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Abstract

Maximizing the revenue from selling more than one good (or item) to a single buyer is a notoriously diffi-
cult problem, in stark contrast to the one-good case. For two goods, we show that simple “one-dimensional” 
mechanisms, such as selling the goods separately, guarantee at least 73% of the optimal revenue when the 
valuations of the two goods are independent and identically distributed, and at least 50% when they are 
independent.

For the case of k > 2 independent goods, we show that selling them separately guarantees at least a 
c/ log2 k fraction of the optimal revenue; and, for independent and identically distributed goods, we show 
that selling them as one bundle guarantees at least a c/ log k fraction of the optimal revenue.

Additional results compare the revenues from the two simple mechanisms of selling the goods separately 
and bundled, identify situations where bundling is optimal, and extend the analysis to multiple buyers.
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1. Introduction

Suppose that a seller has one good (or “item”) to sell to a single buyer whose willingness to 
pay (or “value”) for the good is x. While x is known to the buyer, it is unknown to the seller, who 
knows only its distribution (given by a cumulative distribution function F ). If the seller offers to 
sell the good for a price p then the probability that the buyer will buy is 1 −F(p), and the seller’s 
revenue will be p · (1 − F(p)). The seller will choose a price p∗ that maximizes this expression.

This problem is the classic monopolist-pricing problem. Looking at it from an auction point of 
view, one may ask whether there are mechanisms for selling the good that yield a higher revenue. 
Such mechanisms could be indirect, could offer different prices for different probabilities of get-
ting the good, and so on. Yet, the characterization of optimal mechanisms of Myerson (1981)
(see also Riley and Samuelson, 1981 and Riley and Zeckhauser, 1983) concludes that the take-
it-or-leave-it offer at the above price p∗ yields the optimal revenue among all mechanisms. Even 
more, Myerson’s result also applies when there are multiple buyers, in which case p∗ would be 
the reserve price in a second-price auction.

Now suppose that the seller has two (different) goods that he wants to sell to a single buyer. 
Furthermore, consider the simplest case where the buyer’s values for the two goods are inde-
pendently and identically distributed according to the distribution F (“i.i.d.-F ” for short), and 
where, furthermore, his valuation is additive: if the value of the first good is y and that of the 
second is z, then the value of the bundle consisting of both goods is1 y + z. It would seem that 
since the two goods are completely independent of each other, then the best one should be able 
to do is to sell each of them separately in the optimal way, and thus extract exactly twice the 
revenue one would make from a single good. Yet this turns out to be false.

Example 1. Consider the one-good distribution F taking values 1 and 2, each with probability 
1/2. Let us first look at selling a single good optimally: the seller can either choose to price it 
at 1, selling always2 and getting a revenue of 1, or choose to price the good at 2, selling it with 
probability 1/2, again obtaining an expected revenue of 1, and so the optimal revenue from a 
single good is 1. Now consider the following mechanism for selling both goods: bundle them 
together, and sell the bundle for price 3. The probability that the sum of the buyer’s values for 
the two goods is at least 3 is 3/4, and so the revenue is 3 · 3/4 = 2.25—larger than the revenue 
of 2 that is obtained by selling them separately.

1 Our buyer’s demand is thus not limited to one good (as is the case in some of the existing literature; see “unit-demand” 
in Section 1.1).

2 Since we maximize revenue we can assume without loss of generality that ties are broken by the buyer in a way that 
maximizes the seller’s revenue. This “seller-favorable” property can always be achieved by appropriate small perturba-
tions of the mechanism; for instance, by the seller giving a small fixed proportional discount on all payments. See Hart 
and Reny (2015a, Section 1.2, and Remark (a) after Corollary 18).
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However, that is not always so: bundling may sometimes be worse than selling the goods 
separately.

Example 2. Consider the one-good distribution F taking values 0 and 1, each with probability 
1/2. Selling the two goods separately yields a revenue of 1/2 from each good (set the price at 1), 
and so 1 in total, whereas the revenue from selling the bundle is only 3/4 (the optimal price for 
the bundle is 1).

In other cases neither selling separately nor bundling is optimal.

Example 3. Consider the one-good distribution F taking the values 0, 1, and 2, each with proba-
bility 1/3. The unique optimal mechanism for two such i.i.d. goods turns out to be3 to offer to the 
buyer the choice between any single good at price 2 and the bundle of both goods at a “discount” 
price of 3. This mechanism gets a revenue of 13/9 ≈ 1.44, which is larger than the revenue of 
4/3 ≈ 1.33 obtained either from selling the two goods separately or from selling them as a single 
bundle.

A similar situation obtains for the uniform distribution on [0, 1], for which neither bundling 
nor selling separately is optimal (Manelli and Vincent, 2006). In still other cases the optimal 
mechanism is not even deterministic and must offer lotteries for the goods. This happens for 
instance in the following example, taken from Hart and Reny (2015a, Example 4).4

Example 4. Consider the distribution taking the values 1, 2, and 4, with probabilities 1/6, 1/2, 
and 1/3, respectively. It turns out that the unique optimal mechanism for two such i.i.d. goods 
offers the buyer a choice of one of the following options: buying a lottery ticket that has price 1
and gives the first good with probability 1/2, buying a similar lottery ticket for good 2, buying 
the bundle of both goods for a price of 4, and buying nothing (and paying nothing); indeed, any 
deterministic mechanism has a strictly lower revenue.

Thus, it is not clear what optimal mechanisms for selling two goods look like, and indeed char-
acterizations of optimal mechanisms even for this simple case are not known (see Section 1.1). 
The two-dimensional problem is extremely difficult, and the simple mechanisms that amount to 
solving only one-dimensional problems—such as separate selling and bundling—do not maxi-
mize the revenue in general.

This leads to the following question: how good are such simple mechanisms for selling two 
goods? That is, how much of the optimal revenue is guaranteed when using them? Consider 
a class of mechanisms N (such as separate selling or bundled selling) and a class of environ-
ments X (such as two independent and identically distributed goods, or k independent goods); 
we then define the Guaranteed Fraction of Optimal Revenue (GFOR) as that maximal fraction 
α between 0 and 1 such that for every environment in X there is a mechanism in N that yields a 
revenue of at least the fraction α of the optimal revenue (it is thus the reciprocal of the “competi-

3 For distributions with finite support, finding the optimal mechanism amounts to solving a linear programming prob-
lem.

4 Examples in which randomization increases the revenue appear in the literature, starting with Thanassoulis (2004) in 
the somewhat different setup of unit demand, and Manelli and Vincent (2006, 2007, 2012). See Section 1.1.
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tive ratio” often used in the computer science literature; see Section 2.2 for the formal definition 
and a discussion of these concepts).

We start with two independent goods, and consider selling them separately. Our first result is:

Theorem A. For any two independent goods, selling each good separately at its optimal one-
good price guarantees at least 50% of the optimal revenue; i.e.,

GFOR(SEPARATE; 2 independent goods) ≥ 1

2
.

This result applies to any distribution of values (we make no assumptions, such as mono-
tone hazard rate or increasing virtual values), and it holds also for any number of buyers (see 
Section 7.3).

When the two goods are identically distributed, separate selling is guaranteed to perform even 
better.

Theorem B. For any two independent and identically distributed goods, selling each one at the 
one-good optimal price guarantees at least 73% of the optimal revenue; i.e.,

GFOR(SEPARATE; 2 i.i.d. goods) ≥ e

e + 1
≈ 0.73.

Thus, for two i.i.d. goods with distribution F , setting the price at p∗ that maximizes the 
one-good revenue (i.e., p∗(1 − F(p∗)) = maxp p(1 − F(p))) and allowing the buyer to buy any 
number of units—0, 1, or 2 units—at price p∗ per unit guarantees at least 73% of the optimal 
revenue.

We next consider the case of more than two goods. It turns out that, as the number k of goods 
grows, the fraction of the optimal revenue that is obtainable from selling them separately may 
become arbitrarily small (specifically, of the order of 1/ logk, cf. Corollary 26; the reader may 
refer to the tables in Appendix A.8 that summarize all these comparisons). Our main positive 
result here is:

Theorem C. There exists a constant c > 0 such that for any k ≥ 2 and any k independent goods, 
selling each good separately at its optimal one-good price guarantees at least c/ log2 k of the 
optimal revenue; i.e.,

GFOR(SEPARATE; k independent goods) ≥ c

log2 k
.

Finally, we move to the other simple one-dimensional mechanism, the bundling mechanism, 
which offers a single price for the bundle of all goods. We first show that for general independent 
goods, bundling may do much worse and yield only a 1/k-fraction of the optimal revenue (Ex-
ample 27). However, when the goods are independent and identically distributed, then bundling 
does much better. It is well known (Armstrong, 1999; Bakos and Brynjolfsson, 1999) that for 
every fixed distribution F , as the number of goods distributed independently according to F in-
creases, the bundling mechanisms become close to being optimal (for completeness we provide a 
short proof in Appendix A.5). This, however, requires k to grow as F remains fixed. On the other 
hand, we show that this is not true uniformly over F : for every large enough k, there are distri-
butions where the bundling mechanism on k goods gives less than 57% of the optimal revenue 
(Example 32). Our main result for the bundling mechanism in the i.i.d. case is:
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Theorem D. There exists a constant c > 0 such that for any k ≥ 2 and any k independent and 
identically distributed goods, selling them as one bundle at the bundle-optimal price guarantees 
at least c/ logk of the optimal revenue; i.e.,

GFOR(BUNDLED; k i.i.d. goods) ≥ c

logk
.

The paper is organized as follows. Section 1.1 presents a survey of the relevant literature, 
including work done following the circulation of the early versions of this paper in 2012. In Sec-
tion 2 we present the model and the basic concepts, followed by a number of useful preliminary 
results. Section 3 deals with the case of two independent goods, and provides the proof of Theo-
rem A; the more complex proof of Theorem B is relegated to Appendix A.1. The main argument 
of these proofs is then extended to a general decomposition theorem in Section 4. Section 5
studies the relations between the revenues from separate and bundled selling (with some of the 
proofs and additional results in Appendices A.3 and A.4); these relations are not only interesting 
in their own right, but are also used as part of the general analysis, and provide us with most 
of the examples that we have of gaps in revenue. The results for more than two goods, Theo-
rems C and D, are then proved in Section 6, making use of the decomposition of Section 4 and 
the comparisons of Section 5. Additional relevant results, namely, upper bounds on GFOR, a 
two-good setup where bundling is shown to be optimal, and the extension to multiple buyers, are 
stated in Section 7 (with proofs relegated to Appendices A.6 and A.7). In Section 8 we discuss 
open problems. Finally, Appendix A.8 provides two tables: the first summarizes the lower and 
upper bounds that we have obtained on the fraction of optimal revenue that is guaranteed for both 
separate and bundled selling, and the second summarizes the comparisons between separate and 
bundled selling.

1.1. Literature

We briefly describe some of the existing work on these issues. McAfee and McMillan (1988)
identify cases where the optimal mechanism is deterministic. However, Thanassoulis (2004) and 
Manelli and Vincent (2006) found a technical error in the paper and present counterexamples. 
These last two papers contain good surveys of the work within economic theory, with more 
recent analysis by Fang and Norman (2006), Jehiel et al. (2007), Pycia (2006), Lev (2011), 
Pavlov (2011), and Hart and Reny (2015a). In the past few years algorithmic work on these 
types of topics was carried out. One line of work (e.g., Briest, Chawla, Kleinberg, and Wein-
berg 2015; Cai et al., 2012a; Alaei et al., 2012) shows that for discrete distributions the optimal 
mechanism can be found by linear programming in rather general settings. This is certainly 
true in our simple setting where the direct representation of the mechanism constraints pro-
vides a polynomial-size linear program. Thus we emphasize that the difficulty in our case is not 
computational, but is rather one of characterizing and understanding the results of the explicit 
computations: this is certainly so for continuous distributions, but also for discrete ones.5 An-
other line of work in computer science (Chawla et al., 2007, 2010a, 2010b; Alaei et al., 2012;
Cai et al., 2012b) attempts to approximate the optimal revenue by simple mechanisms. This was 

5 This suggests that a notion of “conceptual complexity” may be appropriate here. The usual computational complexity 
may not capture all the difficulty of a problem, since, even after computing the precise solution, one may not understand 
its structure, what it means and represents, and how it varies with the given parameters (e.g., Hart and Reny, 2015a, where 
it is shown that the optimal revenue may decrease when the buyer’s valuations increase).
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done for various settings, especially unit-demand settings and some generalizations.6 One par-
ticular conclusion from this line of work is that for many subclasses of distributions (such as 
those with a monotone hazard rate) various simple mechanisms can extract a constant fraction of 
the expected value of the goods.7 This is true in our simple setting, where for such distributions 
selling the goods separately provides a constant fraction of the expected value and thus of the 
optimal revenue. The case of multiple goods with correlated distributions was studied by Briest 
et al. (2015) and Hart and Nisan (2013) and turns out to be quite different from the independently 
distributed case: classes of simple mechanisms (even the class of all deterministic mechanisms) 
may well yield only an arbitrarily small fraction of the optimal revenue.

Since the circulation of early versions of this paper in 2012 (Hart and Nisan, 2012), there has 
been a flurry of work on optimal mechanisms for multiple goods for various cases: Daskalakis et 
al. (2013, 2017), Giannakopoulos (2014), Giannakopoulos and Koutsoupias (2014), Menicucci 
et al. (2015), and Tang and Wang (2017). The general problem was studied from a computational 
perspective in Daskalakis et al. (2014), where it is shown to be computationally intractable (for-
mally, #P -hard). Several developments have occurred regarding GFOR for multiple goods. Li 
and Yao (2013) improved our lower bound on GFOR(SEPARATE) for k goods from c/ log2 k to 
the tight c/ logk. For the case of k independent and identically distributed goods, Li and Yao
(2013) proved that GFOR(BUNDLED) is bounded from below by a constant that is independent 
of the number of goods k. Babaioff et al. (2014) showed that, for k independent (but not nec-
essarily identically distributed) goods, GFOR({SEPARATE, BUNDLED}) is bounded from below 
by a constant that is independent of k (that is, there is c > 0 such that for any number k and 
any k independent goods, either separate selling or bundling yields at least the fraction c of the 
optimal revenue). This was generalized by Yao (2014) to the case of multiple bidders and by 
Rubinstein and Weinberg (2015) to buyers with submodular (rather than just additive) valuations 
for the goods. Measures quantifying how complex mechanisms need to be in order to yield a 
good proportion of the optimal revenue were studied in Hart and Nisan (2013), Dughmi et al.
(2014), Morgenstern and Roughgarden (2016), and Babaioff et al. (2017).

