Introduction

Stratification of X

Y Functoriality of

local models

 $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonica subgroup

Canonical Subgroups over Hilbert Modular Varieties

Joint work with Payman Kassaei (King's College, London)

Eyal Goren

McGill University

Minerva school on *p*-adic methods in arithmetic algebraic geometry, Jerusalem, Spring 2009.

Introduction

- Stratification of $\frac{Stratification of X}{X}$ Stratification of $\frac{Stratification of Y}{Y}$ Functoriality of
- Valuations o $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$
- Canonical subgroup

1 Introduction

2 Stratifications of the special fibers

3 Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

4 Construction of the canonical subgroup

The Problem. Associate in a natural way to a g-dimensional abelian variety A/R, $[R:\mathbb{Z}_p]<\infty$, with real multiplication an invariant isotropic subgroup H such that $pH=\{0\}$, and $\sharp H=p^g$.

<u>Motivation</u>. Properties of the U-operator on overconvergent modular forms; used to prove classicality results for modular forms, study of p-adic families of modular forms, special values of L-functions, and modularity of Galois representations. Cf. Besser's talk.

If A has ordinary reduction: classical \checkmark (There is a unique way to lift the kernel of Frobenius $\operatorname{Fr} \colon \overline{A} \to \overline{A}^{(p)}$, where $\overline{A} = A \pmod{pR}$.)

Therefore, the problem is:

- Extend this to non-ordinary abelian varieties;
- Do it in families.

Functoriality o

Valuations of \mathfrak{X}_{rig} , \mathfrak{Y}_{rig}

Canonica subgroup

Reformulation

For appropriate moduli schemes X,Y over \mathbb{Z}_p , $\mathfrak{X}_{\mathrm{rig}},\mathfrak{Y}_{\mathrm{rig}}$ the associated (Raynaud) generic fibers, we have a diagram,

$$(A, H) \longrightarrow \mathfrak{V}_{rig}$$

$$\downarrow s$$
 $A \longrightarrow \mathfrak{X}_{rig},$

and the section s exists over the ordinary locus.

The Problem. Extend s "as much as possible".

Y Functoriality

Valuations of

 $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonica subgroup

The main theorem

Theorem (G. - Kassaei)

Let $\{\tilde{h}_{\beta}\}_{\beta\in\mathbb{B}}$ be (Zariski local) lifts of the partial Hasse invariants. Let $\mathcal{U}\subset\mathfrak{X}_{\mathrm{rig}}$ be

$$\mathcal{U} = \{P : \nu(\tilde{h}_{\beta}(P)) + p\nu(\tilde{h}_{\sigma^{-1} \circ \beta}(P)) < p, \ \forall \beta \in \mathbb{B}\}.$$

There exists a section $s^\dagger:\mathcal{U}\to\mathfrak{Y}_{\mathrm{rig}}$, extending the section s on the ordinary locus.

What comes into the proof?

- 1 Stratifications of \overline{X} , \overline{Y} (the special fibers).
- 2 Study of $\pi: \overline{Y} \to \overline{X}$ on completed local rings.
- 3 "Dissection" of \mathfrak{Y}_{rig} , the generic fiber of Y, using g different valuations.

 $(g = [L : \mathbb{Q}], \text{ where } L \text{ is the totally real field acting.})$

Remark. The structure suggests strategy should be applicable to many Shimura varieties of PEL type.

 $\frac{\text{Stratification o}}{X}$ Stratification of

Stratification of Y
Functoriality of

Valuations o \mathfrak{X}_{rig} , \mathfrak{Y}_{rig}

Canonica

1 Introduction

2 Stratifications of the special fibers

Stratification of \overline{X}

Stratification of \overline{Y}

Functoriality of local models

3 Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

4 Construction of the canonical subgroup

Valuations o $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonica subgroup • L - totally real field, $[L:\mathbb{Q}]=g$.

