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The distribution 9~ of a correspondence v, is defined, and its connection with the set g=Yc of 
distributions of its integrable selections is explored. The main result is that if q1 and v2 are 
equally distributed, i.e., if 9~~ = gp2, then g-Y,,,, and g-Y+,2 have the same closure in the 
weak convergence topology. 

1. Introduction 

The study of measurable and integrable selections from a correspondence 
(set-valued function) has been of interest for some time [e.g., see Aumann 
(1965), Hildenbrand (1974), etc.]. 

Here we take up the study of distributions of such selections. The motivation 
for doing this comes from Mathematical Economics [see Kannai (1970, section 
7); the reader interested in the economic applications is referred to Hart et al. 

(1974)]. 
The first question we consider is the following: Does the distribution of a 

correspondence determine the distributions of its selections ? If the underlying 
space contains atoms, then of course we cannot expect an affirmative answer 
(e.g., consider the correspondence whose image is always the set {1,2}, once 
on a space consisting of one atom, and once on a space consisting of two atoms). 
But what if the underlying space is atomless ? 

Consider the following example [which is essentially a reformulation of an 
example due to G. Debreu - see Kannai (1970, section 7)]. 

Let 

VI(t) = {t, -t> for all t E [O, 11, 

*This research was carried out while both authors were participating at the Workshop on 
Mathematical Economics at the Institute for Mathematical Economics, University of Bielefeld, 
Rheda, W. Germany, June-July 1973. The research of the first author is supported by the 
National Council for Research and Development in Israel. 
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and 

i 

m -2t), for t~P,*l, 
“(‘) = (2t-1, l-2t}, for t f 1.3, 11. 

Clearly, 40~ and q2 must be equally distributed by any reasonable definition 
of this concept. However, the distributions of their measurable selections are not 
the same : let 

f(t) = 
{ 

2t, for tE[O,+], 

l-2t, for f E(+, 11, 

then f is a measurable selection from q2, but there is no measurable selection 

from cp 1 with the same distribution. 
The above example, in giving a negative answer to our question, raises serious 

difficulties as to possible applications of the concept of ‘distributions of selec- 
tions’. However, most of the difficulties can be eliminated provided the following 
is true: if 40~ and q2 are equally distributed correspondences, then the closures 

of the distributions of their selections are equal. Theorem 1 is the precise 
formulation of this statement. 

In Theorem 3 we show that when the measurable selections are restricted to 
have a constant integral, the closure of their distributions still depends only on 
the distribution of the correspondence [this restriction is of importance in 
Mathematical Economics; indeed, our Theorem 3 is a well-known conjecture of 
R.J. Aumann - see Kannai (1970, section 7)]. 

2. Preliminaries 

We denote by R’ the Z-dimensional Euclidian space, and by 92(R’) the U- 
algebra of its Bore1 subsets. 

Let (A, &Z, v) be a measure space; in the following, all measure spaces will be 
assumed to be complete [i.e., d contains all subsets of null sets - see Hilden- 
brand (1974, D.I)]. Null sets will be systematically ignored. 

Let f:(A, d, v) + R’ be a measurable function. The distribution 9f off is 

defined as vof -I [i.e., the induced measure on B(R’)]. The sequence1 {fn} 

converges to f in distribution if the sequence {gf,) converges weakly to Qf, 
where weak convergence of measures is defined as usual by p,, 5 p if $hd,u” + 
jhdp for all real, continuous and bounded functions h. The topology of weak 
convergence can be metrized, e.g., by the Prohorov metric p, defined as 

where 

P& ~2) = inf@ > OIpl(B) 5 ~FC,(B~+E and ~0) 5 pl(Be)+& 
for all Bore1 subsets B}, 

B, = {xld(x, B) < E}. 

‘Note that the f.‘s can be defined on different spaces, but their range must always be in the 
same space. 
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Let’ cp:(A, &, v) + R’ be a correspondence, i.e., cp(a) is a non-empty subset 
of R ’ for all a E A. The graph of rp is the set 

G, = {(a, + o ~(a)]. 

40 has measurable graph [or ‘is Borel-measurable’, as in Aumann (1965)] if 
G, E d @ g(R’). 4p is integrubly bounded if there exists an integrable function 
h:(A, -c4, v)+ R’ such that -h(u) S x s h(u) for all x E &a) and for all 
a E A. 40 is closed-valued if q(u) is a closed set (in R’) for every a E A. 

