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ENDOGENOUS FORMATION OF COALITIONS'

By SERGIU HART AND MORDECAI KURZ

In order to develop a theory of coalition formation and maintenance, we first establish a
valuation criterion for each individual player in a given coalition structure. Various
stability concepts based on it are then developed and studied.

1. INTRODUCTION

THE FORMATION OF COALITIONS is a fundamental problem in game theory. By a
“coalition” is meant a group of “players” (e.g., economic or political agents)
which decide to act together, as one unit, relative to the rest of the players. This
includes the instances of syndicates, unions, cartels, blocks, political parties,
parliamentary coalitions, etc. We would like to emphasize that forming a
coalition does not eliminate the individual players as decision makers. In all
interactions with the other players, coalition members act as one unit (it may be
useful to think of a “representative agent” taking their place);? however, this
arrangement will continue only as long as each player finds it desirable to act this
way. Further bargaining occurs among the members of each coalition on how to
divide what they obtained together. Thus, the existence of coalitions implies that
the interactions among the players will be conducted on two levels: first, among
the coalitions, and second, within each coalition.

Most of the existing models in economics and game theory assume that the
coalition structure is given exogenously; instead, we try here to obtain it as an
endogenous outcome of our model. Namely, we want to be able to predict which
coalitions will in fact form in each given situation.3

Our theory combines two kinds of game theoretic concepts: value and stabil-
ity. The basic idea is, first, to evaluate the players’ prospects in the various
coalition structures, and then, based on these “values,” to find which ones are
stable. We will call this value “coalition structure value,” or “CS-value” for
short. The reason we are considering “coalition structures” (i.e., partitions of the
set of players into disjoint coalitions) rather than just “coalitions™ is that, in
general, players may find it to their advantage to join forces in some situations,
and to act separately in others—all depending on the way the other participants
are organized. This implies that both the value and the stability concepts should
depend on the entire coalition structure. The CS-value we analyze in this paper
was first developed by Owen [7].

'This work was supported by National Science Foundation Grant SES80-06654 at the Institute for
Mathematical Studies in the Social Sciences, Stanford University. The authors thank R. J. Aumann
and L. S. Shapley for helpful comments.

2The representative is really a “fiction;” he is not a player. He does not have any objective
function to optimize!

3We mention here the von Neumann and Morgenstern [14] solution, which is sometimes inter-
preted as identifying, although implicitly only, coalition formation.
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Most of the (game theoretic) concepts incorporating coalition structures are
based on the assumption that the outcome of each coalition should be efficient
for that coalition. Our approach considers, instead, outcomes that are “overall”
efficient, no matter how the players are organized. Thus, we assume as a
postulate that society as a whole operates efficiently; the problem we address
here is how are the benefits distributed among the participants. With this view in
mind, coalitions do not form in order to obtain their “worth” and then “leave”
the game. But rather, they “stay” in the game and bargain as a unit with all the
other players. This means that coalitions try to obtain as much as possible by not
letting the others exploit their (individual) weaknesses when they are separated.
As an everyday example of such a situation, “I will have to check this with my
wife /husband” may (but not necessarily) lead to a better bargaining position,
due to the fact that the other party has to convince both the player and the
spouse.

When evaluating coalition structures, the bargaining among the coalitions and
within each one of them should both be taken into account. A natural question
arises whether these two are consistent; namely, whether the bargaining proce-
dure followed by the individual members within each coalition is identical to the
one used by the coalitions among themselves. A remarkable property of the
CS-value is this consistency.

Having obtained a “value” for each player in each coalition structure—which
is a unique evaluation of that player’s prospects there, and is measured in his own
utility scale—we can now address the question of which coalitions are stable. We
want to find those coalition structures for which no players have better alterna-
tives (again, according to the CS-value). We use the notion of “strong equilib-
rium:” no group of players, whether from the same coalition or from different
ones, can get together and form new coalition(s) in such a way that they are all
better off.

At this point, it is useful to analyze some examples. The first one is due to
Roth [9]; it is a three-person game without side payments:

V({i})) = {x eR’|x =0}, for i=1,2,3,

V((12) = (x €R|x = (1.4,0)}

V({1,3))={xeR|x=(4,0,3)},

V({2,3))={xeR|x=(0,4.3)}

V({1,2,3}) = {x €R’|x = y for some y in the convex hull
of (4,4,0), (4,0.3) and (0.4 3))-

In this case, the unique nontransferable-utility (NTU) value (cf. both Harsanyi
[3], and Shapley [12]) is (1/3,1/3,1/3). However, players 1 and 2, by forming a
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coalition, can get for sure 1/2 each, in which case 3 will get 0. The reason player
3 gets a positive amount—of 1/3—is that, whenever he joins either player 1 or
player 2, he makes a positive contribution to him: in V' ({i}), i gets 0, whereas in
V({i,3}), i gets 1/4 (for i =1 or i =2). By forming a union, players 1 and 2
“make” 3 a null player—i.e., his contribution becomes zero. Therefore, a stable
coalition structure consisting of {1,2} and {3} will in fact form in this situation;
the corresponding CS-value is then (1/2,1/2,0).