2. Preliminaries

In this section we present the model formally and define the concepts that we use, followed 
by a number of preliminary results.

2.1. The model

One seller (or “monopolist”) is selling a number k ≥ 1 of goods (or “items,” “objects,” etc.) 
to one buyer.

The goods have no value or cost to the seller. Let x1, x2, ..., xk ≥ 0 be the buyer’s values for 
the goods. The value for getting a set of goods is additive: getting the subset I ⊆ {1, 2, ..., k} of 

6 “Unit demand” means that buyers are willing to buy at most one of the goods. The relations between the revenues in 
the additive setup and those in the unit-demand setup are discussed in our paper Hart and Nisan (2013, Appendix 1). It 
is thus possible that bounds obtained in the unit-demand literature lead, in the additive setup, to weaker versions of our 
Theorem A. Our direct approach is simpler—cf. Section 3—and generalizable—cf. Section 4.

7 In our setting this is true even more generally, for instance, whenever the ratio between the median and the expectation 
is bounded (which happens in particular when the tail of the distribution is “thinner” than x−α for α > 1). Indeed, posting 
a price equal to the median yields a revenue of one-half of the median, and hence at least a constant fraction of the 
expectation (which is, by IR, the most that the seller can extract as expected revenue).
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goods is worth 
∑

i∈I xi to the buyer (and so, in particular, the buyer’s demand is not restricted 
to one good only). The values are given by a random variable X = (X1, X2, ..., Xk) that takes 
values in Rk+, (we thus assume that valuations are always nonnegative); we will refer to X as a 
k-good random valuation. The realization x = (x1, x2, ..., xk) ∈ R

k+ of X is known to the buyer, 
but not to the seller, who knows only the distribution F of X (which may be viewed as the seller’s 
belief). The buyer and the seller are assumed to be risk neutral and to have quasi-linear utilities 
(i.e., the utility is additive with respect to monetary transfers; e.g., getting good 1 with probability 
1/2 and paying 8 with probability 1/4 is worth (1/2) · x1 − (1/4) · 8 to the buyer and (1/4) · 8 to 
the seller).

The objective is to maximize the seller’s (expected) revenue.
As has been well established by the so-called “Revelation Principle” (starting with Myerson, 

1981; see for instance the book of Krishna, 2010), we can restrict ourselves to “direct mecha-
nisms” and “truthful equilibria.” A (direct)8 mechanism μ consists of a pair of functions (q, s), 
where q = (q1, q2, ..., qk) : Rk+ → [0, 1]k and s : Rk+ → R, which prescribe the allocation of 
goods and the payment, respectively. Specifically, if the buyer reports a value vector x ∈ R

k+, 
then qi(x) ∈ [0, 1] is the probability that the buyer receives good9 i (for i = 1, 2, ..., k), and 
s(x) is the payment that the seller receives from the buyer. When the buyer reports his value x
truthfully, his payoff is10 b(x) = ∑k

i=1 qi(x)xi − s(x) = q(x) · x − s(x), and the seller’s payoff 
is11 s(x). The mechanism μ = (q, s) satisfies individual rationality (IR) if b(x) ≥ 0 for every 
x ∈ R

k+, and incentive compatibility (IC) if b(x) ≥ q(x̃) · x − s(x̃) for every alternative report 
x̃ ∈ R

k+ of the buyer when his value is x, for every x ∈ R
k+. Let M denote the class of all IC and 

IR mechanisms μ = (q, s). The expected revenue from a buyer with random valuation X using a 
mechanism μ = (q, s) ∈ M is12 R(μ; X) := E [s(X)], and the optimal revenue from X is, by the 
Revelation Principle, REV(X) := supμ∈M R(μ; X), the highest revenue that can be obtained by 
any IC and IR mechanism μ. The revenue can never exceed the expected valuation of all goods 
together: REV(X) ≤ E 

[∑
i Xi

]
(since s(x) ≤ q(x) · x ≤∑

i xi by IR and x ≥ 0).
When there is only one good, i.e., when k = 1, Myerson’s (1981) result is that

REV(X) = sup
p≥0

p · P [X ≥ p
]= sup

p≥0
p · P [X > p

]= sup
p≥0

p · (1 − F(p)), (1)

where F is the cumulative distribution function of X. Optimal mechanisms correspond to the 
seller “posting” a price p and the buyer buying the good for the price p whenever his value is at 
least p; in other words, the seller makes the buyer a “take-it-or-leave-it” offer to buy the good at 
price p.

Besides the maximal revenue, we are also interested in what can be obtained from certain 
classes of mechanisms. Thus, given a class N ⊂M of IC and IR mechanisms, let N -REV(X) :=

8 “Mechanism” will henceforth always mean “direct mechanism.”
9 When the goods are infinitely divisible and the valuations are linear in quantities (i.e., the value of a quantity λ of 

good i is λxi ), we may interpret qi also as the quantity of good i that the buyer gets.
10 When y = (yi )i=1,...,n and z = (zi )i=1,...,n are n-dimensional vectors, y · z denotes their scalar product 

∑n
i=1 yizi .

11 In the literature the payment to the seller is called transfer, cost, price, revenue, and so on, and is denoted by t, c, p, ...; 
this plethora of names and notations applies to the buyer as well. We hope that using the mnemonic s for the seller’s final 
payoff and b for the buyer’s final payoff will avoid confusion.
12 In Hart and Reny (2015a, Proposition 16) it is shown that for IC and IR mechanisms one may assume without loss 
of generality that s is measurable; since s is bounded from below by s(0) (which follows from IC at 0), the expected 
revenue E [s(X)] is well defined (but may be infinite).
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supν∈N R(ν; X) be the maximal revenue that can be extracted from a buyer with random valua-
tion X when restricted to mechanisms ν in the class N . Some classes of mechanisms are:

• SEPARATE: Each good i is sold separately. The maximal revenue from separate mechanisms 
is denoted by SREV, and so

SREV(X) := REV(X1) + REV(X2) + ... + REV(Xk).

• BUNDLED: All goods are sold together in one “bundle.” The maximal revenue from bundled 
mechanisms is denoted by BREV, and so

BREV(X) := REV(X1 + X2 + ... + Xk).

• DETERMINISTIC: Each good i is either fully allocated or not at all, i.e., qi(x) ∈ {0, 1} (rather 
than qi(x) ∈ [0, 1]) for every x ∈ R

k+ and 1 ≤ i ≤ k. The maximal revenue from deterministic 
mechanisms is denoted by DREV.

The separate and the bundled revenues are obtained by solving one-dimensional problems (where 
one uses (1)), whereas the deterministic revenue is a multi-dimensional problem. Examples 
where these classes yield revenues that are smaller than the maximal revenue are well known 
(see also the examples in the Introduction, and the references in Section 1.1).

The following is a useful characterization of incentive compatibility that is well known (start-
ing with Rochet, 1985).

Proposition 5. Let μ = (q, s) be a mechanism for k goods with buyer payoff function b. Then 
μ = (q, s) satisfies IC if and only if b is a convex function and for all x the vector q(x) is a 
subgradient of b at x (i.e., b(x̃) − b(x) ≥ q(x) · (x̃ − x) for all x̃).

Proof. μ is IC if and only if b(x) = q(x) · x − s(x) = maxx̃∈Rk+(q(x̃) · x − s(x̃)) for every x, 
which implies that b is a convex function of x (as the maximum of a collection of affine functions 
of x). Moreover, for every x and x̃ we have b(x̃) −b(x) −q(x) ·(x̃−x) = b(x̃) −(q(x) · x̃−s(x)), 
and so the subgradient inequalities are precisely the IC inequalities. �

Thus s(x) = q(x) · x − b(x) = ∇b(x) · x − b(x), where ∇b(x) stands for a (sub)gradient of 
b at x, and so the revenue can be expressed in terms of the buyer payoff function13 b. We also 
note that there is no loss of generality in assuming that the mechanism μ is defined and satisfies 
IC and IR on the whole space Rk+, rather than just on some domain D ⊂ R

k+, such as the set of 
possible values of X; see Hart and Reny (2015a, Appendix A.1).

We conclude with a useful property: a mechanism μ = (q, s) satisfies the no positive trans-
fer14 (NPT) property if s(x) ≥ 0 for every x ∈ R

k+. Proposition 6 below shows that NPT can 
always be assumed without loss of generality when maximizing revenue.15 Moreover, the rev-

13 The function b, being convex, is differentiable almost everywhere, and so ∇b(x) is the gradient (∂b(x)/∂xi )i=1,...,k

for almost every x. As pointed out in Hart and Reny (2015a, Appendix A.1), when maximizing revenue one may use 
“seller-favorable” mechanisms and replace the term ∇b(x) · x with b′(x; x), the directional derivative of b at x in the 
direction x, which is well defined for every x.
14 The “transfer” is from the seller to the buyer, i.e., −s(x).
15 This is not true in more general setups; for instance, when there are multiple buyers that are correlated, Bayesian Nash 
implementation may require using positive transfers, i.e., s(x) < 0 (cf. Crémer and McLean, 1988; see also Appendix A.7
below).
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enue from any IC and IR mechanism on a subdomain of valuations cannot exceed the overall 
maximal revenue—even when the mechanism does not satisfy NPT.16

Proposition 6. Let μ = (q, s) be an IC and IR mechanism, and let X be a k-good random 
valuation in Rk+, where k ≥ 1. Then:

(i) μ satisfies NPT if and only if s(0) = 0, which occurs if and only if b(0) = 0.
(ii) There is a mechanism μ̂ = (q, ̂s) with the same q and with ŝ(x) ≥ s(x) for all x ∈R

k+, such 
that μ̂ satisfies IC, IR, and NPT.

(iii) REV(X) = supμ R(μ; X) where the supremum is taken over all IC, IR, and NPT mecha-
nisms μ.

(iv) Let A ⊆R
k+ be a set of values of X; then17

E [s(X)1X∈A] ≤ REV(X 1X∈A) ≤ REV(X).

Proof. (i) IC at 0 yields s(x) ≥ s(0) for all x, and IR at 0 yields s(0) ≤ 0; the minimal payment 
is thus s(0), which cannot be positive. Therefore, s(x) ≥ 0 for all x if and only if s(0) = 0. Now 
s(0) + b(0) = q(0) · 0 = 0, and so s(0) = 0 if and only if b(0) = 0.

(ii) Put ŝ(x) := s(x) − s(0) ≥ s(x) for all x (recall that s(0) ≤ 0 by IR at 0). Then μ̂ = (q, ̂s)
satisfies IC since the payment differences have not changed (i.e., ŝ(x) − ŝ(x̃) = s(x) − s(x̃) for 
all x, x̃); it satisfies IR since q(x) · x − s(x) ≥ q(0) · x − s(0) ≥ −s(0) (by IC); and it satisfies 
NPT since ŝ(0) = 0.

(iii) Follows from (ii) since μ̂ yields at least as much revenue as μ (because ŝ(x) ≥ s(x) for 
all x).

(iv) For the first inequality, use (ii) to get E [s(X)1X∈A] ≤ E 
[
ŝ(X)1X∈A

]= E 
[
ŝ(X 1X∈A)

]≤
REV(X 1X∈A) (the equality since ŝ(0) = 0 by (i)). For the second inequality, E [s(X 1X∈A)] =
E [s(X)1X∈A] ≤ E [s(X)] for any μ that satisfies NPT; apply (iii). �
2.2. Guaranteed Fraction of Optimal Revenue (GFOR)

Let X be a class of random valuations (such as two independent goods, or k i.i.d. goods; 
formally, it is a class of random variables X with values in Rk+ spaces), and let N be a class 
of IC and IR mechanisms (such as separate selling, or deterministic mechanisms; formally, N
is a subset of the class M of all IC and IR mechanisms). The Guaranteed Fraction of Optimal 
Revenue (GFOR) for the class of random valuations X and the class of mechanisms N is defined 
as the maximal fraction α such that, for any random valuation X in X, there are mechanisms in 
the class N that yield at least the fraction α of the optimal revenue. Formally,18

GFOR ≡ GFOR(N ;X) := inf
X∈X

N -REV(X)

REV(X)
= inf

X∈X
supν∈N R(ν;X)

supμ∈M R(μ;X)
.

Thus GFOR ≥ α if and only if for every random valuation X in X there is a mechanism ν
in N such that its revenue is R(ν; X) ≥ α · REV(X) (we are ignoring here the trivial issues of 
“max” vs. “sup”), and GFOR ≤ α if there exists a random valuation X in X such that for every 
mechanism ν in N its revenue is R(ν; X) ≤ α · REV(X).

16 This is used in our proofs, e.g., in Section 3, where we construct mechanisms for which s may take negative values.
17 We write 1W for the indicator of the event W : it takes the value 1 when W occurs and the value 0 otherwise.
18 Put 0/0 = 1.
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Remarks. (a) One may argue that there is no need for results that are uniform with respect to the 
values’ distributions, on the grounds that the seller knows that distribution. However, in the case 
of multiple goods, knowing the distribution does not help find the optimal mechanism (even for 
simple distributions), whereas simple mechanisms, such as separate selling, are always easy to 
compute (as they use only optimal prices for one-dimensional distributions). It is thus important 
to know how far from optimal these mechanisms are guaranteed to be, particularly when one 
does not know what that optimum is or how to find it.

(b) Ratios. Why are we considering ratios? The reason is that the revenue is covariant 
with rescalings, but not with translations. Indeed, REV(λX) = λ · REV(X) for any λ > 0, but 
REV(X + c) is in general different from REV(X) + c for constant c > 0 (this happens already in 
the one-good case; see (1)).

(c) Competitive ratio. The computer science literature uses the concepts of “competitive ratio” 
and “approximation ratio,” which are just the reciprocal 1/GFOR of GFOR. While the two 
notions are clearly equivalent, using the optimal revenue as the benchmark (i.e., 100%) and 
measuring everything relative to this basis—as GFOR does—seems to come more naturally.