The set of all integrable selections from q [i.e., all integrable functionsfsuch 
that/(u) E q(u) for all a E A] is denoted Yip,, and sq = {sflf~..Y~}. For every B, 

let 
V-‘(B) = {a E A/V(U) n B # 41 

[the (weak) inverse of ~1. 
All the definitions up to now are standard [see, e.g., Billingsley (1968) and 

Hildenbrand (1974)]. At this point we must make precise the notion of ‘equally 
distributed correspondences’. We therefore define the distribution C&p of the 
correspondence cp having a measurable graph, by 9~ = v 0 40~ ‘. This definition 
is meaningful since by the projection theorem [Hildenbrand (1974, D.I(l l))], if 
40 has a measurable graph then q-‘(B) is measurable for all BE W(R’). Note 
that &%p is not necessarily additive; if, for all a E A, &a) consists of just one 
point, then this definition coincides with the usual one for functions. We say 
that 4p r and 40 z are equally distributed if grp 1 = S?p 2. 

As a Corollary to Theorem 4, we shall prove that, at least for closed-valued 
correspondences, our definition of equally distributed correspondences coincides 
with the usual one of functions with the same distribution, when regarding 
the correspondences as point-valued functions into the set of (closed) subsets of 
R’. 

The following notations will be used: \ for set-theoretic substraction, Kc for 
the complement of K, and Jffor J,f(u)dv(u). For a set 9 of functions with the 
same range, 99 will denote the set of their distributions, i.e., 99 = {g;flfo 

g}, and 3 will be its closure with respect to the weak convergence of measures. 

3. Statement of the results 

In Theorems 1-3, (Ai, di, Vi) (for i = 1,2) will be non-atomic complete 
probability measure spaces, and ‘pi:(Ai, pi, vi) --) R’ correspondences with 
measurable graphs. 

Theorem 1. Let ‘pl and ‘p2 be integrubly bounded. If ‘pl and ‘pz are equally 
distributed, then the sets Q_YP, and 9PV, of distributions of the integrabIe 

*We write q: A -+ R’ also for correspondences, but then we mean q(a) c R’ for all a E A; 
no confusion will arise, since correspondences are always denoted by the Greek letters q~ or I. 
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selections of ‘pl and ‘pz, respectively, have the same closure with respect to the 
weak convergence, i.e., 

-. 
98,, = 9gV2. 

The following theorem is an immediate consequence of Theorem 1. 

Theorem 2. Let ‘pl and ‘pz be integrably bounded and closed-valued. If 
40 1 and ‘pz are equally distributed, then J’p 1 = jqz. 

Theorem 3. Let 40~ and 40~ be integrably bounded and closed-valued, and let 
x E R’. If ppl and qz are equally distributed, then the sets of distributions of the 
integrable selections of ‘pl and q’z with integral equal to x, have the same closure 
with respect to the weak convergence, i.e., 

Clearly, if hi = $0 hi, where the functions h, and h, have the same dis- 
tribution, then 40~ and (p2 are equally distributed (this is, indeed, the case in 
Mathematical Economics). The following decomposition theorem asserts that 
this is the general structure of equally distributed correspondences. 

Theorem 4. For i = 1,2, let (Ai, zZi, vi) be complete probability measure 
spaces, and let qi:(Ai, di, vi) -+ R ’ be closed-valued correspondences with 
measurable graphs. Then %pl = %pz if and only tf there exist a measurable 
space (E, S), a correspondence +!I: (E, 8) + R’ with measurable graph, and 
measurable functions hi:(Ai, pi, Vi) + (E, 8) such that ‘pi = $0 hi for 
i = 1,2, andgh, = ah,. 

Let V’ denote the family of all closed and non-empty subsets of R’, endowed 
with the topology of ‘closed convergence’ [e.g., see Hildenbrand (1974, B.II)], 
and let a(%“) be its Bore1 a-field (i.e., the a-field generated by the open subsets 
of %?‘); a discussion of these concepts will be found before the proof of Theorem 
4. 

Corollary. For i = 1,2, let (Ai, pi, vi) be complete probability measure 
spaces, and let ‘pi: (Ai, &i, Vi) -+ R’ be closed-valued correspondences with 
measurable graphs. Let hi: (Ai, zZi, vi) + (U’, a(%?‘)) be the corresponding 
point-valued functions, i.e., the functions defined by hi(a) = pi(a) E %?i for all 
a E Ai. Then 9cp1 = %p, tfandonlytf9h, = 9h,. 

4. Proof of the results 

In the proof of Theorem 1 we rely on the following lemma: 
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Lemma. Let (A, d, v) be a non-atomic measure space. Let {Si}y=“=o c d 
and {Ui}~=i=o, Cli 2 0 be such that 

and 

V(USj)L C Ujy forall ZC {O,l...,m}, 
ier isI 

(1) 

(2) 

Then there exist disjoint sets {Ti}~“=o wch that Ti c Si and v(Ti) = Cli for 
alli = O,l,. . .,m. 