Our second example is a slight modification of Shafer’s [10, Example 2]. There
are three traders and two commodities, which may be thought of as “left-gloves”
and “right-gloves” (or “shoes”, etc., as long as they are not interchangeable). The
first two traders have utility only for pairs of gloves, while the third’s depends
only on the number of gloves and not on their “handedness” (he uses them only
for their leather). Let € > 0 be small; then Table I sums up the data.

To find the Shapley NTU-value allocation, note that every trader has some
positive contribution (there is at least one positive A), hence all A’s must be
positive, and the allocation must be in the interior of the Pareto efficient surface.
Efficiency now implies that trader 1 must have equal amounts of left- and
right-gloves (otherwise, the excess could be transferred to trader 3); the same is
true for 2, hence also for 3 (total endowment is (1, 1)). From this it follows that
all exchanges on the Pareto surface are in “pairs” of gloves, which makes all
utilities identical, hence all A’s equal. The NTU-value allocation is shown in
Table II.

Trader 3, which started with only (e,€), receives approximately 1/6 of the
goods, no matter how small € > 0 is! The reason is, as in the previous example,
that whenever 3 joins one of the other traders, say 1, they have together (1, ¢); it
then follows that at best, trader 1 can get (¢, ¢), leaving player 3 with (1 — ¢,0).
Therefore, when 3 is “second” in a random order (which has probability 1/3), he
will get almost half of the goods in the market; this leads to his value of about

1/6.

TABLE I
Trader Initial endowment Utility function
i a' u'(xy, xg)
1 (1—-¢0) min{x;, xg}
2 O, 1—¢) min{x;, Xz}
3 (€, €) 1(x, + xg)
TABLE II
Trader NTU-Value: Utility NTU-Value: Commodities
s 5 5 5.5 s
1 T € (32— 167 — 220
s s 5 5.5 5
2 5 e = 1260 ~ 116
3 t+2e (F+iet+ie
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What can 1 and 2 do? By forming a “union” (thus inducing the coalition
structure {{1,2},{3}}), they eliminate the possibility that 3 will be able to
“catch” one of them “alone.” In this case, 3 will become a dummy (contributing
precisely €), and the value allocation will be ((1/2)(1 — €)) to each of 1 and 2,
and € to 3.

In both these examples it appears that 1 and 2 should form a coalition, obtain
their worth V' ({1,2}), and then “leave” the game. Is it reasonable? To see this, let
us change the previous example as follows: a'= (1 —2¢,0), a*>=(0,1— ¢),
a® = (2¢,¢). In this case, the NTU-value to players 1 and 2 will still be close to
5/12, and to player 3, close to 1/6 (again, € >0 is small). If 1 and 2 form a
coalition, together they have (1 — 2¢,1 — €), which gives them a total utility of
1 — 2¢, if they just get their worth. However, after deciding to form a coalition,
they do not “leave” the game but rather bargain with 3, as a unit, for some
exchange of right-gloves for left-gloves, which will improve everyone’s outcome.
For example, they may get to (1 —(7/4)e,1 — (7/4)e) for {1,2} and ((7/4)e,
(7/4)¢) for 3 (an increase of (1/4)e for both {1,2} and 3). This illustrates our
basic principle stated previously: coalitions form in order to obtain the best
shares for their members, when considering efficient outcomes.

Another question arising in this example is: how will 1 and 2 divide their total
outcome? It seems reasonable that 2 should get a little more than 1, but how
much? We regard this as a bargaining problem between 1 and 2 (i.e., within the
coalition {1,2}); they can agree on any division of (1 — (7/4)e,1 — (7/4)¢), and
if they don’t, the coalition will break and each will get his value in the game
played by the three traders as individuals. However, since it is clear that both 1
and 2 are in a much better position together than separate, they will indeed reach
an agreement, which is a “fair” division of their total outcome, based on their
“relative power.” This is precisely the content of our Consistency Theorem.

All the examples above are of games without side payments (or, economies
without transferable utilities). However, it seems to us that the formation of
coalitions does not depend on this assumption; indeed, in the last two examples,
the goods themselves served as a convenient medium of utility exchange (com-
pare this with Shafer’s [10] value). Therefore, we will deal in this paper with the
simpler case of games with side payments and we hope that the theory presented
here can be extended later to the more general case.

The rest of the paper is divided into two parts. In Section 2 the CS-value is
constructed axiomatically, and then its fundamental consistency properties are
exhibited. Section 3 is devoted to the stability problem; we define our concepts
and discuss various extensions.

2. VALUE

This section is devoted to the study of the CS-value. As we stated in the
introduction, this value is the same as Owen’s [7] “Value of Games With A Priori
Unions.”
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Owen’s objective in the above mentioned paper was to extend the notion of
Shapley value to games in which the players are already organized into “unions”
(or, a coalition structure). He obtained the value by “properly” decomposing the
game and then using the usual Shapley value; an axiomatic characterization was
then also given.

