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On Prize Games

Sergiu Hartl

ABSTRACT. We consider the class of hyperplane coalitional games (H-
games): the feasible set of each coalition is a half-space, with a slope that
may vary from one coalition to another. H-games have turned out in various
approaches to the value of general non-transferable utility (NTU) games.
In this paper we introduce a simple model - prize games - that generates
the hyperplane games. Next, we provide an axiomatization for the Maschler
& Owen [4] consistent value of H-games.

1. Introd uction

A non-transferable utility (NTU) game in coalitional form is given by spec-
ifying the set of outcomes that are achievable by each subset of players
("coalition"). (For formal definitions, see Section 2.) A special class is
that of the transferable utility (TU) games, where each coalition's feasi-
ble set consists of all payoff vectors that add up to no more than a given
"amount. Geometrically, the feasible sets are half-spaces with normal vector
(1,1,. . .,1). Economic models 'usually lead to NTU-games. TU-games arise
if there is a commodity ("money") which is freely transferable among the
players and such that one unit of it has exactly the same (marginal) utility
to everyone. Single output production models also lead to TU-games.

Another class of NTU-games is that of the hyperplane (H) games, where
the feasible set of each coalition is a half-space; however, the normal vectors
may change from one coalition to another. Thus every TU-game is an H-
game and every H-game is an NTU-game; both inclusions are strict.

Hyperplane games have turned up in the study of value concepts (see
Maschler & Owen [4,5], Hart & Mas-Colen [3] for the "consistent value";
and Hart & Mas-Colen [2, Theorem C] for the "egalitarian values"). In all
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cases, the main "distinction" of the H-games has been the fact that they
are technically more tractable than the general NTU-games. However, no
models where H-games arise naturally have been presented.

We will introduce here (in Section 3) a simple model~prize games-that
yields the class of H-games. Each coalition has one indivisible "prize" , which
can be given to only one of its members. The feasible set corresponds to all
"lotteries" over who gets the prize, and each player is assumed to possess
a von Neumann & Morgenstern utility function (over the lotteries). (Such
a construction-bargaining over the probabilities of getting a prize-has
been used by Roth & Malouf [6] in bargaining experiments.)

The classical value concept is the Shapley value [7] for TU-games. It
has a "natural" extension2 to H-games: the consistent H -value of Maschler
& Owen [4] . Section 4 includes a definition of this value and some of
its properties. We then present (in Section 5) a simple axiomatization for
the consistent H-value. It generalizes Young's [8] characterization of the
Shapley value in the TU-case.

A few notations: !R is the real line. For a finite set A, the number of
elements of A is denoted IAlj 2A is the set of all subsets of A; !RA is the

IAI-dimensional Euclidean space with coordinates indexed by the elements
of A; !Rt and !Rt+ are its non-negative and positive orthants, respectively.
The origin (0,0,. . . ,0) of!RA is written OA or just O. The unit simplex {:J: E
!Rt : EiEA xi = 1} of!RA is denoted ~(A)j it is the set of all probability
distributions over the set A. For sets, A \ B denotes set subtraction, A c B
is used for weak inclusion, and 0 is the empty set.

2. Preliminaries

This section includes the basic definitions of games in coalitional form.

A non-transferable utility (NTU) game in coalitional form is a pair (N, V),
where N is the set of players and V is the coalitional or worth function,
associating to every coalition S C N the non-empty set V(S) C !Rs of all
feasible payoff vectors for S. An element x = (Xi)iES of V(S) is interpreted
as follows: there is a feasible outcome for the coalition S whose utility to
each player i ES equals Xi. We will assume that the origin OS of !Rs belongs
to V(S) for all Sj this is just a convenient normalization.

Two special classes of NTU-games are as follows.

2It generalizes both Shapley's formula of "expected marginal contribution in
a random order," as well as the "consistency property" of Hart & Mas-Colell [1J.
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. Hyperplane (H) games, where each feasible set YeS) is a half-space
with positive normal; i.e., for each coalition S c N, there are >'s E
~~+ and Cs E ~ such that YeS) == {x E ~s : >"s

. x:::; cs}.

. Transferable utility (TU) games, which are H-games with >"s =
(1,1,...,1) for all S; i.e., there is a real-valued function v : 2N ~
(with v(0) = a) such that YeS) = {x E ~s : ~iES xi :::;v(S)} for all
SeN. For TU-games, we will write (N, V) or (N, v) interchangeably.