3. Two independent goods

We start by proving our first result, Theorem A, stated in the Introduction. Its proof forms the 
basis of more complex proofs later—including Theorem B, whose significantly more intricate 
proof is relegated to Appendix A.1. Theorem A can be restated as follows: for every two-good 
random valuation X = (Y, Z) with Y, Z independent goods (i.e., one-dimensional nonnegative 
random variables),

REV(X) ≤ 2 · SREV(X) = 2(REV(Y ) + REV(Z)). (2)

Proof of Theorem A. Let μ = (q, s) be a two-good IC, IR, and NPT mechanism (recall Propo-
sition 6 (iii)); we will prove that its revenue from X satisfies R(μ; X) ≤ 2REV(Y ) + 2REV(Z). 
To do so, we split the revenue into two parts, according to which one of Y and Z is higher, and 
show that

E
[
s(Y,Z)1Y≥Z

]≤ 2REV(Y ), and (3)

E
[
s(Y,Z)1Z≥Y

]≤ 2REV(Z). (4)

Since R(μ; X) = E [s(Y,Z)] ≤ E 
[
s(Y,Z)1Y≥Z

] + E 
[
s(Y,Z)1Z≥Y

]
(the inequality is due to 

the diagonal Y = Z being counted twice; recall that s ≥ 0 by NPT), adding (3) and (4) gives (2).
We now prove (3) (which then yields (4) by interchanging Y and Z). For every fixed value 

z ≥ 0 of the second good define a mechanism μz = (qz, sz) for the first good by replacing the 
allocation of the second good with an equivalent decrease in payment; that is, the allocation of the 
first good is unchanged, i.e., qz(y) := q1(y, z), and the payment is sz(y) := s(y, z) − q2(y, z) · z, 
for every y ≥ 0. The one-good mechanism μz is IC and IR for y, since μ = (q, s) was IC and IR 
for (y, z) (for IC, only the constraints (ỹ, z) vs. (y, z) matter; for IR, the buyer payoff function 
of μz is bz(y) = b(y, z)). Now s(y, z) = sz(y) + q2(y, z) · z ≤ sz(y) + z (because z ≥ 0 and 
q2 ≤ 1), and so

E[s(Y,Z)1Y≥Z | Z = z] = E
[
s(Y, z)1Y≥z

]≤ E
[
sz(Y )1Y≥z

]+E
[
z 1Y≥z

]
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(the equality uses the independence of Y and Z). The first term is the revenue from a subdomain 
of values of Y , and so is at most its maximal revenue REV(Y ) by Proposition 6 (iv).19 As for the 
second term, we have

E
[
z 1Y≥z

]= z · P [Y ≥ z] ≤ REV(Y ), (5)

since posting a price of z, and the buyer buying when Y ≥ z, constitutes an IC and IR mechanism 
for20 y. Thus

E[s(Y,Z)1Y≥Z | Z = z] ≤ 2REV(Y )

holds for every value z of Z; taking expectation yields (3), completing the proof. �
In Appendix A.2 we provide a number of observations arising from this proof.

4. The general decomposition result

We generalize the decomposition of the previous section from two goods to two sets of 
goods. Let now Y be a k1-dimensional nonnegative random variable, and Z a k2-dimensional 
nonnegative random variable (with k1, k2 ≥ 1). While we assume that the vectors Y and Z are 
independent, we allow for arbitrary interdependence among the coordinates of Y , and likewise 
for the coordinates of Z.

The main decomposition result is:

Theorem 7. Let Y and Z be multi-dimensional nonnegative random variables. If Y and Z are 
independent then

REV(Y,Z) ≤ REV(Y ) + REV(Z) + BREV(Y ) + BREV(Z) (6)

≤ 2 (REV(Y ) + REV(Z)). (7)

The second inequality (7) follows immediately from the first (6), because BREV ≤ REV. 
When Y and Z are one-dimensional, both inequalities become (2) of Theorem A.

We start with the basic argument that uses the “marginal” mechanism on y generated from 
a mechanism on (y, z) (as in the previous section). For a k-dimensional random valuation X =
(X1, ..., Xk), we use the notation

Val(X) := E

[
k∑

i=1

Xi

]
=

k∑
i=1

E[Xi]

for the expected total sum of values (for one-dimensional X we have Val(X) = E[X]).

Lemma 8 (Marginal mechanism on subdomain). Let Y and Z be multi-dimensional nonnegative 
random variables, and let A ⊆ R

k1+k2 be a set of values of (Y, Z). If Y and Z are independent 
then

REV
(
(Y,Z)1(Y,Z)∈A

)≤ REV(Y ) + Val
(
Z 1(Y,Z )∈A

)
.

19 μz need not satisfy NPT, as sz may take negative values.
20 We are not using here the characterization (1) of optimal one-good mechanisms as posting-price mechanisms, but 
only the simple fact that these mechanisms are IC and IR.
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Proof. For every z put Az := {y|(y, z) ∈ A}. Take an IC and IR mechanism (q, s) for (y, z), and 
fix some value of z = (z1, . . . , zk2). The induced mechanism on the y goods is IC and IR, but 
it also hands out quantities of the z goods. If we modify it so that instead of allocating zj with 
probability qj = qj (y, z), it reduces the buyer’s payment by the amount of qjzj , we are left with 
an IC and IR mechanism, call it (qz, sz), for the y goods. Now s(y, z) = sz(y) + ∑

j qj zj ≤
sz(y) +∑

j zj , and so, conditioning on Z = z,

E
[
s(Y,Z)1(Y,Z)∈A | Z = z

]= E
[
s(Y, z)1Y∈Az

]

≤ E
[
sz(Y )1Y∈Az

]+E

⎡
⎣
⎛
⎝∑

j

zj

⎞
⎠1Y∈Az

⎤
⎦

(the equality in the first line is because Y is independent of Z). The first term in the sec-
ond line is bounded from above by REV(Y ) by Proposition 6 (iv), and the second term is 

E 
[∑

j (Zj 1(Y,Z)∈A) | Z = z
]
; taking expectation over the values z of Z completes the proof. �

In the case of two goods, i.e., one-dimensional Y and Z, the set of values A for which we 
bound Val(Z 1(Y,Z )∈A) is the set A = {(y, z) : y ≥ z}.

Lemma 9 (Smaller value). Let Y and Z be one-dimensional nonnegative random variables. If Y
and Z are independent then

Val
(
Z 1Y≥Z

)≤ REV(Y ).

Proof. For every value z of Z, setting the price for Y at z yields a revenue of
z ·P[Y ≥ z], which is thus at most REV(Y ). Hence Val(Z 1Y≥Z) = Ez∼Z[E[Z 1Y≥Z | Z = z]] =
Ez∼Z[z · P[Y ≥ z]] ≤ Ez∼Z[REV(Y )] = REV(Y ). �

In the multi-dimensional case we take A = {(y, z) : ∑i yi ≥∑
j zj } (where yi and zj are the 

coordinates of y and z, respectively), and get:

Lemma 10 (Smaller value for multiple goods). Let Y and Z be multi-dimensional nonnegative 
random variables. If Y and Z are independent then

Val(Z 1∑
i Yi≥∑

j Z j
) ≤ BREV(Y ).

Proof. Apply Lemma 9 to the one-dimensional random variables 
∑

i Yi and 
∑

j Zj , and use 
REV(

∑
i Yi) = BREV(Y ). �

We can now prove our result.

Proof of Theorem 7. We divide the space as follows:

REV(Y,Z) ≤ REV
(
(Y,Z)1∑

i Yi≥∑
j Z j

)
+ REV

(
(Y,Z)1∑

j Z j ≥∑
i Yi

)
(the inequality by NPT; see Proposition 6 (iii)). The first term is at most
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REV(Y ) + Val
(
Z 1∑

i Yi≥∑
j Z j

)
≤ REV(Y ) + BREV(Y )

by Lemmas 8 and 10. The second term is bounded similarly. �
See Appendix A.2 for some comments on possible generalizations of this decomposition ap-

proach.

5. Separate and bundled selling

In this section we compare the revenue obtainable from the two simple mechanisms of selling 
the goods separately and selling them as one bundle. These mechanisms are simple as they reduce 
to one-good mechanisms, for which the Myerson (1981) characterization (1) applies. The results 
below are not only interesting in their own right, but also useful when we make comparisons to 
the optimal revenue (Theorems C and D; cf. Section 6 below).

One advantage of one-good mechanisms is that revenue is monotonic with respect to valua-
tion: increasing the buyer’s values can only increase the seller’s revenue. As natural and appealing 
as this may sound, monotonicity does not extend to the multiple good case; see Hart and Reny
(2015a).

Formally, for X and Y real random variables, X is (first-order) stochastically dominated by 
Y if for every real p we have P 

[
X ≥ p

] ≤ P[Y ≥ p]; essentially,21 what this says is that Y gets 
higher values than X. We have:

Proposition 11 (Monotonicity for one good). Let X and Y be one-good random valuations. If X
is stochastically dominated by Y then REV(X) ≤ REV(Y ).

Proof. REV(X) = supp p · P[X ≥ p] ≤ supp p · P[Y ≥ p] = REV(Y ) by (1). �
This monotonicity property leads one to consider the highest one-good random valuation 

with a given revenue. Normalizing the revenue at 1, this is the real random variable V that 
takes values V ≥ 1 with probabilities P 

[
V ≥ p

] = 1/p for every p ≥ 1. We refer to a good 
with random valuation V as an equal-revenue (ER) good, and to its distribution, i.e., FV (p) =
1 − 1/p and fV (p) = 1/p2 for p ≥ 1, as the equal-revenue (ER) distribution.22 Indeed, the 
revenue REV(V ) = 1 of an ER good is obtained at any posted price p ≥ 1 (recall (1)).23 Note 
that while the revenue of V is finite, its expected value is infinite: E [V ] = ∫∞

1 p ·(1/p2) dp = ∞.
The result (1) for one good may now be restated as follows: REV(X) ≤ 1 if and only if X

is stochastically dominated by an ER good V (indeed, REV(X) ≤ 1 if and only if 1 − FX(p) ≤
1/p = 1 − FV (p) for all p ≥ 1). That is, the revenue from a one-good random valuation X is at 

21 One may indeed take X and Y to be defined on the same probability space � and to satisfy X ≤ Y pointwise, 
i.e., X(ω) ≤ Y (ω) for almost every realization ω ∈ � (this is called “coupling” of X and Y ). See, e.g., Shaked and 
Shantikumar (2010, Theorem 1.A.1).
22 Also known as the Pareto distribution with index 1 and scale 1; interestingly, V is ER if and only if 1/V is Uniform 
on (0, 1].
23 Moreover, an IC and IR mechanism μ = (q, s) is optimal for V if and only if it does not sell the good for values 
below 1, i.e., q(x) = s(x) = 0 for all x < 1, and supx≥1 q(x) = limx→∞ q(x) = 1 (but is otherwise arbitrary for x ≥ 1). 
Also, the ER distribution is the only distribution (up to rescaling) for which the “virtual valuation” of Myerson (1981)
(used, for instance, when there are multiple buyers) vanishes everywhere in the support: x − (1 −F(x))/f (x) = 0 for all 
x ≥ 1.
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most 1 if and only if one can increase the values of X and obtain a new random valuation V that 
is ER-distributed.

The following proposition collects the above observation together with a number of useful 
results on the ER distribution; the proofs are relegated to Appendix A.3. From now on we use the 
constant w ≈ 0.278 to denote the solution of the equation24

wew+1 = 1.

Proposition 12.

(i) Let X be a one-good random valuation, and let r ≥ 0. Then REV(X) ≤ r if and only if X is 
stochastically dominated by rV where V is an ER valuation.

(ii) Let V1, V2, ..., Vk be i.i.d.-ER, let r1, r2, ...rk ≥ 0, and put r̄ := (1/k) 
∑k

i=1 ri for the aver-
age of the ri . Then 

∑k
i=1 riVi is stochastically dominated by 

∑k
i=1 r̄Vi .

(iii) Let V1 and V2 be i.i.d.-ER. Then

BREV(V1,V2) = 2(w + 1) ≈ 2.56.

(iv) There exist constants c1 > 0 and c2 < ∞ such that for all k ≥ 2 and V1, V2, ..., Vk i.i.d.-ER,

c1k logk ≤ BREV (V1,V2, ..., Vk) ≤ c2k logk.

Remarks. (a) We will see below (Corollary 17) that bundling is in fact optimal for two i.i.d.-ER
goods, and so (iii) will become REV(V1, V2) = BREV(V1, V2) = REV(V1 + V2) = 2(w + 1).

(b) The fact that the revenue is not monotonic for multiple goods (Hart and Reny, 2015a)
foils the following natural attempt to estimate GFOR for separate selling. For concreteness, 
consider two i.i.d. goods X1 and X2, without loss of generality normalized so that REV(X1) =
REV(X2) = 1. Let V1, V2 be i.i.d.-ER. Then each Xi is stochastically dominated by Vi , and so 
X = (X1, X2) is stochastically dominated by V = (V1, V2). However, we cannot deduce from 
this that REV(X) ≤ REV(V ) = 2(w + 1) (see Remark (a) above)—which would have given a 
better bound of 1/(w + 1) ≈ 0.78, and with a much simpler proof, for GFOR(SEPARATE) in this 
case (cf. Theorem B and its proof in Appendix A.1).

Using ER goods allows us to compare the separate selling revenue to the bundling revenue.

Proposition 13.

(i) For any two independent goods X1, X2,

SREV(X1,X2) ≥ 1

w + 1
BREV(X1,X2) ≈ 0.78 · BREV(X1,X2).

(ii) There exists a constant c > 0 such that for any k ≥ 2 and any k independent goods 
X1, X2, ..., Xk ,

SREV(X1,X2, ...,Xk) ≥ c

logk
BREV(X1,X2, ...,Xk).

24 Thus wew = 1/e, and so w = W(1/e) where W is the so-called “Lambert-W ” function.
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Proof. Put ri := REV(Xi) and r̄ := (1/k) 
∑

i ri = (1/k)SREV(X), and let V1, ..., Vk be k
i.i.d.-ER goods. Using Proposition 12 (i) and (ii): each Xi is stochastically dominated by riVi , 
hence 

∑
i Xi is stochastically dominated by25 ∑

i riVi , which is in turn dominated by r̄
∑

i Vi . 
Therefore

BREV(X1, ...,Xk) = REV

(
k∑

i=1

Xi

)
≤ REV

(
r̄

k∑
i=1

Vi

)

= r̄ REV

(
k∑

i=1

Vi

)
= r̄ BREV(V1, ..., Vk)

(the inequality is by monotonicity for one good, Proposition 11), and then the two results follow 
from Proposition 12 (iii) and (iv), respectively. �

Taking the goods Xi to be ER goods shows that 1/(w + 1) and c/ logk above are both tight 
(cf. Proposition 12 (iii) and (iv)).