Our purpose here is different: we aim to investigate the way such coalition
structures are formed. Thus, we construct the value axiomatically, where each
axiom is justified and motivated by our view that the CS-value should provide an
evaluation of the players’ prospects in the various situations. As a result, we are
able to provide both a better understanding of the axioms, as well as a
replacement of Owen’s Axiom A3 (which, in our view, is the most difficult to
accept) by a much weaker and more natural one (our Axiom 4). We also present
additional consistency properties of the CS-value.

Let U be an infinite set, the universe of players (we follow Shapley’s [11]
approach). A game v is a real function defined on all subsets of U, satisfying
v(@)=0. A set N C U is a carrier of v if, for all S C U, v(S)=o(S N N); in
this paper we consider only games with finite carriers. We call v(S) the worth
of S.

A coalition structure % is a finite partition & = {B,,B,, ..., B,,} of U (i.e.,
U%=1Bx= U and B, N B,=@ for k # ). For a subset of players N (usually
taken to be a carrier of some game), we will denote by #Zy the restriction of Z to
N; namely, Zy = (B, N N|k=1,2,...,m)}, which is a partition of N (empty
sets B, N N will be discarded).

A coalition structure value (CS-value) is an operator ¢ which assigns to every
game v with finite carrier, every coalition structure %, and every player i € U, a
real number ¢‘(v,%). Equivalently, one may think of ¢(v,%) as a (finitely)
additive measure on U, defined by

¢(0, ZB)(S) = ESW(D’@),

for S C U.
We will consider the following axioms on ¢ (assumed to hold for all games v
and o’ and all coalition structures % and %’).

AXIOM 1 (Carrier): Let N be a carrier of v; then
) ¢(0, Z)(N) = ZNW(U’%’) =o(N);
ie
(ii) if By =2y, then ¢(v,%)=¢(v,%").

Let m be a permutation of the players; i.e., a one-to-one mapping of U onto
itself. For S C U, we write 7S for the image of S under «; given a game v, we
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define a new game 7v by
(m)(S) = v(7S)
for all S C U.

AxioM 2 (Symmetry): Let 7 be a permutation of the players. Then
o(m0, 7R ) = mp(v, R).

The sum v + v’ of two games v and v’ is the game given by
(0+v)(S)=0(S)+ v'(S),
for all § C U.

AxI0M 3 (Additivity):
(v + 0, B) = (v, B) + (v, F).

Given a game v and a coalition structure #Z = {B,,B,, . . ., B,,}, we say that
the game among coalitions is inessential if

U( kLEJKBk ) - kgKU(Bk )

for all subsets K of (1,2, ..., m}; i.e., v restricted to the field generated by 4 is
additive.

AxioM 4 (Inessential Game): Let v and % = {(B,,B,, ..., B,,} be such that
the game among coalitions is inessential. Then

&(0, B )(By) = v(By)
forall k=12,...,m.

We discuss now the four axioms. The “carrier” axiom actually contains three
parts. If i/ is a null player in a game v (i.e., U\{i} is a carrier of v; or
equivalently, o(S U {i}) = o(S) for all § C U), then his value is 0 in all coalition
structures. Moreover, if such i “moves” from one B, to another, it does not affect
anyone’s value. And last, for all coalition structures the value is efficient.

The efficiency of the CS-value is an essential feature. It differs from the other
approaches (e.g., Aumann and Dréze [2], Myerson [5], Shenoy [13], and also the
various bargaining sets) where each coalition B, € #Z gets only its worth (i.e.,
v(B,)). Our view is that the reason coalitions form is not in order to get their
worth, but to be in a better position when bargaining with the others on how to
divide the maximal amount available (i.e., the worth of the grand coalition,
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which for superadditive games is no less than >7_, v(B,)). We assume that the
amount v(N) (where N is any carrier of v) will be distributed among the players
and thus that all collusions and group formations are done with this in mind. A
coalition B forms when all its members commit themselves to bargain with the
others as one unit.*

This further clarifies Axiom 4: When the game between the coalitions is
inessential, each coalition gets only its worth and there is no surplus to be
bargained over.

The other two axioms are straightforward. We note that the symmetry axiom
involves permuting both the game and the coalition structure (i.e., “changing the
names” of the players). As for the additivity of the value with respect to the
game, it is assumed for a fixed coalition structure. It may be replaced by the
following axiom: The CS-value of a probabilistic mixture of two games (i.e., with
probability p the game v is played, and with probability p’ = 1 — p the game v’ is
played) is the same mixture of the CS-values of the two games. This is consistent
with the interpretation of value as the expected utility of playing the game.