We will call the NTU-game (N, V) monotonic if

V(S) x {aT\s} c VeT) for all SeT eN. (2.1)

That is, a feasible payoff vector for S completed by O's to the players in
T \ S yields a feasible payoff vector for T. For TU-games, this becomes
v(S) :::;veT) for all SeT c N.

.

3. Prize Games

In this section we will present the model of "prize games" , which generate
the hyperplane games.

Consider the following setup, which will be called a (coalitional) prize
model. There is a finite set of players N. Each coalition S c N has a "prize"
(s. The prize (s is indivisible, and only one member of S can receive it.
Moreover, there are no means of utility transfers between the players. Let
'0' stand for "no prize", and let Z := {(s : S C N} U {'O'} be the set
of all outcomes. Each player i E N has a von Neumann & Morgenstern
utility function ui : ~(Z) -~; recall that ~(Z) is the set of probability
distributions ("lotteries") over3 Z. We normalize ui so that the utility of
getting no prize is 0; i.e., Ui('O') = O. For each i ESe N, let z~ := ui((S)
be player i's utility for the prize of S. We assume thatz~ ~ 0 for all i and
S : no prize js worse than "no prize" .The prize model is actually specified
by N and4 z :;:: ((4)iES)SCN E TISCN ~~j we will denote it (N,z).

A prize model (N, %) generates a game in coalitional form as follows.
The feasible set of each coalition S C N consists of all lotteries over which
player i in S gets the prize of S; i.e., each p = (pi)iES E ~(S) yields the
payoff vector x =(xi)iES with xi =pi4+(1-pi)0 =piZ~ for all i E S. Let

3Actually, player i's utility needs to be defined only over the prizes of the
coalitions containing ij we use the bigger set Z for simplicity of notation. .

'Such a J: is called a payoff configuration; it associates a payoff vector to each
coalition.
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- V - prize game
[]j] W - hyperplane game

xj

Figure 3.1

YeS) be the comprehensive hull of all these payoff vectors (assume "free
d
.

1")
'Isposa ,t.e.,

YeS) := {x E !Rs: there is p E ~(S) such that xi ~ piz~ for all i E S}.

We will call (N, V) the coalitional prize game generated by the prize modei
(N,z).

It is now easy to see that if one considers only non-negative payoffs, then

the class of prize games and the class of hyperplane games coincide

(see Figure 3.1). That is; if (N, V) is a prize game, then there is an H-game
(N, W) such that yeS) n !R~ = WeB) n !R~ for all S (take a hyperplane
through the ISI points {(O,..., 0, 4, 0,..., O)}iES') Conversely, for every
hyperplane game (N, W), there is a prize game (N, V) with YeS) n!R~ =
WeB) n!R~ for all S (define z~ by the condition that (0,..., 0, z~, 0,...,0)
lies on the boundary of W (S». Note that if the origin OS is an interior point
of YeS) for all S or, equivalently, if all the z~ are positive rather than just
non-negative, then the above correspondence is one-to-one. Moreover, the
monotonicity condition (2.1) translates into 4 ~ z~ for all i ESe TeN:
each player prefers the prize of a larger coalition to that of a smaller one.
And finally, a TU-game obtains whenever the utilities of all players coincide;
i.e., z1 = 4 for all i,j ESe N.

Thus the coalitional prize setup does indeed provide a simple model for
the class of hyperplane games.
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4. Value

The value of a game is usually interpreted as an a priori evaluation of
the outcome of the game. It may be viewed as the utility of each player
of participating in the game. (For a recent non-cooperative model for the
value see Hart & Mas-Colell [3]). The classical value concept is the Shapley
TU -value [7].

Let (N,v) be a TU-game. For each player i E N and each coalition -
S containing i, let Di(S,v) := v(S) - v(S \ {i}) be player i's marginal
contribution to the coalition S. Then the Shapley value of player i in the
game (N,v) is

Shi(N,v) = (l/n!) L Di(P: U {i},v),
1I"ETI(N)

(4.1)

where n := INI is the number of players; lieN) is the set of all n! orders5
on N; and P; := {j EN: 7I"-1(j) < 7I"-l(i)} is the set of players preceding
i in the order 71"E lieN). Equivalently, endow lieN) with the uniform
distribution (i.e., each one of the n! orders on N has equal probability
l/n!), and let S be the random coalition P; U {i}. (Thus, every S c N
with S 3 i has probability (s -l)!(n - s)!/n!, where s := ISI .) Then

Shi(N,v) = e[Di(S,v)] (4.2)

where e denotes expectation. We denote the vector (Shi(N, V))iEN E iRN
by Sh(N,v).