We conclude with comparisons in the other direction: the bundled revenue as a fraction of the 
separate revenue; see Appendix A.4 for additional results.

Proposition 14.

(i) For any k ≥ 1 and any k independent goods X1, X2, ..., Xk ,

BREV(X1,X2, ...,Xk) ≥ 1

k
SREV(X1,X2, ...,Xk).

(ii) For any k ≥ 1 and any k i.i.d. goods X1, X2, ..., Xk ,

BREV(X1,X2, ...,Xk) ≥ 1

4
SREV(X1,X2, ...,Xk).

Proof. (i) For every i we have Xi ≤ ∑
j Xj and so REV(Xi) ≤ REV(

∑
j Xj ) = BREV(X1, ...,

Xk); summing over j yields 
∑

j REV(Xj ) ≤ k BREV(X1, ..., Xk).
(ii) Let p be an optimal one-good price for each Xi and put α := P[Xi ≥ p]; thus REV(Xi) =

pα. We separate between two cases. If kα ≤ 1 then consider setting the bundle price at p; the 
probability that the buyer will buy is

P

[∑
i

Xi ≥ p

]
≥ P

[
Xi ≥ p for some i

]= P

[⋃
i

[Xi ≥ p]
]

≥
∑

i

P
[
Xi ≥ p

]−
∑
i<j

P
[
Xi ≥ p,Xj ≥ p

]

= kα −
(

k

2

)
α2 ≥ 1

2
kα,

25 We use here the following fact: if Xi is stochastically dominated by Yi for every i, then X1 +· · ·+Xk is stochastically 
dominated by Y1 + · · · + Yk (this is immediate when all the random variables are defined on the same probability space 
and Xi ≤ Yi pointwise for every i—cf. the coupling in footnote 21—because then 

∑
Xi ≤∑

Yi ); see, e.g., Shaked and 
Shantikumar (2010, Theorem 1.A.3.(b)).
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and so the revenue will be at least pkα/2 ≥ k REV(Xi)/2. If kα ≥ 1 then consider setting the 
bundle price at p�kα�. Since the median in the Binomial(k, α) distribution is at least �kα�, the 
probability that the buyer will buy is at least 1/2, and so the revenue will be at least p�kα�/2 ≥
pkα/4 = k REV(Xi)/4. �

While the constant 1/k in (i) is tight, the 1/4 in (ii) is not (we have not attempted to optimize 
it); see Example 27 in Appendix A.4 and Example 32 in Appendix A.5.

6. k independent goods

We now prove the two main results on k ≥ 2 goods, Theorems C and D stated in the Introduc-
tion, using our general decomposition result of Theorem 7.

We start with separate selling. Viewing 2k goods as two sets of k goods each and using (7)
one can easily get by induction that 

∑k
i=1 REV(Xi) ≥ (1/k)REV(X1, ..., Xk), as follows:

REV(X1, ...,X2k) ≤ 2(REV(X1, ...,Xk) + REV(Xk+1, ...,X2k))

≤ 2

⎛
⎝k

k∑
i=1

REV(Xi) + k

2k∑
i=k+1

REV(Xi)

⎞
⎠

= 2k

2k∑
i=1

REV(Xi).

However, using the stronger inequality (6), together with the relations we have shown in the 
previous section between the bundling and the separate revenues, gives us the better bound of 
c/ log2 k (instead of 1/k) of Theorem C.

Proof of Theorem C. We will first prove by induction that REV(X1, ..., Xk) ≤
(1/c′) log2

2 k
∑k

i=1 REV(Xi) for every k ≥ 2 that is a power of 2, where c′ := min{c, 1/2} > 0
with c > 0 given by Proposition 13 (ii). This inequality holds for k = 2 by Theorem A (since 
c′ ≤ 1/2). For k ≥ 4 we apply Theorem 7 to Y = (X1, ..., Xk) and Z = (Xk+1, ..., X2k), to get

REV(X1, ...,X2k) ≤ REV(X1, ...,Xk) + REV(Xk+1, ...,X2k)

+ BREV(X1, ...,Xk) + BREV(Xk+1, ...,X2k). (8)

First, using Proposition 13 (ii) (and c′ ≤ c) on each of the BREV terms shows that their sum 
is bounded by (1/c′) log2 k

∑2k
i=1 REV(Xi). Second, using the induction hypothesis on each of 

the REV terms shows that their sum is bounded by (1/c′) log2
2 k

∑2k
i=1 REV(Xi). Now log2 k +

log2
2 k ≤ log2

2(2k), and so adding the two bounds gives the result.
Next, when 2m−1 < k < 2m we can “pad” to 2m goods by adding goods that have value 

identically zero, and so do not contribute anything to the revenue; this at most doubles k. �
In Appendix 5 we show that bundling may, by contrast, extract only a 1/k fraction of the 

optimal revenue. However, bundling does much better for identically distributed goods, and in 
fact we have a tighter result, Theorem D, with logk instead of k.

Proof of Theorem D. Let Xi be i.i.d., and put Rk := REV(X1, ..., Xk) and Bk := BREV(X1, ...,
Xk). We want to show that there is a finite c > 0 such that Rk ≤ c logk Bk for all k ≥ 2. If 
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k ≥ 2 is a power of 2 we apply Theorem 7 inductively to obtain Rk ≤ 2Bk/2 + 4Bk/4 + ... +
(k/2)B2 + kB1 + kR1. Each of the log2 k + 1 terms in this sum is of the form (k/�)B� =
(k/�)REV(X1 + ... + X�), and is thus bounded from above by 4Bk (apply Proposition 14
(ii) to k/� i.i.d. random variables each distributed as X1 + ... + X�). Altogether we have 
Rk ≤ 4(log2 k + 1)Bk .

When 2m−1 < k < 2m we have Rk ≤ R2m and Bk ≥ B2m−1 (adding goods can only increase 
the revenue: take the optimal mechanism for the original set of goods and extend it so that it 
ignores the additional goods), and B2m ≤ 2(w + 1)B2m−1 ≤ 2(w + 1)Bk (apply Proposition 13
(i) to the two i.i.d. random variables X1 + ... + X2m−1 and X2m−1+1 + ... + X2m ), which together 
with the above inequality for 2m goods yields Rk ≤ 8(w + 1)(log2 k + 2)Bk . �
7. Additional results

7.1. Upper bound on GFOR for two goods

Our results for two goods give lower bounds on GFOR (50% and 73% for selling separately 
two independent goods and two i.i.d. goods, respectively). Now what about upper bounds? That 
is, how high can GFOR(SEPARATE) actually be? The best estimate we have is that it cannot 
exceed approximately 78%: there exist two i.i.d. goods where selling separately yields only that 
fraction of the optimal revenue (while GFOR may well be lower for independent goods than for 
the more restricted i.i.d. goods, we have not found a better example—i.e., with a lower fraction—
in the former class).

Proposition 15. In the case of two independent goods, selling separately cannot guarantee more 
than 78% of the optimal revenue; i.e.,

GFOR(SEPARATE; 2 independent goods) ≤ GFOR(SEPARATE; 2 i.i.d. goods)

≤ 1

w + 1
≈ 0.78.

Proof. Let V = (V1, V2) with V1 and V2 two i.i.d.-ER goods. The revenue from selling separately 
is SREV(V ) = REV(V1) + REV(V2) = 2, whereas, as shown in the next section (Corollary 17), 
the optimal revenue is REV(V ) = 2(w + 1) (obtained by bundling). �
7.2. When bundling is optimal

Interestingly, we have identified a class of two-good i.i.d. distributions for which bundling is 
optimal.

Theorem 16. Let F be a continuous one-good distribution with values in [a, ∞) for some a > 0, 
and density function f that is differentiable and satisfies

xf ′(x) + 3

2
f (x) ≤ 0 (9)

for every x > a. Then bundling is optimal for two i.i.d.-F goods X1, X2:

REV(X1,X2) = BREV(X1,X2) = REV(X1 + X2).
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Theorem 16 is proved in Appendix A.6. Condition (9) is equivalent to 
(
x3/2f (x)

)′ ≤ 0, i.e., 
x3/2f (x) is nonincreasing in x (the support of f is thus either some finite interval [a, b] or 
the half-line [a, ∞)). When f (x) = cx−γ , (9) holds whenever γ ≥ 3/2. In particular, the ER
distribution (where γ = 2) satisfies (9), and so does any general Pareto distribution with index 
α ≥ 1/2. Together with Proposition 12 (iii) we thus get:

Corollary 17. Let V1, V2 be two i.i.d.-ER goods. Then

REV(V1,V2) = BREV(V1,V2) = 2(w + 1) ≈ 2.56.

7.3. Multiple buyers

Up to now we have been dealing with a single buyer, but our result for two independent goods 
turns out to hold also when there are multiple buyers. Unlike the simple decision-theoretic prob-
lem facing a single buyer, we now have a multi-person game among the buyers. Two main notions 
of equilibrium are considered: dominant strategy equilibrium and Bayesian Nash equilibrium 
(corresponding to “ex-post” and “interim” implementations, respectively); see Appendix A.7 for 
details. Our result holds for both concepts.

Theorem 18. In the case of n independent buyers and two goods, if the random valuations of 
the two goods are independent, then selling each good separately using its optimal one-good 
mechanism guarantees at least 50% of the optimal revenue:

GFOR(SEPARATE) ≥ 1

2
;

this holds when the optimal revenue is taken throughout26 with respect to either dominant strat-
egy implementation or Bayesian Nash implementation.

That is, let the one-dimensional random variable Xj
i ≥ 0 denote the value of good i to buyer j , 

for i = 1, 2 and j = 1, ..., n. Write Xj = (X
j

1 , Xj

2) ∈ R
2+ for the random valuation vector of buyer 

j for both goods, and Xi = (X
j
i )j=1,...,n ∈ R

n+ for the vector of values of all buyers for good i. 
Independent buyers means that the random vectors X1, X2, ..., Xn are independent; independent 
goods means that the random vectors X1 and X2 are independent.27 Theorem 18 is proved in 
Appendix A.7, which also contains the precise notations and statements; the proof is again a 
generalization of the proof of Theorem A for one buyer (Section 3).

Remarks. (a) Dependent buyers and dominant strategy implementation. In the dominant strategy 
case, our proof does not use the independence between the buyers’ random valuations; thus 
GFOR(SEPARATE) ≥ 1/2 holds under dominant strategy implementation for two independent 
goods and any number of buyers, whether independent or not; see Theorem 33 in Appendix A.7.

(b) Dependent buyers and Bayesian Nash implementation. In the Bayesian Nash case our 
proof does not extend when the buyers are not independent (see Appendix A.7). However, for 
this case Crémer and McLean (1988) show that, under a certain general “correlation-between-
buyers” condition, the seller can extract all the surplus from any single good: REV(Xi) =

26 I.e., for the two goods, as well as for each good separately.
27 Independent buyers together with independent goods means that the 2n random variables Xj are all independent.
i
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E 
[
max1≤j≤n X

j
i

]
. Since the most that the seller can extract from the two goods is, by IR,28

E 
[
maxj X

j

1

]
+E 

[
maxj X

j

2

]
, it follows that in this case REV(X1, X2) = REV(X1) + REV(X2), 

and so GFOR(SEPARATE) = 1. We do not know what GFOR(SEPARATE) is when the buyers 
are neither independent nor satisfy the Crémer–McLean condition.

8. Open problems

Many interesting problems remain open. As attested by the long time that has passed since 
Myerson’s (1981) work in the one-good case, characterizing the optimal mechanisms in the 
multiple-goods case—even when there are just two goods—is an extremely difficult problem.29

While the general problem appears very complex, one may well be able to obtain results for cer-
tain useful classes of random valuations and mechanisms. Following are some specific questions 
that arise from our study:

1. Characterize distributions where separate selling is optimal (cf. Theorem 16 for bundling).
2. Provide bounds for GFOR(DETERMINISTIC), the fraction of optimal revenue that is guar-

anteed by mechanisms that do not use randomizations. In addition, characterize distributions 
where deterministic mechanisms are optimal.30

3. Tighten the bounds on GFOR(SEPARATE). While the gap in the i.i.d. case (73% vs. 78%) is 
quite small, we do not know what the right value is; also, is GFOR in the independent case 
in fact lower than in the i.i.d. case? Is 50% the right bound?

4. Evaluate GFOR(SEPARATE) for Bayesian Nash implementation when there are multiple 
buyers that are neither independent nor satisfy the Crémer–McLean condition (see Remark 
(b) in Section 7.3).

5. Find simple mechanisms different from separate selling that can guarantee a larger fraction 
of the optimal revenue.

6. Study the case of two or more goods that are not necessarily independent (see Hart and 
Nisan, 2013).31

7. Obtain useful ways to quantify the complexity (vs. simplicity) of mechanisms, and analyze 
the tradeoffs between complexity and revenue (see Hart and Nisan, 2013 for such an ap-
proach: “menu complexity”).

Appendix A

A.1. Proof for two i.i.d. goods

In this appendix we prove Theorem B, stated in the Introduction, which says that selling two 
i.i.d. goods separately yields at least e/(e + 1) of the optimal revenue. The proof follows a line 

28 Indeed (see Appendix A.7 for notations), bj (x) ≥ 0 implies that sj (x) ≤ qj (x) · xj , and so 
∑

j sj (x) ≤∑
j qj (x) · xj =∑

i

∑
j q

j
i
(x) xj

i
≤∑

i maxj x
j
i

.
29 Recall footnote 5 on conceptual complexity.
30 The recent work of Babaioff, Immorlica, Lucier, and Weinberg (2014) implies in particular that GFOR(DETERMIN-
ISTIC) is bounded from below by a constant that is independent of the number of goods.
31 Where it is shown that no simple class of mechanisms can guarantee any positive fraction of the optimal revenue; 
i.e., GFOR = 0.
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of argument similar to that of the proof of Theorem A in Section 3, but is more intricate as we 
make all the estimates much tighter.

Proof of Theorem B. Let X = (Y, Z), where Y and Z are i.i.d. nonnegative one-dimensional 
random variables, and let r := REV(Y ) = REV(Z) = supt≥0 t · G(t) be the revenue from each 
good separately, where G(t) := P [Y ≥ t]. We want to prove that

REV(Y,Z) ≤ e + 1

e
(REV(Y ) + REV(Z)) = 2

(
1 + 1

e

)
r.