Although Theorem 2.1 below indicates that our axioms characterize Owen’s
value, the significant difference between our axioms and Owen’s is to be found in
our Axiom 4. Owen’s corresponding Axiom A3 assumed that for all games v and
all coalition structures %, the total value of each coalition B, in % depends only
on the restriction of v to (the field generated by) #. In contrast, we assume this
to hold for inessential games only, in which case it is easier to justify. The problem

" of bargaining among coalitions arises when there is a surplus which is available
when such coalitions combine together. Since there is no such surplus in
inessential games (among coalitions), there is nothing to divide, thus each one
gets its worth. What is surprising is that this natural condition, in conjunction
with Axioms 1-3, implies Owen’s Axiom A3. See also the remark following the
proof of Theorem 2.1 and Proposition 2.2.

THEOREM 2.1: There is a unique CS-value ¢ satisfying Axioms 1-4; it is Owen’s
[7] value.

Let N be a finite set of players, and % = {B,,B,,..., B,} a coalition
structure. A complete (linear) order on N is consistent with Z if, for all
k=12,...,mand all i, j € B, all elements of N between / and j also belong
to By. A random order on N consistent with % (or, given %) is a random variable
whose values are the orders on N that are consistent with 4, all equally probable
(i.e., each with probability (m!b,!b,!...b,")"", where b, is the number of
elements in B, N N). The interpretation is as follows: the players arrive ran-
domly, but such that all members of the same coalition do so successively. This is
the same as randomly ordering first the coalitions and then the members within
each coalition.

4The question of when this commitment is credible will be answered in the next section; for a
stable coalition, it is self-enforcing.
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PROPOSITION 2.2: The unique CS-value ¢ satisfying Axioms 1-4 is given by
23) (@)= E[o(P' U (i})-o@")],

where the expectation E is over all random orders on a carrier N of v that are
consistent with %, and &' denotes the (random) set of predecessors of i.

Theorem 2.1 and Proposition 2.2 will be proved together. Although the main
ideas are standard, our use of the weaker Axiom 4 necessitates some additional
work.

ProOF OF THEOREM 2.1 AND ProposITION 2.2: It can easily be checked that
the operator given by formula (2.3) indeed satisfies Axioms 1-3; as for Axiom 4,
let i, be the first member of B, in a random order; the fact that all the other
players of B, follow i, implies that

jezg [o(Z7 U {j}) = o(&)] = o(F* U B) = o(F*),

which, for an inessential game among coalitions, equals v(B,) (since Z% is a
union of B’s). Thus all four axioms are indeed satisfied. )

In order to complete the proof, we have to show uniqueness, namely that
Axioms 1-4 determine ¢. Axiom 3 (additivity) implies that it suffices to check
basic games only, i.e., games v of the form

_lc if S DR,
o(5) {0 otherwise,

where c is a fixed constant and R C U is a fixed finite and nonempty set.

Denote R, = R N B,, and assume, without loss of generality, that R, is not
empty for k =1,2, ..., (where 1 << m). Let’ p = max,|R,|, and let R/, for
k=1,2,...,1 be disjoint sets of players, such that |R/| = p and R; D R, (here
we use the fact that U is an infinite set). Let R’ =|J%_ R/, # = {R],
R;,...,R/,U/R'},and

(S = C, if SO Rl,
o(S) {0, otherwise.

Consider ¢(v’,%’). All players outside R’ get 0, and all players in R’ are
identical (since R, are of the same size p, for all 1 < k < /). Axioms 1 and 2
imply that, for all i € R’,

5The number of elements of a finite set 4 is denoted by |4|.
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hence, for all 1 < k </,
$(0, B )(R) =T -
Next, consider ¢(v — v/, #’). It is an inessential game among coalitions, since
(v - v’)( kLE)KR,;)

is either ¢ — ¢ =0 or 0 — 0 =0, according to whether K D {1,2,...,/} or not.
Therefore, by Axiom 4,

9(0 = 0, B)(R;) = (0= )(R{) =0,
for all 1 < k < I. Axiom 3 now implies
o(0,B)(RL) = 9(0, B")(R) + (0 = 0, B)(RY)

+0=

~|0
~I|o

But R is a carrier of v and %y = %y, ; therefore (Axiom 1)
8(0. B)(R) = (0 B")(Re) = $(0, BV (R) = S,
for all 1 < k < /. Finally, symmetry among the members of the same R, gives

c TN —
A 15T if iERNB, =R,
¢’(v,%)={l'|Rk| ¢ -

0, otherwise,

which implies the uniqueness of ¢. Q.E.D.

ReMARK: It is clear from the use of Axiom 4 in the proof that it may be
replaced by a slightly weaker axiom, namely Axiom 4'.

Axiom 4’ (Null Game): If

v( UBk)=0

kek

forall K C {1,2, ..., m}, then ¢(v,Z ) B,) =0 for all k =1,2,...,m.

(Note that we assume only that the total CS-value of each coalition B, in & is
zero, and not that each player gets zero.)