The Shapley value has been extended to the class of hyperplane games by
Maschler & Owen [4] as follows: Let (N, V) be a hyperplane game and let
71"E lieN) be an order on N. The marginal contributions of the players in
the order 71",denoted £ii,..==d~(N, V) (for all i EN), are defined inductively
by

£f".:= max{xi: (xi'Y(i)) E V(P: U {i})}, (4.3)

where Y(i) := (d{)jEP; is the vector of the marginal contributions of all
players preceding i in the order 71"(already defined by induction). That is,
d~ is the most that player i can get after each preceding player j got his
own6 d{. For t = 1,2,...,n, let Qt == Qt(7I") := {7I"(1),7I"(2),...,7I"(t)} be

5An order on N is a one-to-one function 71": {1, 2,..., n} -+ Nj i.e.,
(7I"(1),7I"(2),...,7I"(n)) is a permutation of N.

6This suggests that "(marginal) surplus generated by i," or "value added by i"
(as in, for instance, "value added tax") are perhaps better names for df. We keep
the name "marginal contribution" since it is the one that has been classically
used for TU-games.
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the set of the first t players in the order 11".The definition above is plainly
equivalent to

(d~)kEQI E 8V(Qd, for all t == 1,2, . . . , tI., (4.4)

where aV(S) stands for the boundary of the set V(S) (this is the set of
P:!.reto efficient vectOrs in V(8)). For example, if N == {1, 2, . . . ,n} and 11"is
the natural order (1,2,...,n), then d; ==max{a:l : Xl E V(I)}j(d~,d;) E
8V(12) determines d;i (d;,d;,d~) E aV(123) determines d~; and so on
(see Figure 4.1, for the orders (1,2,3) and (2,1,3)).

The consistent H.valuetp of Maschler & Owen [4Jmay b'e defined by:

lpi(N, V) :==(1/n!) :E d~(N,V)
"'Ett(N)

for 11.11 i E N: the value to each player is his average (over all orders)
marginal contribution. For TU.games d~(N,v) =='U(P; U {i}) - v(P;) :::

Di(P; U{i}, v), thus cp is the Shapley value (recall (4.1)). The fact that the
boundary of V(N) is a hyperplane guarantees that tp(N, V) is an efficient
payoff vector, as an average of the efficient vectors d", == (d~)iEN' (Again,
we write tp(N, V) for the vector ('�i(N, V))iEN E !nN.)

(4.5)

Note that in a TU.game, the marginal contribution of i depends only on
the set of preceding players P; j in an It.game, it may well depend also on
the order of the players inside P; (again, see Figure 4.1). Is there a way to
define the marginal contribution ofa player i to a coalition 8 (containing i)
in an H~gameso that, as in a TU-game, it depends only on the set 81 The
problem is that one needs to compare two sets, V(8) and VeS \ {i}). In
general there is no number Xi such that V(8) =={a:i}x V(8\ {i}) (unless~
as in a TU-game-the two sets are "parallel", meaning that (A1)jES\{i}
and AS\{i} are proportional).

We are thus led to the idea to "summarize" the possibilities of 8 \ {i} by
one payoff vector, rather than having a whole set. The natural candidate
is, of course, the value of the subgame7 (8 \ {i}, V). We then define the
marginal contribution of player i as the most he can get in V(8) when the
players in 8 \ {i} get th~ value of (8 \ {i}, V).

Formally, let (N, V) be a hyperplane game, and assume by induction
that the values cp(T, V) E !RT of its subgames (T, V), for all T ~ N, are
given. Let i E N be a player and let 8 be a coalition containing i. We define

7Given a game (N, V) and a coalition TeN, we write (T, V) for the 8ubgame
whose player set is T and whose coalitional function is the restriction of V to the
subsets of T (i.e., to 2T).

','



On Prize Games 117

X2
d,,=(d~,<f2,.,d;)

0 : 1r= (123)

0 : 1r= (213)

. : (",(12, V),D3(123, V))

Xl

Figure 4.1

the marginal contribution of player i to the coalition S asS

Di(S, V) := max{xi : (Xi, rp(S \ {i}, V)) E V(S)}. (4.6)

Equivalently, Di(S, V) is uniquely determined by the condition

(Di(S, V), rp(S \ {i}, V)) E 8V(S). (4.7)

Note that in order to define the marginal contributions one needs to know
the values of the subgames (T, V) for all subsets T. For TU-games we get
.of course Di(S, v) = v(S) - v(S \ {i}), since rp= Sh yields efficient payoff
vectors (moreover, in this case of TU-games we don't need to know rp(T,v),
only that it is efficient).