Take a two-good IC and IR mechanism μ = (q, s) with buyer payoff function b (i.e., b(x) =
q(x) ·x−s(x) for all x). Without loss of generality assume that it also satisfies NPT, i.e., s(x) ≥ 0
for all x, and b(0, 0) = s(0, 0) = 0 (recall Proposition 6 (iii)). Since X is symmetric we will also 
assume that μ is symmetric, i.e., q1(y, z) = q2(z, y) and s(y, z) = s(z, y)—and thus b(y, z) =
b(z, y)—for all y, z ≥ 0. Indeed, μ can be replaced by its “symmetrization” μ̄ = (q̄, ̄s) given by 
q̄1(y, z) = q̄2(z, y) := (q1(y, z) + q2(z, y))/2 and s̄(y, z) = s̄(z, y) := (s(y, z) + s(z, y))/2 for 
all y, z ≥ 0, which also satisfies IC, IR, and NPT, and yields the same revenue, E [s̄(Y,Z)] =
E [s(Y,Z)] = E [s(Z,Y )] (because Y, Z are i.i.d.).

For every t ≥ 0 put 
(t) := b(t, t)/2 and ϕ(t) := q1(t, t) = q2(t, t); Proposition 5 implies 
that 
 is a convex function, ϕ(t) = 
′(t) almost everywhere, and 
(u) = ∫ u

0 ϕ(t) dt (formally, 
use Corollary 24.2.1 in Rockafellar, 1970 and 
(0) = b(0, 0) = 0).

Consider first the region Y ≥ Z. For each fixed z ≥ 0 such that P [Y ≥ z] > 0 define a mecha-
nism μz = (qz, sz) for the first good by qz(y) := q1(y, z) and sz(y) := s(y, z) − q2(y, z) · z for 
every y ≥ 0; the buyer’s payoff remains the same: bz(y) = b(y, z). The mechanism μz is IC and 
IR for y, since μ is IC and IR for (y, z). Let Y z denote the random variable Y conditional on the 
event Y ≥ z, and consider the revenue R(μz; Y z) = E 

[
sz(Y z)

] = E 
[
sz(Y )|Y ≥ z

]
of μz from 

Y z. We have Y z ≥ z, qz(z) = ϕ(z), and sz(z) = s(z, z) − q2(z, z) · z = q1(z, z) · z − b(z, z) =
zϕ(z) − 2
(z), and so applying Lemma 19 below to Y z yields

E
[
sz(Y )|Y ≥ z

]≤ (1 − ϕ(z))REV(Y z) + zϕ(z) − 2
(z). (10)

Since P 
[
Y z ≥ t

]= P [Y ≥ t]/P [Y ≥ z] = G(t)/P [Y ≥ z] for all t ≥ z, we get from (1) that

REV(Y z) = sup
t≥0

t · P [Y z ≥ t
]= sup

t≥z
t · G(t)

P [Y ≥ z]
≤ supt≥0 t · G(t)

P [Y ≥ z]
= r

P [Y ≥ z]

(recall that r = REV(Y )). Substitute this in (10), and multiply it by P [Y ≥ z], to get

E
[
sz(Y )1Y≥z

]≤ r(1 − ϕ(z)) + (zϕ(z) − 2
(z))P [Y ≥ z]

for all z ≥ 0 (trivially including those where P [Y ≥ z] = 0). Taking expectation over the values 
z of Z:

E

[
sZ(Y )1Y≥Z

]
≤ r(1 − E [ϕ(Z)]) +E

[
(Zϕ(Z) − 2
(Z))1Y≥Z

]
. (11)

Now s(y, z) = sz(y) + q2(y, z) z ≤ sz(y) + q2(y, y) z = sz(y) + zϕ(y) (use z ≥ 0 and the mono-
tonicity of q2(y, z) = bz(y, z) in z, again from the convexity of b), which together with (11)
yields
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E
[
s(Y,Z)1Y≥Z

] ≤ E

[
sZ(Y )1Y≥Z

]
+E

[
Zϕ(Y )1Y≥Z

]
≤ r(1 − E [ϕ(Z)]) +E

[
(Zϕ(Y ) + Zϕ(Z) − 2
(Z))1Y≥Z

]
= r(1 − E [ϕ(Z)]) +E

[
(�ϕ(Y ) + �ϕ(Z) − 2
(�))1Y≥Z

]
where we put � := min{Y, Z}.

Consider next the region Z > Y . Interchanging Y and Z and using Z > y instead of Z ≥ y

throughout gives

E [s(Y,Z)1Z>Y ] ≤ r(1 − E [ϕ(Y )]) +E [(�ϕ(Z) + �ϕ(Y ) − 2
(�))1Z>Y ] .

Adding the last two inequalities yields

E [s(Y,Z)] ≤ r(2 −E [ϕ(Y )] −E [ϕ(Z)])

+E [�ϕ(Y ) + �ϕ(Z) − 2
(�)] .

Because Y and Z are i.i.d. we have E [ϕ(Y )] = E [ϕ(Z)] and E [�ϕ(Y )] = E [�ϕ(Z)], and so

E [s(Y,Z)] ≤ 2r − 2rE [ϕ(Y )] + 2E [W ] (12)

where W := �ϕ(Y ) − 
(�).
We want to bound (12) from above. This expression is affine in ϕ (recall that 
(u) =∫ u

0 ϕ(t) dt ), which is a real nondecreasing function with values in [0, 1]. Since every such func-
tion lies in the closed convex hull of the extreme functions ϕ = 1[p,∞) for all32 0 ≤ p ≤ ∞, it 
suffices to bound (12) for these extreme functions.

Consider such an extreme ϕ = 1[p,∞) with p ≥ 0; then 
(u) = ∫ u

0 ϕ(t) dt = max{u − p, 0}. 
Substituting in the definition of W yields

W =

⎧⎪⎨
⎪⎩

� − (� − p) = p, if Y ≥ p and Z ≥ p,

Z − 0 = Z, if Y ≥ p and Z < p,

0 − 0 = 0, if Y < p.

Thus

E [W ] = pP
[
Y ≥ p

]
P
[
Z ≥ p

]+ P
[
Y ≥ p

]
E
[
Z 1Z<p

]
= P

[
Y ≥ p

]
(E

[
p 1Z≥p

]+E
[
Z 1Z<p

]
)

= G(p)E
[
min{Z,p}]

(we have used the fact that Y and Z are independent and min{Z, p} = p 1Z≥p + Z 1Z<p). To-
gether with E [ϕ(Y )] = E 

[
1Y∈[p,∞)

]= P 
[
Y ≥ p

]= G(p), (12) becomes

E [s(Y,Z)] ≤ 2r − 2rG(p) + 2G(p)E
[
min{Z,p}]) = 2(r + ζ(p)) (13)

where we put ζ(p) := G(p) 
(
E
[
min{Z,p}]− r

)
. If p ≥ r then

32 Put weight θp = ϕ′(p) ≥ 0 on 1[p,∞) for (almost) every p > 0, weight θ0 = ϕ(0) on 1[0,∞) ≡ 1, and the remaining 
weight θ∞ = 1 −∫∞

0 ϕ′(p)dp−ϕ(0) = 1 −ϕ(∞) ≥ 0 on 1[∞,∞) ≡ 0; cf. Manelli and Vincent (2007, Lemma 4), where 
it is also shown how the one-good result (1) easily follows from this claim.
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E
[
min{Z,p}]=

∞∫
0

P
[
min{Z,p} ≥ u

]
du =

p∫
0

P [Z ≥ u] du

=
p∫

0

G(u)du ≤
r∫

0

1 du +
p∫

r

r

u
du = r + r ln

(p

r

)
,

where the inequality follows from G(u) ≤ 1 and G(u) ≤ r/u (because r = supu≥0 u · G(u)). 
Therefore

ζ(p) ≤ G(u)r ln
(p

r

)
≤ r

p
r ln

(p

r

)
= r

lnq

q
,

where q := p/r ≥ 1. Since maxq(lnq)/q = 1/e (attained at q = e), it follows that ζ(p) ≤ r/e for 
all p ≥ r . If p ≤ r then ζ(p) ≤ 0 (since E 

[
min{Z,p}] ≤ p ≤ r), and so altogether ζ(p) ≤ r/e

for all p ≥ 0. Therefore E [s(Y,Z)] ≤ 2r(1 + 1/e) (recall (13)), which completes the proof. �
The auxiliary result that we have used is:

Lemma 19. Let X be a one-good random valuation that takes values X ≥ x0 for some x0 ≥ 0. 
Then for every IC and IR mechanism μ = (q, s) we have

R(μ;X) = E [s(X)] ≤ (1 − q(x0)) REV(X) + s(x0). (14)

Proof. The function q is nondecreasing (because q is the derivative of the buyer payoff func-
tion b, which is convex), and so q(x) ≥ q(x0) for all x ≥ x0.

If q(x0) = 1 then q(x) = 1 for all x ≥ x0, hence s(x) = s(x0) for all x ≥ x0 by IC; therefore 
E [s(X)] = s(x0) and (14) holds as an equality.

If q(x0) < 1 then we define a new mechanism by rescaling q so that it uses the full 
range from 0 to 1 (instead of q(x0) to 1). Specifically, define μ̂ = (q̂, ̂s) by q̂(x) :=
(q(x) − q(x0))/λ and ŝ(x) := (s(x) − s(x0))/λ, where λ := 1 − q(x0) > 0. It is immediate 
to verify that μ̂ is an IC and IR mechanism (for IC, [q̂(x) · x − ŝ(x)] − [q̂(x̃) · x − ŝ(x̃)] =
([q(x) · x − s(x)] − [q(x̃) · x − s(x̃)]) /λ ≥ 0; for IR, the resulting buyer payoff function b̂ sat-
isfies b̂(x0) = q̂(x0) · x0 − ŝ(x0) = 0). Therefore REV(X) ≥ E 

[
ŝ(X)

] = (E [s(X)] − s(x0))/λ; 
multiplying by λ yields (14). �
A.2. Some comments on decomposition

We provide here a number of remarks related to the decompositions of Theorems A, B, and 7.

Remarks. (a) In the proof of Theorem A in Section 3: For every fixed z, applying the one-
dimensional mechanism μz to the whole range of Y , rather than to Y ≥ z, yields E[s(Y, z)] ≤
REV(Y ) + z (recall that s(y, z) ≤ sz(y) + z), and so, taking expectation over the values z of Z, 
and then maximizing over the mechanisms μ, we get33 REV(Y, Z) ≤ REV(Y ) +E [Z]. Unfortu-
nately, this inequality does not suffice: E [Z] may well be infinite, even when REV(Z) is finite 
(as is the case, e.g., for the Equal-Revenue (ER) distribution, defined in Section 5). This explains 

33 When Y and Z are not necessarily independent, this becomes REV(Y, Z) ≤ E[REV(Y |Z)] + E [Z], where (Y |Z) is 
the random variable Y conditional on the value of Z, and the expectation is over (the values of) Z.
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the need to split the domain into the two regions, Y ≥ Z and Y ≤ Z, which allows us to bound 
the resulting expectation terms (see (5)).

(b) The proof of Theorem A also implies that REV(Y ) + REV(Z) ≥ E [min{Y,Z}] (take 
expectation of (5) over the values z of Z, interchange Y and Z, and add the two resulting in-
equalities). Thus, while in the single-good case one cannot guarantee any positive fraction of 
the expected value as revenue (take again the ER distribution, with infinite expectation and rev-
enue 1), in the case of two independent goods one can at least guarantee the expectation of the 
minimum of the values of the two goods. A mechanism that yields a revenue of E [min{Y,Z}]
consists of posting the random prices p1 for the y good and p2 for the z good, where p1 and p2
are independent random variables, p1 is distributed like Z, and p2 is distributed like Y ; this is a 
randomized separate mechanism.34

(c) The decomposition of Section 4 holds in more general setups than the totally additive 
valuation of this paper (where the value to the buyer of the outcome q ∈ [0, 1]k is 

∑
i qixi ). 

Indeed, consider an abstract mechanism-design problem with a set of alternatives A, valued by 
the buyer according to a function w : A → R

k+ (that he knows, whereas the seller knows only 
that the function w is drawn from a certain distribution); assume also that results such as those 
in Proposition 6 hold. If the set of alternatives A is in fact a product A = A1 × A2 with the 
valuation additive between the two sets, i.e., w(a1, a2) = w1(a1) + w2(a2), with w1 distributed 
according to Y and w2 according to Z, then Theorem 7 holds as stated. The proof now uses 
Val(Z) = E[supa2∈A2

w2(a2)] (which, in our case, where A2 = [0, 1]k2 and w2(q) =∑
j qj zj , is 

indeed Val(Z) = E(
∑

j Zj ) since supq w2(q) =∑
j zj ).

A.3. Equal revenue (ER) goods

In this appendix we prove the claims of Proposition 12 concerning ER goods: Lemma 20, 
Propositions 24 and 25, and Corollary 23.

Lemma 20. Let X be a one-good random valuation. Then REV(X) ≤ r if and only if X is 
stochastically dominated by rV where V is an ER valuation.

Proof. By (1), REV(X) ≤ r if and only if P[X ≥ p] ≤ r/p for every p ≥ 0; this inequality 
matters only for p > r , for which r/p = P 

[
rV ≥ p

]
. �

Next we compute the distribution of a weighted sum of two independent ER distributions.

Lemma 21. Let V1, V2 be i.i.d.-ER and let α, β > 0. Then

P
[
αV1 + βV2 ≥ z

]= αβ

z2
ln

(
1 + z2 − (α + β)z

αβ

)
+ α + β

z

for z ≥ α + β , and P 
[
αV1 + βV2 ≥ z

]= 1 for z ≤ α + β .

