.
Let H(= H,,) be the hyperplane {y:y-u’ = 0}. Then we assert

(15.3) yeH=yu"y* £ 0.

Indeed, for y e H, consider the expression u(x + 0y) as a function of the real
variable 0 it is defined for 6 in some neighborhood of 0, since x is in the interior
of Q. The point x + 0y is in the hyperplane through x orthogonal to u’; by its
quasiconcavity, u achieves its maximum in this hyperplane at x. Hence u(x + 0y),
as a function of 0, achieves its maximum at 0, and so
2
02 pzulx +0y) = yu'y*;
this proves (15.3).
Next we assert

(154) yeH=yu"y* <0, or y=0;

in other words, not only is u” negative semidefinite on H, which is what (15.3)
asserts, but it is in fact negative definite on H. Suppose it were not; let y, € H be
such that y, # 0 and you"y§ = 0 (the possibility you’y§ > 0 is ruled out by
(15.3)). By (15.3), yu"y* attains its maximum subject to yu'* = 0 at y = y,. There-
fore there is a Lagrange multiplier A such that 2u”y + Auw'* = 0 and u'y¥ = 0.
Hence the system

u// u/*
(u/ 0

of linear equations in z = (z',...,z""") has the distinct solutions z = 0 and
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z = (o, 4/2), and so the determinant of the matrix defining the system vanishes.
But this violates the positivity of the Gaussian curvature (see Condition 4.2 and
Equations (4.1) and (4.2)), so (15.4) is proved.*>

According to a known theorem,*¢ (15.4) implies (15.2) for sufficiently large ¢;
but we must still show that the choice of £ may be made independent of x in 4,
and of t.

Let Q. = u" — &u*u', let "' = {ye E": ||y| = 1}, and let g({) be the maxi-
mum of yQ.y* over all y in S"~1 Clearly g is non-increasing. Moreover, since
yQ.y* is continuous in y and ¢, and "~ !is compact, it follows that g is continuous.
Hence if &, is the infimum of all ¢ such that g(¢) < 0, then g(&,) = 0; in other
words, yQ.y* is negative definite for { > {,, whereas for ¢ = &, it is negative
semidefinite but not negative definite. Now it is well known that any quadratic
form Q can be diagonalized, i.e., there is a non-singular matrix F such that FQF*
is a diagonal matrix; if Q is negative definite then all the diagonal entries are
negative, and it follows that the determinant |Q| does not vanish. If Q is negative
semidefinite but not definite, then at least one of the diagonal entries vanishes and
hence |Q| = 0. Thus |Q,| # 0 for & > &, and |Q,| = 0 for ¢ = &, ie,

(15.5)  &o = max {&:|u" — Eu*u| = 0}.

Now letting i and j run from 1 to n, we have

- . ud — &l ut
104 = [u" — &u*u| = Ju¥ — Euu] =
0 1
uij ui B uij ui
=1 = u’| + &| = |u'| + CuM.
TS| w 0
From this and (15.5) it follows that ¢, = —|u”|/u®. Now making the dependence
of u on t explicit once more, and applying (4.2), we obtain
" n+1
(s ¢, llluls

Us

By Conditions 4.2 and 4.3, and the bounded differentiability of the u,, there is a
uniform bound for the right side of (15.6) over all x in 4 and all ¢. If £ > 0is chosen
greater than that bound, then u; — &u;*u; is negative definite for all x in 4 and
all t, and hence h o u, is concave on 4. From a simple continuity argument it then
follows that ho u, is concave also on the closure I" of 4.

It remains to demonstrate the concavity over €, for ||x|| & y. Let r be a real
function of a real variable § with the following properties:

PROPERTY 15.1: re C? and for all 6, ¥'(6) > 0.

351 am indebted to Kenneth Arrow for this elegant proof of (15.4), which replaces a more awkward
proof, using an explicit diagonalization, that I previously had.
36 For an elegant proof in four lines, see Debreu [8, p. 296, Theorem 3].
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PROPERTY 15.2: () £ min (0, 1).

PrOPERTY 15.3: 1(0) = 0 for 6 £ 0.

For each t, set v, = ho u,, and define g, by

qt(O) = (Bt - oc,)r((O - 0(t)/(ﬁt - OC,)) + o,

where e = (1,...,1), B, = v,(2ye), and o, = v/(ye). Properties 15.1 through 15.3
then yield :

(15.7) q,eC? andforall 6, g,6)> 0.
(158)  ¢(0) < min (0, v/(2ye)).
(15.9) q(0) =0 for 0 < v/ye).