Proposition 4.1. The consistent H-value rp satisfies

rp(N,V) = (l/INI) ~(Di(N, V), rp(N \ {i}, V))j
ieN

(4.8)

and
c/(N, V) = t[Di(S, V)] (4.9)

8Note that d~ was called "marginal contribution of i in the order ?r," whereas
ni(S) is the "marginal contribution of i to the coalition S," In H-games, these
are distinct notions (again, see Figure 4.1).
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for every hyperplane game (N, V) and i E N. Moreover, if (N, V) is a
monotonic hyperplane game, then cp(N, V) is non-negative and it depends
only on the non-negative parts of the feasible sets (i.e., if YeS) n!R~ =
W(S) n !R~ for all S then cp(N, V) = cp(N, W)).

Proof: 9 By induction: In (4.5), consider all orders where player i comes
last. The (conditional) average marginal contribution of each j #- i is
cpj(N \ {i}, V) by the induction hypothesis; efficiency then implies that
the i-th coordinate is the "remainder," namely, Di(N, V) (see (4.7)).
This proves (4.8), from which (4.9) follows, again by induction. The
"moreover" statements for monotonic games are immediate by any of
the formulas (4.5), (4.8) or (4.9). I

The interpretation of formula (4.9) (which is the same as (4.2) for the
Shapley value) is clear: The value to each player is his expected marginal
contribution. As for formula (4.8), it may be viewed as follows: One takes
the value payoff vectors of the n subgames with n - 1 players, "completes"
each one to an efficient payoff vector for N (see (4.7)), and then averages
these vectors - to obtain the value of the n~player game. Thus the value to
player i is the average of his marginal contribution Di(N, V) to the grand
coalition N and of his values when each one of the other players "drops
out" (i.e., I/(N \ {j}, V) for all j #- i). Note that, in particular, we obtain
that the Shapley TU-value satisfies (4.8).

It is interesting to interpret the various formulas for the consistent H-
value in the context of the prize games model. The value associates to a
prize game (N, z) a probability distribution peN, z) E !:1(N), with pi(N, z)
being the probability that i gets the "grand" prize (N. The connection
between p and cp is of course cpi(N, V) = pi(N,z)zkr for all i E N (where
(N, V) is the corresponding coalitional prize game). We will refer to p as

the value probability.

Consider for instance formula (4.8), and assume that the prize game
is monotonic. As noted in Section 3, this implies in particular that z1v ~

z~\{i} for all j #- i. Let O{ := z~\{i}/ Z1vii.e., player j is indifferent between
getting the prize (N\ {i} of N \ {i} for sure, and getting the grand prize (N
of N with probability O{ (and nothing with probability 1 - Of).

Write p{ := ~(N \ {i}, z) for the value probability of j in the N \ {i}
game; then j is indifferent between getting (N\{i} with probability p{, and

getting the grand prize (N with probability pf O{.The remaining probabil-
ity, namely {ji := 1 - :EjEN\{i} pfO{ , is i's marginal probability (indeed,

°Note that formula (4.8) is essentially formula (5.1) in Maschler & Owen [4].
In (4.9), S is the random coalition of i together with all players preceding i in a
random order, and [; denotes expectation (see (4.2) above).
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6izJv = Di; see (4.7)). Then pi = (1/n)(8i+ I:jEN\{i} p~e~) ; i.e., the value
probability of i in (N, z) is the average of his marginal probability 8i and
of his value probabilities p~e~ in the subgames (N \ {j}, z), evaluated in
terms of the grand prize. Similar interpretations may be given to the other
formulas, namely J4.5) and (4.9).

5. Axiomatization

There are to date four approaches to the consistent H-value: First, gen-
eralizing the random order formulas for the Shapley value (see Maschler
& Owen [4], and also the previous Section). Second, using an appropriate
"consistency" or "reduced game" property (Maschler & Owen [4]). Third,
a dynamic procedure (Maschler & Owen [4]). And fourth, via a noncoop-
erative foundation (Hart & Mas-Colell [3]). We will present here another
approach; it is axiomatic, and based on the "marginality" idea introduced
by Young [8] for TU-games.