Two other alternative axioms that may also be used in place of Axiom 4 are as
follows:
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AxioM 5 (Dummy Coalition): If B, is such that

v( U B, U B,) - v(kLeJKBk) +0(B)

kEK

for all K C {1,2, ..., m}, then $(v,% )(B)) = v(B)).
AxioM 5 (Null Coalition): If B, is such that

v( U B, U B,) =v(kLEJKBk)

keEK

for all K C {1,2,..., m}, then ¢(v,% )(B;) = 0.

It is clear that Axiom 5 (5') implies Axiom 4 (4'); however, together with 1-3,
they all become equivalent.

For a game (v, N) with finite carrier N, let Sho denote its Shapley value; i.e.,
Sh'v is the value of player i, and (Sho)(S) =3, sSh'v for § C U.

COROLLARY 2.4: For all B, € 4,
¢(0, #)(By) = (Shog)(By),

where (vg, %) is the game v restricted to the field generated by # (i.e., each
By € A is a “player”).

Proor: The proof is immediate from formula (2.3) Q.E.D.

Thus, the total CS-value of each coalition in & is precisely the Shapley value
of the game played by the (representatives of the) coalitions in %. Note that if
one wants the CS-value to satisfy the “null player axiom” (i.e., adding null
players does not change the value), one is necessarily led to regard each coalition
in the coalition structure as one “representative,” independent of the number of
original players it is composed of!

Axiom 1(ii) implies that only the partition of a carrier N of v needs to be
specified. Thus, we will abuse our notation by writing ¢(v, %y ) for ¢(v,%).
Another notation will be useful: For any set S = {i,i,, ..., i}, if

Bs = {{i1}, (L2} -5 {is}}

i.e., the partition of S is into singletons (one player sets), then we will write
HBs = {S); in contrast, Zs = { S} means that all members of S are “together” in
one coalition.

COROLLARY 2.5: Let N be a carrier of v. Then

¢(v, {N}) = ¢(v,{N)) = Sho.

ProOF: Again, it follows from (2.3). Q.E.D.
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How is the CS-value related to the two bargaining processes among the
coalitions (i.e., the elements of %), and within each coalition? By Corollary 2.4,
the former is obtained by replacing each B, € # with a single player, and then
taking the Shapley value of the resulting game, “the game among coalitions.”

Consider now one coalition B, € %. How should its members divide the total
amount ¢(v, % )(B,) which they receive? Their “relative power” must be taken
into account, and one way to measure it is by comparing their “prospects”
should B, break apart. For example, suppose N = {1,2,3}, and %, = {{1,2},
{3}}. The coalition {1,2} gets ¢(v,#)({1,2}); if they do not agree on the
division of this amount and “split,” they will get ¢(v, (N »)({i}), for i =1 and
i =2. This may serve as a “disagreement point” in the two-person bargaining
problem where the set of possible “agreements” corresponds to all the various
ways of dividing ¢(v, % )({1,2}). According to the Nash [6] solution, each i = 1,2
will receive ¢(v, (NY){i}) + (1/2)[op(v, 7 )({1,2}) — (v, (N D)({1,2})]. It turns
out that, for i = 1,2, this quantity is precisely ¢(v, % )({i})!

What happens if B, contains more than two players? One may choose the
n-person generalization of the Nash solution (see Harsanyi [3]), but this is not
completely satisfactory, for two reasons. First, all possible subcoalitions of B,
should be taken into account, and not only the singletons. And second, it would
be preferable to use the same solution concept for the bargaining within B, as the
one used for the bargaining among the coalitions. It is precisely this consistency
that we are seeking.

To formalize this discussion, let v, % = {B,,B,,..., B, } and B, €% be
given. Define a new game w, on B, by

(2.6) wi(8)=o(0,Z|S)(S),

for all S C B,, where #Z|S is the coalition structure obtained from % by
replacing B, with S and B,\S; i.e,

@7  #B|S={(By,...,B_1,S,B\S,Be,1,...,B,).

Note that w, (@) = 0, hence w, is indeed a game; moreover, it has a finite carrier
whenever v does.

THeOREM 2.8 (Consistency): Given a game v and a coalition structure % = { By,
B,, ..., B,}, the following equality holds:

¢'(0: ) = d(wic» (B)({1}),
where i € B, € # and w is given by (2.6) and (2.7).

This result shows that the CS-value enjoys the following consistency property:
the bargaining procedure within coalitions may be derived from the one among
coalitions. Indeed, since S € #Z | S and (i} € (B,), both w,(S) and ¢p(w,,{B,>)
({i}) are CS-values to coalitions in the corresponding coalition structures; they do
not depend in any way on the division of payoffs within coalitions.

To further explain this result, suppose that a rule prevails in society which,



1058 S. HART AND M. KURZ

given a game and a coalition structure, assigns a payoff (value) to each coalition
(in the coalition structure). Then the payoff to each player is determined by the
value of a new game, played by all the members of his coalition (and by them
only). The worth of each subcoalition is given by its payoff (value) if it were to
break away. However, this is only a “gedanken experiment,” since the threat of
breaking away is never carried out; it is only a way of evaluating the “relative
power” of the various players. Therefore, the coalition structure of the rest of the
players (i.e., those outside the coalition), is assumed to be unchanged. Our result
is that the value obtained this way coincides with the CS-value.