Now define w, = ¢, - v,. We wish to demonstrate that w, is concave on {x € Q:
x|l € y} over Q. This means that for all x with |x|| £ y, and for all y in Q,

(15.10)  wi(y) § wi(x) + wi(y) - (y — x).

To prove (15.10), we again suppress the subscript ¢, writing w for w,, v for v,,
and u for u,. First note that because | x| £ v, it follows from (15.9) that w(x) =
v(x) and w'(x) = v'(x). If y e I', then from (15.8) and the concavity of v on I', we
get w(y) = q(v(y)) § v(y) € v(x) + V'(x)" (¥ — x) = w(x) + w'(x)-(y — x), proving
(15.10) in this case. If y ¢ I', then for at least one coordinate i, we have y* = 2y/d.
Hence by (15.1),

nu,(x) -y 2 2-}) — nL(x)_ . 2»))e
3, wix 3. ux)

Hence u'(x)-y 2 u'(x)- 2ye, and so v'(x)-y = v'(x)- 2ye (since v'(x) = h'(u(x))u'(x)
and i’ > 0 always). Combining this with (15.9) and the concavity of v on I' we
obtain w(y) = q(v(y)) S v(2ye) § v(x) + v'(x)-(2ye — x) § v(x) + V'(x)- (y — x), as
was to be shown. Thus (15.10) is established.

Since {w,} is easily seen to be bounded differentiable, the proof of Lemma 15.1
—and with it of the Value Equivalence Theorem—is complete.
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APPENDIX
MARGINAL AND “TRUE” CONTRIBUTIONS

In the introduction we stated that ‘‘the marginal contribution of a trader to society is almost surely
the same as his ‘true’ contribution.” This assertion can be demonstrated on two levels: intuitively, and
in a rigorous fashion. The intuitive demonstration was already given in Step 5 of Section 7, where we
showed that if the coalition S is randomly chosen, then the contribution vy(S) — vy(S\dt) of dt to S is
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almost surely the same as his marginal contribution vy(T) — vy(T\dt). We will now state this assertion
precisely, and prove it rigorously.

Let us be given a non-atomic market, and let U = {u,} be a bounded differentiable family of utilities
for the preferences. Set v = v,. Let # = (I1,,11,,...) be a separating sequence of partitions of T into
measureable sets, such that each I1,, refines I1,,_,. For each m, letZ ,, be a random order®” on n,.
For each B in I1,,, denote by @ = QF the union of the members of I7,, up to and including B in the
order £,,. For each S with B < S let 45u(S) = v(S) — v(S\B); 4u(S) is the contribution of B to S.

PROPOSITION A.1: For every & > O there is an mqy such that if m > my, then for every Be I, we have

(A1) |45(T) — (¢v)(B)| < eu(B)
and
(A2) prob {|4zn(Q) — (ov)(B)l < eu(B)} > 1 — &.

This says that in a random order on a sufficiently fine partition IT of the player space, with high
probability the incremental worth (“true” contribution) of an element B of IT is (¢v)(B) + o(u(B)), and
also that the marginal contribution is (¢v)(B) + o(u(B)). In particular, the “true” and marginal contribu-
tion differ by a term that is o(u(B)). Note that (¢v)(B) is in general of the order of magnitude of u(B)
(see Lemma 13.2).

We will make extensive and free use of the notation, terminology, and results of [5]. The reader
should note that T in this paper plays the same role as I in [5], and that u,(x) is also denoted u(x, t) in
[5]; also that it is assumed that u,(0) = 0 for all ¢, an assumption we can make without loss of generality.

There is one respect in which our notation will differ from that of [5]. In [5], both random variables
and functions of ¢ were denoted by bold face letters; no confusion could result, since these two kinds
of objects were never considered at the same time. Here confusion might result, and so we shall indicate
random variables by a wiggly underline, and functions of t by bold face.

Before proceeding with the proof, we shall introduce some auxiliary definitions that will enable us
to avoid unnecessary repetition of tiresome “‘epsilon-delta” phraseology. Let F = F be a sentence
depending on m and on the choice of an element B of I1,, (an example is Formula (A.2)). We shall say
that F eventually holds if there is an m, such that F7} holds for m > mq and all Be I1,,. Iff=/5is
a random variable depending on m and the choice of a B in II,, (for example v(Q)), then fis even tually
probably small if for each & > 0, prob {|f| < &} > 1 — ¢ eventually holds (if [ is multidimensional,
replace |f| by [ f1). If f — g is eventually probably small, we shall say that [ is eventually probably
close to g. Proposition A.1 may be paraphrased by saying that (A.1) holds and that (4p0(Q) — 4pu(T))/
u(B) is eventually probably small.