34 The inequality REV(Y ) + REV(Z) ≥ E [min{Y,Z}] is tight, as it becomes an equality when Y, Z are i.i.d.-ER goods. 
It does not hold when Y and Z are not independent (for an extreme case take the fully correlated case with Y = Z being 
ER); the correct inequality here is E [REV(Y |Z)] + E [REV(Z|Y )] ≥ E [min{Y,Z}]. All this generalizes to any k ≥ 2

independent goods, where we obtain 
∑

i REV(Xi) ≥ E 
[
(m − 1)X(m)

]
for every m = 1, 2, ..., k (of course, only m ≥ 2

matters) with X(m) denoting the m-th order statistic of X1, ..., Xk (thus X(1) = maxi Xi and X(k) = mini Xi ).
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Proof. Let Z = αV1 + βV2. For z ≤ α + β we have P [Z ≥ z] = 1 since Vi ≥ 1. For z > α + β

we get

P [Z ≥ z] =
∫

f (x)

(
1 − F

(
z − αx

β

))
dx

=
(z−β)/α∫

1

1

x2

β

z − αx
dx +

∞∫
(z−β)/α

1

x2
1 dx

= β

z

[
α

z
lnx − α

z
ln
( z

α
− x

)
− 1

x

](z−β)/α

1
+ α

z − β

= αβ

z2

(
ln

(
z

β
− 1

)
+ ln

( z

α
− 1

))
− αβ

z(z − β)
+ β

z
+ α

z − β

= αβ

z2
ln

(
1 + z2 − (α + β)z

αβ

)
+ α + β

z
,

completing the proof. �
Weighted sums of independent ER distributions are used in the proof of Proposition 13 (see 

Section 5 and recall Lemma 20). What we will show now (Lemma 22 and Corollary 23) is that 
moving the weights in the direction of equalizing them yields stochastic domination.

Lemma 22. Let V1, V2 be i.i.d.-ER and let α, β, a′, β ′ > 0. If α + β = α′ + β ′ and35 αβ ≤ α′β ′
then αV1 + βV2 is stochastically dominated by α′V1 + β ′V2.

Proof. Let Z = αV1 + βV2 and Z′ = α′V1 + β ′V2, and put γ = α + β = α′ + β ′. Using 
Lemma 21, for z ≤ γ we have P[Z ≥ z] = P[Z′ ≥ z] = 1, and for z > γ we get

P[Z ≥ z] = αβ

z2
ln

(
1 + z2 − γ z

αβ

)
+ γ

z

≤ α′β ′

z2
ln

(
1 + z2 − γ z

α′β ′

)
+ γ

z
= P[Z′ ≥ z],

since t ln(1 + 1/t) is increasing in t > 0, and αβ/(z2 − γ z) ≤α′β ′/(z2 − γ z) by our assumption 
that αβ ≤ α′β ′ together with z > γ . �
Corollary 23. Let V1, V2, ..., Vk be i.i.d.-ER, let r1, r2, ..., rk ≥ 0, and put r̄ = (1/k) 

∑k
i=1 ri for 

the average of the ri . Then 
∑k

i=1 riVi is stochastically dominated by 
∑k

i=1 r̄Vi .

Proof. If, say, r1 < r̄ < r2, then Lemma 22 above implies that r1V1 + r2V2 is stochastically 
dominated by r̄V1 + r ′

2V2, where r ′
2 = r1 + r2 − r̄ > 0, and so36 ∑k

i=1 riVi is stochastically 
dominated by r̄V1 + r ′

2V2 +∑k
i=3 riVi . Continue this way until all coefficients become r̄. �

35 Equivalently, α′, β ′ are closer to one another than α, β are; i.e., |α′ − β ′| ≤ |α − β|.
36 Recall footnote 25: stochastic dominance is closed under convolutions.
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We now calculate the revenue obtainable from bundling two independent ER goods. Recall 
that w ≈ 0.278 is the solution of the equation wew+1 = 1, or lnw + w = −1.

Proposition 24. Let V1, V2 be i.i.d.-ER. Then

BREV(V1,V2) = REV(V1 + V2) = 2(w + 1) ≈ 2.56.

Proof. Using Lemma 21 with α = β = 1 yields p P 
[
V1 + V2 ≥ p

]= p−1 ln(1 +p2 −2p) +2 =
2p−1 ln(p − 1) + 2, which attains its maximum of 2w + 2 at p = 1 + 1/w (i.e., 1/(p − 1) =
w). �

We estimate the bundling revenue from k independent ER goods.

Proposition 25. There exist constants c1 > 0 and c2 < ∞ such that for any k ≥ 2 and k i.i.d.-ER
goods V1, V2, ..., Vk ,

c1k logk ≤ BREV(V1,V2, ..., Vk) = REV(V1 + ... + Vk) ≤ c2k logk.

Proof. For a one-dimensional random variable X and a constant M , write XM := min{X, M}
for X truncated at M . When V is ER and M ≥ 1 it is immediate to compute E 

[
V M

]= lnM + 1
and Var(V M) ≤ 2M .

• Lower bound: For every p, M > 0 we have REV(
∑

i Vi) ≥ p · P 
[∑

i Vi ≥ p
] ≥

p · P 
[∑

i V
M
i ≥ p

]
.

When M = k lnk and p = (k lnk)/2 we get (kE 
[
V M

] − p)/
√

kVar(V M) ≥ √
lnk/8, and 

so p is at least 
√

lnk/8 standard deviations below the mean of 
∑k

i=1 V M
i . Therefore, by 

Chebyshev’s inequality, P 
[∑k

i=1 V M
i ≥ p

]
≥ 1 − 8/ lnk ≥ 1/2 for all k large enough, and then 

REV(
∑k

i=1 Vi) ≥ p · 1/2 = k lnk/4.

• Upper bound: We need to bound supp≥0 p · P 
[∑k

i=1 Vi ≥ p
]
.

Consider two cases for p. If p ≤ 6k ln k then p · P 
[∑k

i=1 Vi ≥ p
]

≤ p ≤ 6k lnk.

If p ≥ 6k lnk, then, taking M = p, we have

p · P
[

k∑
i=1

Vi ≥ p

]
≤ p · P

[
k∑

i=1

V
p
i ≥ p

]
+ p · P [Vi > p for some 1 ≤ i ≤ k

]
. (15)

The second term on the right-hand side is at most p ·k ·(1 −FV (p)) = k (since FV (p) = 1 −1/p). 
To estimate the first term, we again use Chebyshev’s inequality: 

∑k
i=1 V

p
i has mean k(lnp + 1)

and standard deviation 
√

2kp. When k is large enough we have p/(k(lnp + 1)) ≥ 2 (recall that 
p ≥ 6k ln k), hence (p − k(lnp + 1))/

√
2kp ≥ (p/2)/

√
2kp = √

p/(8k), and so p is at least √
p/(8k) standard deviations above the mean of 

∑k
i=1 V

p
i . Therefore p · P 

[∑k
i=1 V

p
i ≥ p

]
≤

p · (8k)/p = 8k, which implies p · P 
[∑k

i=1 Vi ≥ p
]

≤ 9k by (15).

Altogether, REV(
∑k

i=1 Vi) ≤ max{6k ln k, 9k} = 6k ln k for all k large enough. �
Remark. A more precise analysis, based on a Generalized Central Limit Theorem (see, e.g., 
Zaliapin et al., 2005), shows that REV(

∑k
Vi)/(k ln k) converges to 1 as k → ∞. Indeed, the 
i=1
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sequence (
∑k

i=1 Vi − bk)/ak with ak = kπ/2 and37 bk = k lnk + �(k) converges in distribution 
to the Cauchy distribution as k → ∞. The revenue from a Cauchy distribution can easily be 
shown to be bounded (by 1/π ; use (1)), and so it follows that REV(

∑k
i=1 Vi) = k ln k + �(k).

As a corollary, we get that separate selling may yield no more than a fraction of the order of 
1/ logk of the optimal revenue.

Corollary 26. There exists a constant c < ∞ such that for any k ≥ 2 and k i.i.d.-ER goods 
V1, V2, ..., Vk

SREV(V1,V2, ..., Vk) ≤ c

logk
REV(V1,V2, ..., Vk).

Proof. We have REV(V1, ..., Vk) ≥ BREV(V1, ..., Vk) ≥ c1 logk ·k = c1 logk · SREV(V1, ..., Vk)

by Proposition 25, and SREV(V1, ..., Vk) = k (because REV(Vi) = 1). �
A.4. Separate vs. bundled selling

We start with an example showing that the 1/k bound for k independent goods of Proposi-
tion 14 (i) is tight.

Example 27. BREV(X1, ..., Xk) = (1/k + ε) · SREV(X1, ..., Xk): Take a large M and let Xi

have support {0, Mi} with P[Xi = Mi] = M−i . Then REV(Xi) = 1 and so SREV(X1, ..., Xk) =
k, while BREV(X1, ..., Xk) is easily seen to be at most maxi M

i · (M−i + · · · + M−k) ≤ 1 +
1/(M − 1). Because SREV ≤ REV this also shows that bundling may yield no more than a 1/k

fraction of the optimal revenue: BREV(X1, ..., Xk) ≤ (1/k + ε) · REV(X1, ..., Xk).

We next prove that a GFOR of the order of 1/k is tight.

Lemma 28. There exists a constant c > 0 such that for any k ≥ 2 and any k independent goods 
X1, X2, ..., Xk ,

BREV(X1,X2, ...,Xk) ≥ c

k
REV(X1,X2, ...,Xk).

Proof. For k a power of two, we use (cf. the proof of Theorem C in Section 6) the decom-
position of (8) to obtain by induction, starting from REV(X1) = BREV(X1), the inequality 
REV(X1, ..., Xk) ≤ (3k−2) ·BREV(X1, ..., Xk) (the induction step uses the fact that the bundled 
revenue from a subset of the goods is at most the bundled revenue from all of them, since all the 
Xi are nonnegative). Again, when k is not a power of 2 we can pad to the next power of 2 with 
goods that have value identically zero, which at most doubles k. �

Next, we consider i.i.d. goods, where better bounds can be obtained: the bundling revenue 
cannot be much smaller than the separate revenue.

37 We use the standard computer science notations: f (k) = O(g(k)) means that there exists a constant c < ∞ such that 
f (k) ≤ cg(k) for all k, and f (k) = �(g(k)) means that there exists a constant c > 0 such that f (k) ≥ cg(k) for all k. 
Also, f (k) = �(g(k)) means that f (k) = O(g(k) and f (k) = �(g(k)) both hold; i.e., there exist c1 > 0 and c2 < ∞
such that c1g(x) ≤ f (k) ≤ c2g(k) for all k.
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Lemma 29. For any two i.i.d. goods X1, X2,

BREV(X1,X2) ≥ 2

3
SREV(X1,X2).

Proof. Let F be the distribution of the Xi , let p be the optimal one-good price for F , and put 
α := 1 − F(p); thus, REV(Xi) = pα. If α ≤ 2/3 then the bundling mechanism can offer a price 
of p, and then the probability that the bundle will be sold is at least the probability that one of 
the goods by itself has value p, which is 2α −α2 = α(2 −α) ≥ 4α/3; the revenue is then at least 
p · 4α/3 = (4/3)REV(Xi). If α ≥ 2/3 then the bundling mechanism can offer a price of 2p, and 
then the probability that it will be accepted is at least the probability that both goods will get a 
value of at least p, which is α2; the revenue is then 2p · α2 ≥ (4/3)pα = (4/3)REV(Xi). In both 
cases the bundling revenue was at least (4/3)REV(Xi) = (2/3)SREV(X1, X2). �

This 2/3 bound is tight.

Example 30. BREV(X1, X2) = (2/3) · SREV(X1, X2): Let Xi have support {0, 1} with
P[Xi = 1] = 2/3; then REV(Xi) = 2/3 while BREV(X1, X2) = 8/9 (which is obtained both 
at price 1 and at price 2).38

A.5. Many i.i.d. goods

It is well known that when the goods are independent and identically distributed, and their 
number k tends to infinity, then the bundling revenue approaches the optimal revenue. Even more, 
essentially all the buyer’s surplus can be extracted by selling optimally the bundle of all goods. 
The logic is quite simple: the law of large numbers tells us that there is almost no uncertainty 
about the sum of many i.i.d. random variables, and so the seller essentially knows this sum and 
may ask for it as the bundle price. For completeness we state this result and provide a short proof, 
which also covers the case where the expectation is infinite.

Theorem 31 (Armstrong, 1999; Bakos and Brynjolfsson, 1999). Let Xi be i.i.d. one-good random 
valuations. Then

lim
k→∞

BREV(X1,X2, ...,Xk)

k
= lim

k→∞
REV(X1,X2, ...,Xk)

k
= E [X1] .

Proof. We always have BREV(X1, ..., Xk) ≤ REV(X1, ..., Xk) ≤ kE [X1] (the second inequality 
follows from s(x) = q(x) · x − b(x) ≤ ∑

i xi by IR). Let us assume first that the Xi have finite 
expectation and finite variance. In this case if we charge a price of (1 − ε)kE [X1] for the bundle, 
then, by Chebyshev’s inequality, the probability that the bundle will not be bought is at most 
VAR(X1)/(ε

2
E [X1]

√
k), and this goes to zero as k increases.

If the expectation or variance is infinite, then consider the truncated distribution where val-
ues above a certain M are replaced by M , which has finite expectation and variance. We can 
choose the finite M so as to bring the expectation of the truncated distribution as close as we 

38 It can be checked that the optimal revenue is attained here by selling separately, i.e., REV(X1, X2) =
SREV(X1, X2) = 4/3.
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desire to the original one (including as high as we desire, if the original distribution has infinite 
expectation). �

Despite the apparent strength of this result, it does not provide any guarantees for any fixed 
value of k. Indeed, we now show that for every large enough k we have GFOR(BUNDLED;
k i.i.d. goods) ≤ 57% (recall that it is at least 1/4 by Proposition 14 (ii)). Recently, Kupfer
(2016) obtained the precise value of the limit of this GFOR as k increases; it turns out to be 
approximately 55.9%.

Example 32. For every k large enough, a one-dimensional distribution F (which depends 
on k) such that BREV(X1, ..., Xk) ≤ 0.57 · SREV(X1, ..., Xk), and thus BREV(X1, ..., Xk) ≤
0.57 · REV(X1, ..., Xk), where the Xi are i.i.d.-F goods: For each k consider the distribu-
tion F on {0, 1} with P[X = 1] = c/k where c ≈ 1.256 is the positive solution of 1 − e−c =
2(1 −(1 +c)e−c); the revenue from selling a single good is thus c/k, and so SREV(X1, ..., Xk) =
c. The bundling mechanism should clearly offer an integral price. If it offers price 1 then the prob-
ability of selling is 1 − (1 − c/k)k , which converges to 1 − e−c ≈ 0.715 as k increases. If it offers 
price 2 then the probability of selling is 1 − (1 − c/k)k − k(c/k)(1 − c/k)k−1 → 1 − (1 + c)e−c , 
and the revenue is twice that, again ≈ 0.715 in the limit (recall the equation that c satisfies). 
If it offers price 3 then the probability of selling is 1 − (1 − c/k)k − k(c/k)(1 − c/k)k−1 −(
k
2

)
(c/k)2(1 − c/k)k−2 → 1 − (1 + c + c2/2!)e−c ≈ 0.13, and the revenue is three times that, 

which is less than 0.715. For higher integral prices m ≥ 4 the probability of selling con-
verges to 1 − (1 + c + ... + cm−1/(m − 1)!)e−c ≤ cm/m! (because the corresponding remainder 
in the ec series is bounded by eccm/m!), and the revenue is thus ≤ cm/(m − 1)!, which is 
even smaller. Therefore for all large enough k the optimal bundle price is either 1 or 2, and 
BREV(X1, ..., Xk)/SREV(X1, ..., Xk) is close to (1 − e−c)/c ≈ 0.569.