The proof of this lemma may be carried out in complete analogy with the 
proof of a well known result in Combinatorics [see Halmos and Vaughan 
(1950)]. Since it is quite short, we repeat it here. 

Proof. We use induction on m. For m = 0 it is trivial. Let m > 0. We 
distinguish two cases. 

Case (i). For some I $ (0, 1, . . ., m}, there is equality in (1). Then it is 
easily verified that both {Si, ~i}i,l and {Sj\ui~ISi, aj}jCI satisfy (1) and (2), 
and we may apply the induction hypothesis separately to each one of them. 

Case (ii). For all I $ (0, 1, . . ., m>, there is strict inequality in (1). In 
particular, v(S,-J > CI~ and v(So\ui+c Si) < ccO. Since v is non-atomic, we may 
find an Sb such that 

and the replacement of S, by SA will preserve all inequalities in (l), but at least 
one of them will be an equality. Clearly, (2) is still valid, and we may proceed 
as in case (i). Q.E.D. 

Proof of Theorem 1 
Let f E_YPlp, and let E > 0. We must find g E YPz such that p(gJ gg) < E. 
Since f is integrable, there is a compact set Kin R' such that v,q-‘(Kc)) < E. 

Let K0 = Kc and let K,, K,, . . ., K,,, be a partition of K into disjoint Bore1 sets 
of diameter less than a. 

Define Cli = ~,cf-‘(Ki)) and Si = ~,,l(Ki) for i = 0, 1, . . ., m. 
Since c~ 1 and ‘pz are equally distributed it follows that for every I c (0, 1, 

. . .) 4 

“I(CPT ‘(,I_J Ki)) = V2(‘PY1(LJ Q) = VZ(/J Si). 

The Ki’S are disjoint, hence 

~l(q;l(jEJr KJ) 2 VI (_f-l(ig Ki)) = & vl(f-l(Ki)) = ,z’i* 
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We now have 

v~(~y Si) 2 c ~li, for all Z c (0, 1, . . ., m}, and 
kI 

v2(iQosi) = l = 5 Ui5 i=O 

therefore we may apply the Lemma to get a partition { Ti}L o of A, 
ri c Si = VP; l(KJ and v,(Ti) = CLi. 

Define glrr to be an integrable selection of the correspondence 

such that 

since q2 is integrably bounded, this selection is possible [Hildenbrand (1974, 
D.II.4, theorem 2)]. Then g e_YVZ and it is easy to verify that p(k2lf, gg) < E. 
Q.E.D. 

Proof of Theorem 2 
Let x EJ~~ and let ~E_Y~~ be such that jf= x; by Theorem 1 there is a 

sequence {g,} converging in distribution to f, g, E 8,,. Since q2 is integrably 
bounded, Jgn+ Jf= x [Billingsley (1968, theorem 5.4)]. Therefore x is in the 
closure of srp2. But fq2 is compact [Aumann (1965, theorem 4)], and the proof 
is completed. Q.E.D. 

Proof of Theorem 3 
Let C = Jql = sq, (by Theorem 2). C is convex and compact [Aumann 

(1965, theorems 1 and 4)]. 
We proceed by induction on the dimension of C in R’. If dim(C) = 0, then 

the theorem follows at once from Theorem 1. 
Next, suppose dim(C) = n. 
Let x E C and let f ELZv, be such that x = JJ We must find a g ~~~~ such 

that x = jg and p(gJ gg) < E. 
Case (i). x E rel-int C. Let r > 0 be the distance of x from the boundary of 

C. Applying Theorem 1 and the integrable boundedness of q2, we can find 
g’ E Y,, such that p(gJ gg’) < s/2 and 

Ix-Jg’l < t-*&/2. 

Let y be the intersection of the boundary of C with the half line from jg’ to 
x, and let g” E Y,, be such that jg” = y. Clearly, x = cly + (1 - a)Jg’, where 
u < s/2. Applying Lyapunov’s (1940) theorem, we obtain a set S c A, satis- 
fying v2(S) = LX, Jsg’ = usg’ and Jsg” = ujg”. Define g by 

then clearly jg = x and p(%+f, gg) < E. 
Case (ii). x 4 rel-int C. Let q define a supporting hyperplane such that 

q-x = maxq.C. 
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Denote 
#i(u) = {Y o cOi(a)jq’Y = ITtlaXq~~i(U)}, for U E Ai, i = 1,2. 