A solution function 1jJon a class r of games is a mapping that associates'
to every game (N, V) in r a payoff vectorlO 1jJ(N, V) that is feasible for the
grand coalition N; i.e., 1jJ(N,V) E YeN). We only consider H-games; the
domain r will thus always be included in the class of all H-games.

The solution function 1jJis efficient if it always yields (Pareto) efficient
payoff vectors; i.e., 1jJ(N,V) E aV(N) for every game (N, V) E r. Two
players i,j E N are called substitutes in a game (N,T) if for all S C
N \ {i,j}, all xs E iRs and all ~ E iR, we have (xs,~) E V(S U {i}) if
and only if (xs,~) EVeS U{j}). The solution function 1jJ is symmetricll if
'ljJi(N, V) = 1jJj(N, V) whenever i and j are substitutes in (N, V).

Efficiency and symmetry are standard requirements. We now introduce
another postulate. The solution function 1jJsatisfies marginality if 1jJi(N,V)
= 1jJi(N,W) whenever the marginal contributions of player i E N are iden-
tical in the two games (N, V) and (N, W); i.e., if Di(S, V) = Di(S, W)for
all S c N with S 3 i, then 1jJi(N, V) = 1jJi(N, W). Marginal contributions
to a coalition are defined as in the previous Section (see (4.7)) using the
solution 1jJfor the subcoalitions, namely

Di(S, V) := max{xi :{xi, 1jJ(S\ {i}, V)) E V(S)} ; (5.1)

equivalently, Di(S, V) is uniquely determined by the condition

(Di(S, V), 1jJ(S \ {i}, V)) E aV(S). --- (5.2)

1OWe are thus considering only one-point solutions.
llThis is also called "equal treatment property."
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Marginality says that if a player has the same marginal contributions in
two games, then his value must be the same in the two games.

We can now state the main characterization result.

Theorem 5.1. . Let 'IjJ be a solution function on the class of hyperplane
games. Then 'IjJsatisfies efficiency, symmetry and marginality if and only
if 'IjJis the consistent H-value.

Marginality implies that the value is a funCtion of the marginal contribu-
tions only. However, it could be any function, not necessary linear. It is
remarkable that efficiency and symmetry suffice to determine this function
uniquely (as the average (4.9».

Proof: The three axioms applied to TU-games uniquely characterize
the Shapley value there; this is the result of Young [8, Theorem 2]. For
general hyperplane games,we will prove by induction that 'IjJ must co-
incide with the consistent H-value cpoLet (N, V) be a hyperplane game,
and assume that 'IjJ(S, V) = cp(S, V) for all S ~ N. Fix i E N. ,Define a
TV-game (N, w) as follows: weB) := 0 if i ~ Sand weB) := Dt(S, V) if
i E S. Then Di(S, w) = w(S)-w(S\ {i}) = Di(S, V) for all S containing
i, which by marginality implies that 'ljJi(N,w) = 'ljJi(N,V). But (N, w) is
a TV-game, therefore (by (4.2) and then (4.9» 'ljJi(N,V) = 'ljJi(N,w) =Shi(N, w) = tiDieS, w)] ==tiDies, V)] = l{i(N, V). The converse, i.e.,
that cpsatisfies the three axioms, is immediate (again, see (4.9». I

The same result holds for monotonic games.

Theorem 5.2. Let 'IjJ be a solution function on the class of monotonic
hyperplane games. Then 'IjJsatisfies efficiency, symmetry and marginality
if and only if 'IjJis the consistent H-value.

Proof: First, note that the characterization of Young [8] for the Shap-
ley TV-value holds when restricted to the space of monotonic TV-games
(the proof described there for superadditive games actually applies to
any cone of TV-games that includes all the unanimity games). Next, the
only change needed in the proof of Theorem 5.1 is to make w mono-
tonic. This is done as follows: for each S not containing i define weB) :=

L-TCS Di(T U {i}, V) and w(S U {i}) := L-TcS Di(T U {i}, V). Since
~ .

(N, V) is monotonic we have Dt(T U {i}, V) ~ 0, from which the mono-
tonicity of(N,w) follows immediately. I

Remarks 5.3.

(i) Efficiency and symmetry are actually needed only for TV-games.
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(ii) The results here may be extended to general (non-hyperplane) NTU-
games; with an appropriate definition of marginal contributions, the
three axioms of efficiency, symmetry and marginality characterize the
consistent NTU-value of Maschler & Owen [5].
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