A.6. When bundling is optimal

In this appendix we prove Theorem 16, stated in Section 7.2: for two i.i.d. goods, if the one-
good distribution satisfies condition (9), then bundling is optimal.

Proof of Theorem 16. Let X = (Y, Z) where Y, Z are i.i.d. with cumulative distribution F and 
probability density function f that satisfies (9). We will show that for every IC and IR mechanism 
μ there is a bundled mechanism μ̂ that yields at least as much revenue, i.e., R(μ̂; X) ≥ R(μ; X); 
this proves that REV(X) = BREV(X).

Let μ = (q, s) be an IC and IR mechanism with buyer payoff function b; as in the proof 
of Theorem B in Appendix A.1, we assume without loss of generality that the mechanism is 
symmetric and satisfies NPT. Therefore

E [s(Y,Z)] = E
[
Yq1(Y,Z) + Zq2(Y,Z) − b(Y,Z)

]
= E

[
2Yq1(Y,Z) − b(Y,Z)

]
,

because E 
[
Zq2(Y,Z)

]= E 
[
Zq1(Z,Y )

]= E 
[
Yq1(Y,Z)

]
by symmetry and then by interchang-

ing the i.i.d. variables Y and Z. Truncating at M therefore yields (recall that s is nonnegative by 
NPT)

R(μ;X) = lim rM(b),

M→∞
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where

rM(b) := lim
M→∞

M∫
a

M∫
a

(
2yby(y, z) − b(y, z)

)
f (y)f (z)dy dz (16)

(because q1(y, z) = by(y, z), the derivative of b(y, z) with respect to its first variable, for almost 
every (y, z) by Proposition 5, and the distribution F is continuous).

For each fixed z integrate by parts the 2yby(y, z)f (y) term:

M∫
a

2by(y, z)yf (y)dy = [
2b(y, z)yf (y)

]M
a

−
M∫

a

2b(y, z)
(
f (y) + yf ′(y)

)
dy

= 2b(M,z)Mf (M) − 2b(a, z)af (a)

−
M∫

a

2b(y, z)
(
f (y) + yf ′(y)

)
dy.

Substituting this in (16) yields

rM(b) = 2Mf (M)

M∫
a

b(M,z)f (z)dz

+2

M∫
a

M∫
a

b(y, z)

(
−3

2
f (y) − yf ′(y)

)
f (z)dy dz (17)

−2af (a)

M∫
a

b(a, z)f (z)dz.

Define b̂(y, z) := b(y + z − a, a) = b(a, y + z − a) for every (y, z) with y, z ≥ a. Then b̂ is a 
symmetric convex function on the quadrant [a, ∞)2, it coincides with b on the boundaries y = a

and z = a, and is at least as large as b everywhere39: indeed, the convexity of b yields

b(y, z) ≤ y − a

y + z − 2a
b(y + z − a, a) + z − a

y + z − 2a
b(a, y + z − a) (18)

= b(y + z − a, a) = b̂(y, z)

for every (y, z) ∈ [a, ∞)2. Replacing b with b̂ can only increase the first and second terms of 
(17), since all the coefficients of b there are nonnegative (use (9)), while it does not affect the 
third term. Therefore rM(b) ≤ rM(b̂) for all M .

Define q̂(y, z) := (q1(y +z−a, a), q1(y +z−a, a)) ∈ [0, 1]2 and ŝ(y, z) := q̂(y, z) · (y, z) −
b̂(y, z); then q̂(y, z) is a subgradient of40 b̂ at (y, z), and so μ̂ = (q̂, ̂s) is an IC and IR mecha-
nism (by Proposition 5). Since R(μ̂; X) = limM→∞ rM(b̂) and rM(b) ≤ rM(b̂) for all M , we get 

39 The function b̂ is in fact the smallest function satisfying these three properties (i.e., it is a convex function, coincides 
with b on the boundary, and is everywhere ≥ b); see Hart (2012) for an interesting observation on this.
40 At points of differentiability b̂y (y, z) = b̂z(y, z) = by(y + z − a, a).
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R(μ; X) ≤ R(μ̂; X). Finally, μ̂ is a bundled mechanism, since q̂ and ŝ are functions of y + z

(the corresponding one-good mechanism for T := Y + Z is (q̃, ̃s) with q̃(t) := q̂(t − a, a) and 
s̃(t) := ŝ(t − a, a)). This completes the proof. �
A.7. Multiple buyers

The generalization from one buyer to n ≥ 1 buyers is as follows (recall Section 2.1). One 
seller is selling k goods to n buyers; these goods have no value or cost to the seller. For each 
buyer j = 1, ..., n and each good i = 1, ..., k, buyer j ’s value for good i is given by a nonneg-
ative random variable Xj

i ; put Xj = (X
j
i )i=1,..,k for the Rk+-valued random valuation vector 

of buyer j , and Xi = (X
j
i )j=1,...,n for the Rn+-valued vector of values of good i; put also 

X = (X
j
i )j=1,...,n;i=1,...,k , and let F be the joint distribution of all these kn random variables. 

The distribution F is commonly known; in addition, each buyer j knows the realization of his 
random valuation Xj . Finally, the seller as well as all the buyers are risk-neutral and have quasi-
linear utilities, and the valuation of a set of goods to each buyer is additive.

A (direct) mechanism μ = (qj , sj )j=1,...,n consists of an allocation function qj : Rkn+ →
[0, 1]k and a payment function sj :Rkn+ → R for each buyer j = 1, ..., n, where 

∑n
j=1 q

j
i (x) ≤ 1

for every good i = 1, .., k; the payoff of buyer j is bj (x) = qj (x) · xj − sj (x), and that of the 
seller is S(x) := ∑n

j=1 sj (x). Two standard equilibrium notions are used for the n-person game 
among the buyers (once the mechanism μ is given): “dominant strategy” (DS) and “Bayesian 
Nash” (BN), which yield the so-called ex-post and interim equilibria, respectively. The corre-
sponding conditions are:

• In the dominant strategy case: incentive compatibility (IC-DS) requires that

bj (x) = qj (x) · xj − sj (x) = max
x̃j ∈Rk+

[
qj (x̃j , x−j ) · xj − sj (x̃j , x−j )

]

for every j = 1, ..., n and x ∈ R
kn+ ; individual rationality (IR-DS) requires that bj (x) ≥ 0

for every j and x ∈ R
kn+ .

• In the Bayesian Nash case: incentive compatibility (IC-BN) requires that41

b̄j (xj ) := E

[
bj (X)|Xj = xj

]
= max

x̃j ∈Rk+
E

[
qj (x̃j ,X−j ) · xj − sj (x̃j ,X−j )|Xj = xj

]

for every j = 1, ..., n and xj ∈ R
k+; individual rationality (IR-BN) requires that b̄j (xj ) ≥ 0

for every j and xj ∈R
k+.

Let R(μ; X) := E [S(X)] ≡ E 
[∑n

j=1 sj (X)
]

denote the seller’s expected revenue from the 

mechanism μ for the random valuations X. Let REVDS(X) stand for the maximal revenue 
obtained from k goods and n buyers with random valuations X using dominant strategy imple-
mentation, i.e., mechanisms that satisfy IC-DS and IR-DS; let REVBN(X) stand for the maximal 
revenue using Bayesian Nash implementation, i.e., mechanisms that satisfy IC-BN and IR-BN 
(in the one-buyer case, i.e., when n = 1, these two concepts clearly coincide).

41 The conditions in the Bayesian Nash case depend on the mechanism μ and (the distribution of) the valuations X, 
whereas in the dominant strategy case they depend only on the mechanism μ.
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Remarks. (a) Bayesian Nash implementation for independent buyers. In the Bayesian Nash 
case, when the buyers’ random valuation vectors X1, X2, ..., Xn are independent, only the 
expectations of allocations and payments, conditional on each buyer’s own values, matter: re-
placing qj (x) with q̄j (xj ) := E 

[
qj (X)|Xj = xj

]= E 
[
qj (xj ,X−j )

]
and sj (x) with s̄j (xj ) :=

E 
[
sj (X)|Xj = xj

] = E 
[
sj (xj ,X−j )

]
throughout affects neither the IC-BN and IR-BN con-

straints nor the revenue.42 We will thus assume without loss of generality that mechanisms in the 
Bayesian Nash case are given in this “reduced form” where qj and sj depend only on xj (rather 
than on the entire x), for all j .

(b) Non-positive transfer (NPT) and subdomain. A mechanism μ = (qj , sj )j=1,...,n for n ≥ 1
buyers and k ≥ 1 goods satisfies NPT if sj (x) ≥ 0 for every j and every x. The results (i)–(iv) 
of Proposition 6 in Section 2.1 extend to multiple buyers, as follows.

In the dominant strategy case, we consider separately each j = 1, ..., n and each x−j ∈
R

k(n−1)
+ , and obtain, in particular, that NPT is equivalent to sj (0, x−j ) = 0 for all j and all 

x−j , that NPT can be assumed without loss of generality when maximizing revenue, and that 

the subdomain property holds: E 
[∑

j sj (X)1X∈A

]
≤ REVDS(X 1X∈A) ≤ REVDS(X) for every 

A ⊆R
kn+ .

In the Bayesian Nash case, when the buyers are independent (and each payment sj de-
pends only on xj ; see Remark (a) above), we obtain in particular that NPT is equivalent to 
s̄j (0) = 0 for all j , that NPT can be assumed without loss of generality when maximizing rev-

enue, and that E 
[∑

j sj (X)1X∈A

]
= E 

[∑
j s̄j (Xj )1X∈A

]
≤ REVBN(X 1X∈A) ≤ REVBN(X)

for every43 A ⊆ R
kn+ .

We state the result separately for the two kinds of implementation, since in the dominant 
strategy case the result is stronger: the requirement that the buyers’ random valuations are in-
dependent is not needed (i.e., while there is independence between the two goods—X

j

1 and 
X�

2 are independent for any two buyers j, � = 1, ..., n—we allow, for each good i = 1, 2, the 
buyers’ values X1

i , X
2
i , ..., X

n
i to be arbitrarily correlated). The two theorems below give Theo-

rem 18.

Theorem 33. In the case of n buyers, two goods, and dominant strategy implementation, if the 
random valuation vectors of the two goods X1 = (X

j

1)j=1,...,n and X2 = (X
j

2)j=1,...,n are inde-
pendent, then GFOR(SEPARATE) ≥ 1/2, i.e.,

REVDS(X1) + REVDS(X2) ≥ 1

2
REVDS(X1,X2).

42 However, the feasibility conditions 
∑

i qi
�

≤ 1 on the allocations cannot be directly expressed in terms of the q̄i

(this is known as the “implementability” condition; see Border, 1991 for a necessary and sufficient condition for imple-
mentability, and Hart and Reny, 2015b for a simple restatement and proof).
43 NPT need not hold in the Bayesian Nash case when the buyers’ random valuations are not independent. In this case, 
optimal mechanisms may make use of negative payments sj (x) (i.e., positive transfers); cf. Crémer and McLean (1988). 
In addition, the requirement that sj depends only on xj is needed because the restriction to a set A of values of X may 
introduce dependencies between the coordinates of X 1X∈A, and then E 

[∑
j sj (X)1X∈A

]
= E 

[∑
j s̄j (Xj )1X∈A

]
need not hold.
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Theorem 34. In the case of n independent buyers, two goods, and Bayesian Nash implementa-
tion, if the random valuation vectors of the two goods X1 = (X

j

1)j=1,...,n and X2 = (X
j

2)j=1,...,n

are independent, then GFOR(SEPARATE) ≥ 1/2, i.e.,

REVBN(X1) + REVBN(X2) ≥ 1

2
REVBN(X1,X2).

Proof of Theorems 33 and 34. Put Y = X1 = (X
j

1)j=1,...,n and Z = X2 = (X
j

2)j=1,...,n for 
the random valuation vectors of good 1 and good 2, respectively; thus Y and Z are Rn+-valued 
random variables and X = (Y, Z). Let μ = (qj , sj )j=1,...,n be an NPT mechanism for the two 
goods that satisfies either IC-DS and IR-DS, or IC-BN and IR-BN; in the BN case, we assume 
in addition that it is in reduced form: qj and sj depend only on xj (cf. Remark (a) above).44

We split the total expected revenue from μ into two parts, according to which one of45 Y (1) =
maxj Y j and Z(1) = maxj Zj is higher, and show that

E
[
S(Y,Z)1Y (1)≥Z(1)

]≤ 2REV(Y ) and (19)

E
[
S(Y,Z)1Z(1)≥Y (1)

]≤ 2REV(Z); (20)

adding the two inequalities yields our result (recall that S ≥ 0 by NPT).
To prove (19) (from which (20) follows by interchanging Y and Z), for every fixed vector 

of values z ∈ R
n+ of the n buyers for the second good define a mechanism (q̂, ̂s) ≡ (q̂z, ̂sz)

for the first good by q̂j (y) := q
j

1 (y, z) and ŝj (y) := sj (y, z) − q
j

2 (y, z) zj for every y ∈ R
n+

and j = 1, ..., n, and put Ŝ(y) := ∑
j ŝj (y). The mechanism (q̂, ̂s) is IC and IR for y, since 

(q, s) was IC and IR for (y, z) (for IC: only the constraints (ỹj , zj ) vs. (yj , zj ) matter; for IR, 
b̂j (y) = bj (y, z) ≥ 0). Then S(y, z) =∑

j sj (y, z) =∑
j ŝj (y) +∑

j zj q
j

2 (y, z) ≤∑
j ŝj (y) +

z(1) = Ŝ(y) + z(1) (the inequality obtains because 0 ≤ zj ≤ z(1) and 
∑

j q
j

2 ≤ 1). Since Y is 
independent of Z we get

E
[
S(Y,Z)1Y (1)≥Z(1) |Z = z

]= E
[
S(Y, z)1Y (1)≥z(1)

]
≤ E

[
Ŝ(Y )1Y (1)≥z(1)

]
+E

[
z(1)1Y (1)≥z(1)

]
.