A number of lemmas will be required. Let r = r,, = |IT,] and let h = k72 be the number of elements
of I, included in @, i.e., the number of elements up to and including B in the order #,,.

LEMMA A.1: Let Ee NA*. Then &(Q) is eventually probably close to (h/r)é(T).

PrOOF: Set 6™ = max {£(4):4 € I1,,}. Since h takes on each integer value between 1 and r with the
same probability, we have

h 2 1 h 2
E|&(Q\B) — ;6(7\3)) =7 ) E((ﬁ(Q\B) - ;é(T\B)) b= h)‘
h=1

Referring to the proof of [5, Lemma 18.7], we find that each of the summands in the last sum is <o™,
and that 6" — 0. Hence E(4(Q\B) — (h/r)é(T\B))*> S 6™ — 0. Since &(B) < 6™ — 0, the lemma follows.

LemMma A2: Let e NA™, &(T) > 0. Then for each 6 > 0, eventually prob {£(Q) > 04T)} > 1 — 26.

ProoF: Since h takes on each integer value between 1 and r with equal probability, it follows that
for every 0 > 0, prob {h/r > 8} > 1 — 0 as m » co. Lemma A.2 then follows from Lemma A.1.

LEMMA A.3: ug(f, 0 a) is eventually probably close to uy({ a).

37 A random variable whose values are orders on I1,,, where each of the |IT,|! possible orders is
assigned the same probability.
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PROOF: Let ¢ > 0 be given. Set o = Z[a. By [5, Proposition 38.14], there is a § > 0 such that for
all S with p(S) = &, all b in A(, a), and all -approximations # to u, we have

(A3) las(b) — us(b)]| < e.

Let it be-a §-approximation to u that is of finite type [5, Proposition 35.6]. Define an n-dimensional

vector measure { by {(S) = [ a. Then
S upl(Q) — QN + 186(Z(Q)) — Ax((T))|

‘uQU a) - u;(fa)
[ “Ve

+ 187UT)) — ur{(T)| = D, + D, + D5.
Applying Lemma A.2 (with ¢ = yand 6 = ¢) and (A.3), we find that eventually

(A4)

(A.5) prob{D, <&} > 1 — 2
and
(A6) D, <e.

To estimate D,, let k be the number of different “types” in @, i.e., the number of different #i,. Denote
the nonnegative orthant of E* by 5. Then there is a continuous function g on £ x Q and a k-dimensional
vector 7 of NA* measures on T, such that

(A7) fs(2) = g(n(S), 2)

forall Se ¥ and ze Q,5(T) > 0, and g is homogeneous of degree 1 on & x Q and continuously differen-
tiable in the interior of £ x Q [5, (39.17), Propositions 39.8 and 39.13, and Lemma 399].Setqg =n + k,
& = ¢/3¢,and v = (7, ). Since £, W(T) > 0, we may find a compact neighborhood U of the straight line
segment connecting &,w(T) to W(T), such that g’ is uniformly continuous in U. Hence there is a d1s
with 0 < 8, < ¢, such that

(A.8) xyeU and  |x —y| <8, = |g(x) - gl <e.

Now by Lemma A2, eventually prob { Q) > &;W(T)} > 1 — 2ge,,and by Lemma A.1, v(Q) is eventually
probably close to (k/r)v(T). Hence by (A.8), eventually prob {ll gMQ) — g/ru(T)| <&} >1— 3qe, =
1 —e& But g((B/r(T)) = g((T)), because g-is homogeneous. Hence by (A.7), eventually

prob {llﬁ’Q(C(Q)) — 27(UT)| < &} > 1 — & Combining this with (A.5) and (A.6), we find that eventually
prob{D, + D, + D, < 3e} > 1 — 3¢, and hence by (A.4), the proof of Lemma A.3 is complete.

LEMMA A4: For each ¢ > O there is a bounded Sfunction y such that if u(S) = ¢, b in Q satisfies
Zb < Z[ a, and ug(b) is attained at ¥, then y(s) < n(s)e for almost all se S.