In (2.7) we defined Z | S, for S C B,, by replacing B, with S and B,\S. By
doing so we assumed that the members of the complement of S “stay together.”
An alternative possibility is that, when S “leaves,” the rest of B, will break apart
into individuals (singletons). In this case, we shall define #Z | S by

29)  B|S={By,..., B 1,8, {j1}s-+s {J}»Bes1s---»Bn)s

where B \S = {ji, j,,...,J,}. This induces by (2.6) a new game w, on B,.
However, we have the following result:

TueoreM 2.10 (Consistency): Theorem 2.8 is true with % |S given by (2.9)
instead of (2.7).

This means that the CS-value enjoys the consistency property independently of
the way w, is defined; although (2.7) and (2.9) define two different games w,,
Theorem 2.10 states that their values coincide. This additional feature is impor-
tant particularly in view of the well-known ambiguity of the “complement’s
behavior:” when a coalition acts together, how does its complement react—as a
coalition, or as individuals? In our case, it does not matter!

Owen’s decomposition shows still another consistency of the CS-value, with
| S given by

{Bis. s By 1,8, Byyys-.., B, }.
Namely, S replaces B, and the rest of the players in B,\S “disappear” (i.e.,

become null).

PrROOF OF THEOREMS 2.8 AND 2.10: We have to show that ¢(v,%#), given by

(0, 8) = $(we» <B)({i)),

for all B, € % and i € B,, satisfies Axioms 1-4.

Symmetry is immediate, since all definitions are independent of the “names”
of the players. The additivity of ¢ with respect to v (for fixed #), hence also of
wy, implies the additivity of y. As for Axiom 4, note that

V(0. B )(Bi) = d(Wi s {BiD)(Bi ) = wi(By)s
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since B, is a carrier of w,. But

We(Bi) = &(0, 7 | Bi)(By) = ¢(v, Z)(By)
(since Z | B, = #), hence

Y(0. Z)(Bi) = $(0, Z)(By);

¢ satisfies Axiom 4, therefore ¢ does it too. Moreover,

Y(o,Z)(U) = kgltP(v,@)(Bk) = kgl ¢(0, Z)(By) = ¢(0, Z)(U),

hence y is efficient. Also, if i is a null player, then “moving” him from one B, to
another does not affect ¢ (by Axiom 1(ii)), hence it does not affect the w,’s and
¥. To complete the proof, we have to show that in this case ¢ '(v, %) = 0. Indeed,
let i € B, ; then, for all S C B, with S Z i,

wi(S U {i}) = (0, Z[(S U {i}))(S U {i})
= (0, Z[(S U {i}))(S)
= (0, Z|S)(S) = wi(S)

(we used Axiom 1(i) and (ii) for the carrier U\{i}). Hence i is a null player in w,,
therefore a null coalition (see Axiom 5") in (w,,<{B,)>), and ¢/‘(v,%) = 0 follows.
Q.E.D.

ReMARks: (i) In view of Corollary 2.5, one may replace {B,) by {B,} in
Theorems 2.8 and 2.10.

(i) For two players, the Shapley value and the Nash solution coincide; this
proves our claim in the example discussed before Theorem 2.8.

3. STABILITY

As we stated in the introduction, we deal with the question of stability of
coalitions in the broader sense of stability of coalition structures. Our objective is
to identify those structures which the players do not wish to upset—since they
have no better alternatives. However, in what sense should the expression “better
alternative” be understood? This will be explored in this section.

We start with the fact that for every game and every coalition structure we
have a well-defined “value.” This CS-value should not be interpreted as a
definitive prediction on what the outcome will be; rather, it is an expected
outcome based on all the various possibilities, and including all the bargainings
(within coalitions and among them). This is a standard way (see Roth [8]) for
viewing the value. E.g., the Shapley value of the three-person majority game is
1/3 to each player. This does not imply that in an actual play of the game, each
player will get 1/3. Rather, two players will form a “winning majority” and get
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1/2 each, leaving O for the third player. Since on the average each player will be
in the majority in two out of every three times the game is played, his expected
payoff is 2/3-1/2+ 1/3 -0 = 1/3. Thus we think of ¢'(v, %) as the (expected)
utility of playing the game v in “position” i (i.e., as player /) when the players are
organized in coalitions according to Z%.

Since ¢‘(v,%) is always measured in player #’s utility scale (for games with
side payments it is the same scale for everybody; however, this argument
becomes important in games without side payments), he is able to compare his
“prospects” in the various coalition structures and to decide whether or not he
wants to change the coalition he is in.