The first term is the revenue from a subdomain of values of y, and so it is at most the maximal 
revenue REV(Y ) by Remark (b) above (in the BN case, ŝj depends only on yj since sj and qj

depend only on xj ); as for the second term,

E

[
z(1)1Y (1)≥z(1)

]
= z(1)

P

[
Y (1) ≥ z(1)

]
≤ REV(Y ), (21)

since posting a price of z(1) and giving the good y to a buyer j with yj ≥ z(1), if there is any, 
constitutes an IC and IR mechanism for46 y. Thus

E
[
S(Y,Z)1Y (1)≥Z(1) |Z = z

]≤ 2REV(Y )

for every value z of Z; taking expectation over z yields (19). �
44 Formally, put here qi (x) := q̄i (xi ) and si (x) := s̄i (xi ); this allows the proof to apply mutatis mutandis to both 
implementations, dominant strategy and Bayesian Nash.
45 We write a(1) := maxj=1,...,n aj for the maximal coordinate of a vector a = (aj )j=1,...,n ∈ R

n.
46 As in the Proof of Theorem A in Section 3, we are not using the characterization of optimal mechanisms in the 
one-good case (Myerson, 1981), but only the fact that posting a price is IC and IR.
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Table 1
Summary of results for GFOR.

k = 2 indep. k = 2 i.i.d. k ≥ 2 indep. k ≥ 2 i.i.d.

∀X
SREV(X)

REV(X)
≥ 1

2
Theorem A

e
e + 1

≈ 0.73

Theorem B

�

(
1

log2k

)
Theorem C

�

(
1

log2k

)
Theorem C

∃X
SREV(X)

REV(X)
≤ 1

1 + w
≈ 0.78

Proposition 15

1

1 + w
≈ 0.78

Proposition 15

O 
(

1

log k

)
Corollary 26

O 
(

1

log k

)
Corollary 26

∀X
BREV(X)

REV(X)
≥ 1

2
· 1

2
= 1

4
Theorem A +
Proposition 14(i)

e

e + 1
· 2

3
Theorem B +
Lemma 29

� 
(

1

k

)
Lemma 28

�

(
1

log k

)
Theorem D

∃X
BREV(X)

REV(X)
≤ 1

2
+ ε

Example 27

2

3
Example 30

1

k
+ ε

Example 27

≈ 0.57 + o(1)

Example 32

Table 2
Summary of results for SREV vs. BREV.

k = 2 indep. k = 2 i.i.d. k ≥ 2 indep. k ≥ 2 i.i.d.

infX
SREV(X)

BREV(X)

1

1 + w
≈ 0.78

Proposition 13(i) +
Proposition 12(iii)

1

1 + w
≈ 0.78

Proposition 13(i) +
Proposition 12(iii)

� 
(

1

log k

)
Proposition 13(ii) +
Proposition 12(iv)

� 
(

1

log k

)
Proposition 13(ii) +
Proposition 12(iv)

infX
BREV(X)

SREV(X)

1

2
Proposition 14(i) +
Example 27

2

3
Lemma 29 +
Example 30

1

k
Proposition 14(i) +
Example 27

∈
[

1

4
,0.57 + o(1)

]
Proposition 14(ii) +
Example 32

A.8. Summary of results

The two tables summarize the results of this paper; X stands for (X1, X2, ..., Xk), where 
X1, X2, ..., Xk are k independent goods (i.e., one-dimensional nonnegative random variables).47

Table 1 provides the bounds on the guaranteed fraction of optimal revenue for selling separately 
and for selling as one bundle (with the four main results in bold). Table 2 provides the compar-
isons between the separate and bundled revenues.48

References

Alaei, S., Fu, H., Haghpanah, N., Hartline, J., Malekian, A., 2012. Bayesian optimal auctions via multi- to single-agent 
reduction. In: EC 2012: Proceedings of the 13th ACM Conference on Electronic Commerce.

Armstrong, M., 1999. Price discrimination by a many-product firm. Rev. Econ. Stud. 66, 151–168.

47 o(1) means “converging to 0 as k → ∞”; see footnote 37 for the O, �, and � notations.
48 When comparing SREV and BREV we obtained tight bounds in almost all cases (unlike the results for GFOR). This 
is in part due to the fact that both SREV and BREV reduce to one-good revenues, for which monotonicity holds (see 
Proposition 11 and the extensive use of ER goods; cf. Remark (b) after Proposition 12).

http://refhub.elsevier.com/S0022-0531(17)30093-5/bib416C616574616C32303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib416C616574616C32303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib41726D31393939s1


346 S. Hart, N. Nisan / Journal of Economic Theory 172 (2017) 313–347
Babaioff, M., Gonczarowski, Y., Nisan, N., 2017. The menu-size complexity of revenue approximation. In: STOC 2017: 
Proceedings of the 49th ACM Symposium on Theory of Computing, pp. 869–877.

Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M., 2014. A simple and approximately optimal mechanism for an 
additive buyer. In: FOCS 2014: Proceedings of the 55th Annual Symposium on Foundations of Computer Science, 
pp. 21–30.

Bakos, Y., Brynjolfsson, E., 1999. Bundling information goods: pricing, profits, and efficiency. Manag. Sci. 45, 
1613–1630.

Border, K.C., 1991. Implementation of reduced form auctions: a geometric approach. Econometrica 59, 1175–1187.
Briest, P., Chawla, S., Kleinberg, R., Weinberg, M., 2015. Pricing randomized allocations. J. Econ. Theory 156, 144–174.
Cai, Y., Daskalakis, C., Weinberg, S.M., 2012a. An algorithmic characterization of multi-dimensional mechanisms. In: 

STOC 2012: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 459–478.
Cai, Y., Daskalakis, C., Weinberg, S.M., 2012b. Optimal multi-dimensional mechanism design: reducing revenue to 

welfare maximization. In: FOCS 2012: Proceedings of the 55th Annual Symposium on Foundations of Computer 
Science.

Chawla, S., Hartline, J.D., Kleinberg, R.D., 2007. Algorithmic pricing via virtual valuations. In: EC 2007: Proceedings 
of the 8th ACM Conference on Electronic Commerce, pp. 243–251.

Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B., 2010a. Multi-parameter mechanism design and sequential posted 
pricing. In: STOC 2010: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 311–320.

Chawla, S., Malec, D.L., Sivan, B., 2010b. The power of randomness in Bayesian optimal mechanism design. In: EC 
2010: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 149–158.

Crémer, J., McLean, R.P., 1988. Full extraction of the surplus in Bayesian and dominant strategy auctions. Economet-
rica 56, 1247–1257.

Daskalakis, C., Deckelbaum, A., Tzamos, C., 2013. Mechanism design via optimal transport. In: EC 2013: Proceedings 
of the 14th ACM Conference on Electronic Commerce, pp. 269–286.

Daskalakis, C., Deckelbaum, A., Tzamos, C., 2014. The complexity of optimal mechanism design. In: SODA 2014: 
Proceedings of the 25th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1302–1318.

Daskalakis, C., Deckelbaum, A., Tzamos, C., 2017. Strong duality for a multiple-good monopolist. Econometrica 85, 
735–767.

Dughmi, S., Han, L., Nisan, N., 2014. Sampling and Representation Complexity of Revenue Maximization. Lecture 
Notes in Computer Science, vol. 8877, pp. 277–291.

Fang, H., Norman, P., 2006. To bundle or not to bundle. Rand J. Econ. 37, 946–963.
Giannakopoulos, Y., 2014. Bounding optimal revenue in multiple-items auctions. arXiv:1402.2382.
Giannakopoulos, Y., Koutsoupias, E., 2014. Duality and optimality of auctions for uniform distributions. In: EC 2014: 

Proceedings of the 15th ACM Conference on Electronic Commerce, pp. 259–276.
Hart, S., 2012. A Curious Property of Convex Functions and Mechanism Design. Mimeo.
Hart, S., Nisan, N., 2012. Approximate Revenue Maximization with Multiple Items. The Hebrew University of Jerusalem, 

Center for Rationality DP-606. arXiv:1204.1846.
Hart, S., Nisan, N., 2013. The Menu-Size Complexity of Auctions. The Hebrew University of Jerusalem, Center for 

Rationality DP-637. arXiv:1304.6116.
Hart, S., Reny, P.J., 2015a. Maximal revenue with multiple goods: nonmonotonicity and other observations. Theor. 

Econ. 10, 893–922.
Hart, S., Reny, P.J., 2015b. Implementation of reduced form mechanisms: a simple approach and a new characterization. 

Econ. Theory Bull. 3, 1–8.
Jehiel, P., Meyer-ter-Vehn, M., Moldovanu, B., 2007. Mixed bundling auctions. J. Econ. Theory 134, 494–512.
Krishna, V., 2010. Auction Theory, second edition. Academic Press.
Kupfer, R., 2016. A note on the ratio of revenues between selling in a bundle and separately. arXiv:1611.09613.
Lev, O., 2011. A two-dimensional problem of revenue maximization. J. Math. Econ. 47, 718–727.
Li, X., Yao, A.C.-C., 2013. On revenue maximization for selling multiple independently distributed items. Proc. Natl. 

Acad. Sci. 110, 11232–11237.
Manelli, A.M., Vincent, D.R., 2006. Bundling as an optimal selling mechanism for a multiple-good monopolist. J. Econ. 

Theory 127, 1–35.
Manelli, A.M., Vincent, D.R., 2007. Multidimensional mechanism design: revenue maximization and the multiple-good 

monopoly. J. Econ. Theory 137, 153–185.
Manelli, A.M., Vincent, D.R., 2012. Multidimensional mechanism design: revenue maximization and the multiple-good 

monopoly. A corrigendum. J. Econ. Theory 147, 2492–2493.
McAfee, R.P., McMillan, J., 1988. Multidimensional incentive compatibility and mechanism design. J. Econ. Theory 46, 

335–354.

http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4261626574616C32303137s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4261626574616C32303137s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4261626574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4261626574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4261626574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib42616B42727931393939s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib42616B42727931393939s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib426F7231393931s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4272696574616C32303135s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4361696574616C3230313261s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4361696574616C3230313261s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4361696574616C3230313262s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4361696574616C3230313262s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4361696574616C3230313262s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C32303037s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C32303037s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C32303130s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C32303130s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C323031304E31s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4368616574616C323031304E31s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4372654D634C31393838s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4372654D634C31393838s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303137s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4461736574616C32303137s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4475676574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4475676574616C32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib46616E4E6F7232303036s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib47696132303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4769614B6F7532303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4769614B6F7532303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4861724E697332303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4861724E697332303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4861724E697332303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4861724E697332303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib48617252656E3230313561s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib48617252656E3230313561s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib48617252656E3230313562s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib48617252656E3230313562s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4A65686574616C32303037s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4B726932303130s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4B757032303136s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4C657632303131s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4C6959616F32303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4C6959616F32303133s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303036s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303036s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303037s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303037s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D616E56696E32303132s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D63414D634D31393838s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D63414D634D31393838s1


S. Hart, N. Nisan / Journal of Economic Theory 172 (2017) 313–347 347
Menicucci, D., Hurkens, S., Jeonc, D.-S., 2015. On the optimality of pure bundling for a monopolist. J. Math. Econ. 60, 
33–42.

Morgenstern, J., Roughgarden, T., 2016. Learning simple auctions. In: JLMR: Workshop and Conference Proceedings, 
vol. 49, pp. 1–21.

Myerson, R.B., 1981. Optimal auction design. Math. Oper. Res. 6, 58–73.
Pavlov, G., 2011. Optimal mechanism for selling two goods. B. E. J. Theor. Econ. 11 (1), 3.
Pycia, M., 2006. Stochastic vs Deterministic Mechanisms in Multidimensional Screening. MIT (Mimeo).
Riley, J.G., Samuelson, W.F., 1981. Optimal auctions. Am. Econ. Rev. 71, 381–392.
Riley, J., Zeckhauser, R., 1983. Optimal selling strategies: when to haggle, when to hold firm. Q. J. Econ. 98, 267–289.
Rochet, J.-C., 1985. The taxation principle and multi-time Hamilton–Jacobi equations. J. Math. Econ. 14, 113–128.
Rockafellar, T.R., 1970. Convex Analysis. Princeton University Press.
Rubinstein, A., Weinberg, S.M., 2015. Simple mechanisms for a subadditive buyer and applications to revenue mono-

tonicity. In: EC 2015: Proceedings of the Sixteenth ACM Conference on Economics and Computation, pp. 377–394.
Shaked, M., Shantikumar, J.G., 2010. Stochastic Orders. Springer.
Tang, P., Wang, Z., 2017. Optimal mechanisms with simple menus. J. Math. Econ. 69, 54–70.
Thanassoulis, J., 2004. Haggling over substitutes. J. Econ. Theory 117, 217–245.
Yao, A.C.-C., 2014. An n-to-1 bidder reduction for multi-item auctions and its applications. In: Proceedings of the 

Twenty-Sixth Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 92–109.
Zaliapin, I.V., Kagan, Y.Y., Schoenberg, F.P., 2005. Approximating the distribution of Pareto sums. Pure Appl. Geo-

phys. 162, 1187–1228.

http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D656E6574616C32303135s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D656E6574616C32303135s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D6F72526F7532303136s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D6F72526F7532303136s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib4D796531393831s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib50617632303131s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib52696C53616D31393831s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib52696C5A656331393833s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib526F6331393835s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib526F6331393730s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib52756257656932303135s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib52756257656932303135s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib53686153686132303130s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib54616E57616E32303137s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib54686132303034s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib59616F32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib59616F32303134s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib5A616C6574616C32303035s1
http://refhub.elsevier.com/S0022-0531(17)30093-5/bib5A616C6574616C32303035s1

	Approximate revenue maximization with multiple items
	1 Introduction
	1.1 Literature

	2 Preliminaries
	2.1 The model
	2.2 Guaranteed Fraction of Optimal Revenue (GFOR)

	3 Two independent goods
	4 The general decomposition result
	5 Separate and bundled selling
	6 k independent goods
	7 Additional results
	7.1 Upper bound on GFOR for two goods
	7.2 When bundling is optimal
	7.3 Multiple buyers

	8 Open problems
	References