PRrOOF: First note that in [5, Lemma 37.1] we may choose #; bounded; indeed, if the uniform bound
on u is y, then we may choose n5(s) = max (y/5, 1/6%). Lemma A.4 then follows immediately from
[5, Lemma 37.8], when one refers to the first paragraph of the proof of that lemma.

LemMa A.5: Let e NA*. Then max {{(A):A€l,)} — 0 as m — oo,

ProoF: This follows from the fact that 2 is separating. For details, refer to the proof of [5, Lemma
18.7].

COROLLARY A.1: Let u(Q) be achieved at Y. Then .fzz y is eventually probably small.

" PROOF: Let & > 0 be given, and let n correspond to & in accordance with Lemma A.4. Let y be a
common bound for # and for X a (see Assumption 5.2). If Q) S ¢, then [pp Jo¥ = Jga < yee.
If u(Q) Z ¢, then by Lemma 1.4, I Y § yu(B)e. But by Lemma A.5, u(B) is eventually smaller than .
Thus the Corollary is proved.

PROOF OF PROPOSITION A.1: First we demonstrate that eventually (A.1) holds. Suppose »(T) is
attained at x. From [5, Propositions 32.3 and 38.5] it follows that

(A9) (ov)(B) = j [u(x) + :t}(fa)(a - x):l.
B
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From [5, Lemma 40.1], it follows that

(A.10) 4p(T) = o(T) — o(T\B) = '[ [u(x) + ung(c)(a — x)],
B

where ¢ is on the straight line segment connecting [, ;x to [, @ ie, (since [x=fa) c=[a—
[5x4+ (1 — 0)a), where 0S O 1. Set b=[a— [, x Then b —c=(1— 6)f,(a — x), and hence
from [5, Proposition 38.7] and Lemma A.5, it follows that for each ¢, > 0, eventually

(A-11) lunp(d) — unsle)ll < &.
Again using [5, Lemma 40.1], we find

A1) upy(b) = ( | a),

on condition that | ng@ > 0; but this follows from Assumption 5.1 and Lemma A.5 for sufficiently
large m, so that (A.12) eventually holds. Formulas (A.9), (A.10), (A.11), and (A.12) yield eventually
|4g(T) — (pv)(B) £ lefB (a + x); together with Assumption 52 and Lemma A.4, this yields that
(A.1) holds eventually.

The proof of (A.2) is quite similar. Suppose v(Q) is achieved at y; [5, Lemma 40.1] yields

(A1) 40 = uQ) — v@B) = [ ) + goa — )
B

where ¢ =an+Q_fB(a—,y) and 0 S 0 €£1. Set b =.|'Qa—j'8l Then b—c=(1—-0)f,(@a—y),

and hence from [5, Proposition 38.7], Corollary A.1, and Lemma A.2 (with £ = y and 6 small), it

follows that u’Q\B(lg) is eventually probably close to up s(c). By [5, Lemma 40.1], “Q\B(b) = p( jQ a)

whenever |, ;a > 0. By Lemma A.2, for each ¢, > 0, eventually prob {Jppa@ >0} >1—¢, Hence

ug p(b) is eventually probably close to up( fQ a), and by Lemma A.3, this is eventually close to u7 (fa).
ence -

(A.14) uQ(fQ a) and ugy, g(c) are both eventually probably close to u/T(fa).

Now by [5, Proposition 38.5), we have u(y(t)) — u(x(t)) § ur( fa)(y(t) — x(t)). Hence by (A.9) and
(A.13),

(A.15) 4p(Q) — (9v)(B) § (ué_g(g) - u'r(f“)) j (@a—yp)

Again by [5, Proposition 38.5], u(x(t)) — u(y(1)) § ug Qa)(x(t) — y(t)), and hence by (A.9) and (A.13)

a1 @8 - a9 < (x| [ o] =[] [ 10 =0~ | [a] - v [ ¢ - @

Now let £, > 0 be given, and let § correspond to ¢; in accordance with Lemma A.4. Let y be a common
bound for # and X a (see Assumption 5.2). By Lemma A.2, eventually 4(Q) = ¢, with probability =
1 — 2¢,. Set &, = &3/2ym. Hence by (A.14), (A.15), and (A.16), eventually, with probability = 1 — 2¢5,
|40(Q) — (ov)(B)| § 4e4ymu(B) = 2&3u(B). This completes the proof of Proposition A.1.
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