One advantage of using the CS-value is that it “summarizes” in one number all
the possibilities of a player in every situation (in our case, in every coalition
structure). In contrast, other game theoretic concepts compare sets of outcomes.

We do not present here a dynamic process according to which coalition
structures form, but rather, we only specify which ones are stable. It is clear that
any such dynamic process, if it converges at all, must lead to a stable coalition
structure. Thus, the characterization of those which are stable may be regarded
as a first step in the analysis. Moreover, dynamic theories usually rely on
additional (arbitrary) assumptions (in our case, for example, the order in which
players “talk” to one another) which significantly affect the outcome. Our stable
coalition structures may be regarded as “universal” outcomes, independent of the
specifications of the process.

We come now to the precise definition of stability. It is clear that one should
require that no player can, unilaterally, improve his outcome. However, this is a
very weak condition. The most a single player can do is to refuse to join a
coalition. Thus, we are led to consider stability with respect to deviations by any
group of players (from the same coalition, or from different ones). In game
theoretic terms, this corresponds to the notion of strong equilibrium (cf. Aumann
[1]) rather than Nash equilibrium.

How can a set of players change a coalition structure? If we think of coalitions
as being based on unanimous consent (i.e., no player may be forced to join
a coalition), any group of players can break apart the coalitions to which
they belong (and only those!). Moreover, they can organize themselves in any
way, not necessarily as a single coalition. E.g., if the coalition structure is®
[12|34|567], then player 1 may generate [1]|2|34|567]; players 1 and 3 may
induce [1]2]3|4|567] or [13|2|4|567].

One problem is: What happens to those coalitions from which one or more
players depart? Do they “fall apart,” or do they still “stick together”? In the
previous example [12|34|567], if 5 leaves his coalition, do we get [12]|34|5|6]|7]
or [12|34|5|67]? There is no universally correct answer to this problem. On one
hand, the view of a coalition as resulting from a unanimous agreement among all
its members to be together, suggests that if some players leave, the agreement

$From now on, we will simplify our notation for coalition structures; [12]|34|567] means {{1,2},
(3,4}, (5,6,7})}. Also, we consider only finitely many players (a finite carrier of the game).
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breaks down and the rest of the members become singletons (at least in the first
stage). On the other hand, especially in large games,’ the fact that a (small)
number of players leave a coalition should not influence the others’ agreement to
act together. These two views precisely correspond to the two kinds of behavior
of the complementary coalition in (2.7) and (2.9).

We now present two models of stability, each one being based on the strong
equilibria of an appropriate game corresponding to the above description. Let
(v, N) be a fixed game, where N = {1,2, ..., n} is a carrier of v.

MopEL y: The game I'=T  is given by:®
3.1 The set of players is N.
3.2 For each i € N, the set of strategies of i is 2’ = {(SCN|ieSs).

3.3) For each n-tuple of strategieso = (S', 8% ..., 8")e 3" x 32
X - -+ X Z"and each i € N, the payoff to i is ¢ (v, BS"), where

pi_[Sh if Si=s' forall jES,
° (i}, otherwise ’

and 4 = {T!|i€ N).
MobEL §: The game A=A, is given by (3.1), (3.2), and (3.4):
(34)  For each n-tuple of strategieso = (S', 82, ..., S") €= x =2
X - -+ X 2"and each i € N, the payoff to i is ¢’ (v, ZB>), where
B = (T CN|i,j € Tif and only if §'= 8/ }.

The first game T is interpreted as follows: each player chooses the coalition to
which he wants to belong. A coalition forms if and only if all its members have in
fact chosen it; the rest of the players become singletons. In the other game A, the
choice of a strategy by a player means the largest set of players he is willing to be
associated with in the same coalition. Each set of all the players who chose the
same S then forms a coalition (which may, in general, differ from ). This means
that a coalition corresponds to an equivalence class, with respect to equality of
strategies. For example, let N = {1,2,3,4}, and S'={1,2,3}, §?=(1,2,3),
S3=1{1,2,3), §*={1,2,3,4); then Z = #® =[123]|4]. If we replace S' by
$'= {1}, then Z™ =[1|2|3]4], whereas #(® =[1|23|4]. In general, if one or
more players leave a coalition to which they belong, the other members of that

7This suggestion is due to L. S. Shapley.
8We thank L. S. Shapley for pointing out that this game appears in von Neumann and
Morgenstern [14, Section 26].
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coalition become singletons in the game T, while in the game A they all form one
new coalition.

For a coalition structure 4 and a player i € N, let S, be that element of % to
which i belongs: i € S, € Z (this defines S/, uniquely); put 0, = (S5);c v If the
players choose o4, then in both T and A the coalition structure that results is
clearly 4.

DEFINITION 3.5: The coalition structure % is y-stable (8-stable) in the game
(v,N) if 6., is a strong equilibrium in T, y (4, v, respectively); i.e., if there exists
no nonempty T C N and no 6° € ' for all i € T, such that ¢'(v, %) > ¢'(v, %)
for all i€ T, where # corresponds to ((6iers(0h)iemr) by (3.3) ((34),
respectively).