By Hildenbrand (1974, D.II.3, proposition 3), & have measurable graphs. 
Also, ei are integrably bounded and closed-valued, and f E-P+, [by Hilden- 
brand (1974, D.II.4, proposition 6)]. 

We now claim that @I and ez are equally distributed. To see this, apply3 
Theorem 4 to get decompositions ‘pi = $ohi, then@i = $0 hi, where 

$0) = (u E ti0)lq.y = max 4. ti(t)>. 

But dim (Jel) < n, hence by the induction hypothesis there is a g ~2~~ c 
5YV, such that x = sg and p(9L 9g) c E. Q.E.D. 

Before proving Theorem 4, we have to introduce the concepts of topology 
and Bore1 o-field on %“, the family of closed subsets of R’. The usual way to do 
this is the following [for discussion, proofs and references see Hildenbrand 
(1974, B.II)]. 

Let X = R’ u {co} be the one-point compactification of R’, then X is a 
metric space (it is homeomorphic to the unit sphere of R’+ ‘). Let .z? be the 
family of its closed (i.e., compact) non-empty subsets, endowed with the Haus- 
dorff metric (or, equivalently, with the topology of ‘closed convergence’). 
Let g(X) be its Bore1 a-field, i.e., generated by the open subsets of X. It 
follows from a result of Dubins and Orenstein [Debreu (1967, (3.1))J that W(X) 
is generated by the sets V” for all open subsets V of X, where 

VW = {Kc+n V # $}. 

To each closed subset C of R’ (i.e., C E %?I), we associate the member C u {co> 
of X ; then W’ can be regarded as a subset of Y, namely 

(KEXlor, EK}. 
! 

The topology of ‘closed convergence’ on %?’ is then the induced topolo; 
from X, and V’ is a compact metric space. Moreover, let a(%?‘) be its Bore1 
a-field, then it is easy to see that 

(*) g(%“> is generated by the sets U” for all open subsets U of R’, where 
Uw = {Cfz@JCn U# $}. 

For any closed-valued correspondence p: (A, d, v) + R’, let h,: (A, d, v) + 
%?’ denote the corresponding point-valued function, i.e., the function defined by 
h,(a) = q,(a) for all a E A. 

Proof of Theorem 4 
The ‘if’ part is immediate. 
To prove the converse, let hi = h,, be defined as above, and let $ : (%‘, 

B(%?‘)) + R’ be defined by $(C) = Cfor all C E WI; obviously ‘pi = $0 hi. 

3The proof of Theorem 4 does not depend on Theorem 3. 
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Let U be an open subset of R’, then $-l(U) = U” E 8(‘8’). Since %’ is a 
complete separable metric space and $ is a closed-valued correspondence, it 
follows from [Hildenbrand (1974, D.II.3, proposition 4(b)] that $ has a 
measurable graph. 

Again, let U be an open subset of R’, then h; ‘(V’) = cp,: ‘(U). Since pi 
has measurable graph, VP; l(U) E & by Hildenbrand (1974, D.II.3, proposition 
4(a)), hence ki is a measurable function. 

Moreover, g&(V) = gqi(U), hence Qcp, = g”pz implies g/z, = 22/z, by 

(*). Q.E.D. 
The Corollary now follows immediately from Theorem 4 and its proof. 

4. Acknowledgement 

The authors wish to express their deep gratitude to Professor W. Hildenbrand 
for introducing them to these problems and for many enlightning conversations. 
We are also indebted to Professor R.J. Aumann for a simplification in the proof 
of Theorem 4. 

References 

Aumann, R.J., 1965, Integrals of set-valued functions, J. Math. Anal. and Appl. 12,1-12. 
Billingsley, P., 1968, Convergences of probability measures (Wiley, New York). 
Debreu, G., 1967, Integration of correspondences, Proc. 5th Berkeley Symp. II, 1,351-372. 
Halmos, P.R. and H.E. Vaughan, 1950, The marriage problem, Am. J. of Math. 72,214-215. 
Hart, S., W. Hildenbrand and E. Kohlberg, 1974, On equilibrium allocations as distributions 

on the commodity space, Journal of Mathematical Economics 1, preceding article. 
Hildenbrand, W., 1974, Core and equilibria in a large economy (Princeton University Press, 

Princeton). 
Kannai, Y., 1970, Continuity properties of the core of a market, Econometrica 38,791-815. 
Lyapunov, A., 1940, Sur les fonctions-vecteurs completement additives, Bull. Acad. Sci. 

USSR, Ser. Math. 4,465-478. 