The test of a meaningful theory clearly lies in its applications. Indeed, one
should analyze various games and classes of games, and characterize in each case
the corresponding stable coalition structures. This is taken up in a forthcoming
paper (Hart and Kurz [4]). It includes the study of all three-player games,
four-player symmetric games, weighted majority games, and others.

A general question arises: Do stable coalition structures always exist?

PROPOSITION 3.6: There exist games for which every coalition structure is neither
y-stable nor §-stable.

Examples of such games are given in Hart and Kurz [4].

The fact that there is no universal existence theorem should not be surprising.
Allowing group deviations, by their nature, leads to the possibility of circularity.
In fact, all game theoretic concepts which are based on some form of group
stability behave similarly.” This, however, does not detract from the importance
of studying the stability properties of a game. In those cases in which a stable
coalition structure exists the theory provides a useful prediction. We are re-
minded, in this connection, that the fact that the core may be empty in some
cases does not remove the value of this concept when used to understand the
solution of a game.

There are a few additional concepts which can be examined. First, one may
broaden the definition of stability. For example, one may use the core concept
instead of that of strong equilibrium. More precisely, a coalition structure will be
said to be stable if no group of players can certainly become better off.
Depending upon the definition of “certainly,” we obtain two new concepts. In
one case, it is “to guarantee;” in the other, “not to be prevented from.” This
corresponds precisely to the a-Core and the 8-Core (cf. Aumann [1]).

From the (normal form) game T, , (or, equivalently, A, y) one obtains two
games without side payments (V¥ ,N) and (V(#,N), as follows: For each

9The various bargaining sets are not empty; however, the coalition structure is given there
exogenously.
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S C N, let =5 =T]],cs%, then

V(s)={(x"),cs ER®|thereis (o ess

Vies
such that for all ("j)je/v\s g SN,
¢'(0,%B,) > x'foralli€ S},

VO(s)={(x'),cs ER[forall (o7), y s EZM

there is (o € =5 such that

Dies
¢'(0,%,) > x'foralli € S }.

We recall that a vector x = (x),cy in R" belongs to the core of a game
without side payments (¥, N) if there exists no nonempty coalition 7 C N and
no y € V(T) such that ' > x' for all i € T.

DerINITION 3.7: Given a game (v, N), the coalition structure % is a-stable
( B-stable) if ¢(v, 7 ) belongs to the core of (V' (¥, N) (VP N), respectively).

It is clear that V(A (§)D V(®(S) for all S, hence B-stability implies a-
stability. In order to compare with y- and §-stability, the following description is
useful: Z is not a-stable if there exists a nonempty 7 C N and ('), € =7 such
that, for all (8/),cy\r € ZMT, ¢'(0,%) > ¢'(v,#) for all i€ T (where %
corresponds to §). Z is not B-stable if there exists a nonempty 7' C N such that,
for every strategy (8/),cn\r € SV\7 there exists (§'),cr €7 with ¢'(v, %)
> ¢'(v,4) for all i € T (again, % corresponds to &). In the first case, the
members of 7' can guarantee an improvement, independent of what the others
will do; in the latter, they cannot be prevented from getting better off, for
anything the rest do (but, dependent on what they do). Since in the definition of
v- and §-stability, it is assumed that the complement of T does not change its
strategies, it follows that Q-stability is implied both by y-stability and by
8-stability. For a given game v, let (¥ (v), /(B (v), /M (v), and ¥ (v)
denote the set of all a-, 8-, y-, and 8- (respectively) stable coalition structures. We
thus have for every game o:

F @D (v) D S F(v) D [/(7)(0) U /(8)(0)].

These two new notions of stability are useful whenever the participants are in
some sense “careful”’—they take into account the possible reactions of the others,
when deciding upon a change in the coalition structure. Incidentally, there are
games for which no coalition structure is even a-stable (cf. Hart and Kurz [4,
Proposition 5.14]).

A second direction of study is to consider hierarchical coalition structures, with
coalitions whose members are themselves coalitions of the original players, and
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so on. There is no difficulty in defining the CS-value in this case, using similar
axioms (see Owen [7, pp. 85-86]).

Thirdly, one may look for stable sets of coalition structures, with respect to the
domination relation (i.e., %, dominates %, if there exists a nonempty coalition
T C N that can induce %, from %,, and such that ¢'(v,%,) > ¢'(v,%,) for all
i € T). Since the number of coalition structures is finite, such sets always exist
(note that & is a stable coalition structure if and only if {Z# } is a stable set).

The reader interested in the application'® of these concepts is referred to Hart
and Kurz [4].

Tel-Aviv University
and
Stanford University

Manuscript received May, 1981; revision received July, 1982.

1We would like to point out that there is a finite procedure for finding all stable coalition
structures in any game (this is not the case for other concepts, e.g., the von Neumann—Morgenstern
solution).
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