• p unramified in L.

$$\mathbb{B} = \mathsf{Hom}(L, \mathbb{Q}_p^{ur}) = \coprod_{\mathfrak{p}|p} \mathbb{B}_{\mathfrak{p}} \circlearrowleft \sigma.$$

 $(\sigma = \text{Frobenius, lift of } x \mapsto x^p.)$

- For $S\subseteq \mathbb{B}$, let $S^c=\mathbb{B}\setminus S$ and $\ell(S)=\{\sigma^{-1}\circ\beta:\beta\in S\},\quad r(S)=\{\sigma\circ\beta:\beta\in S\}.$
- $\kappa = \text{minimal field } \supseteq \mathcal{O}_L/\mathfrak{p}, \ \forall \mathfrak{p}|p.$
- $\mathcal{O}_L \otimes_{\mathbb{Z}} W(\kappa) \cong \bigoplus_{\beta \in \mathbb{B}} W(\kappa)_{\beta}$ induces a decomposition of any $\mathcal{O}_L \otimes W(\kappa)$ -module.

Canonical subgroup

Moduli Spaces

 $X/W(\kappa)$ parameterizes $\underline{A}=(A,\iota,\alpha,\lambda_A)/S$, where S is a $W(\kappa)$ -scheme and:

 $A \to S$ abelian scheme, of rel. dim'n g, $\iota : \mathcal{O}_L \hookrightarrow \operatorname{End}_S(A)$, $\alpha = \operatorname{rigid} \Gamma_{00}(N)$ -level structure.

 $\lambda_A : (\mathfrak{a}, \mathfrak{a}^+) \xrightarrow{\sim} (\mathcal{P}_A, \mathcal{P}_A^+)$ a polarization: $A \otimes \mathfrak{a} \cong A^t$, $\mathcal{P}_A = \operatorname{Hom}_{\mathcal{O}_L}(A, A^t)^{sym}$ with the positive cone of polarizations.

$Y/W(\kappa)$ parameterizes (\underline{A}, H) such that:

H is killed by p, degree p^g , \mathcal{O}_L -invariant, isotropic Equivalently,

$$(f: \underline{A} \to \underline{B}),$$

such that $deg(f) = p^g$, $Ker(f) \subseteq A[p]$, $f^*\mathcal{P}_B = p\mathcal{P}_A$.

Atkin-Lehner: $w(f: \underline{A} \to \underline{B}) = (f^t: \underline{B} \to \underline{A}), \quad f \circ f^t = p$

Canonica subgroup

Invariants for \overline{X}

For \underline{A}/k , $k \supseteq \kappa$ perfect. Let

$$\alpha_A = \mathsf{Ker}(\mathsf{Fr}_A) \cap \mathsf{Ker}(\mathsf{Ver}_A).$$

Decomposition of the Dieudonné modules:

$$\mathbb{D}(A[p]) = \bigoplus_{\beta \in \mathbb{B}} k^2 \quad \supseteq \quad \mathbb{D}(\alpha_A) = \bigoplus_{\beta \in \mathbb{B}} \quad \underbrace{\mathbb{D}(\alpha_A)_{\beta}}_{0 \text{ or 1 dim'l}}$$

The type of \underline{A} is

$$\tau(\underline{A}) = \{ \beta \in \mathbb{B} : \mathbb{D}(\alpha_A)_{\beta} \neq \{0\} \}.$$

Define strata of \overline{X} ,

$$W_{\tau} \longleftrightarrow \{\underline{A} : \tau(\underline{A}) = \tau\}$$
 (locally closed), $Z_{\tau} \longleftrightarrow \{\underline{A} : \tau(\underline{A}) \supseteq \tau\}$ (closed).

Theorems (G. - Oort)

- ① $\overline{W_{\tau}} = Z_{\tau} = \coprod_{\tau' \supseteq \tau} W_{\tau'}$. So $\{W_{\tau} : \tau \subseteq \mathbb{B}\}$ is a stratification of the moduli space \overline{X} by 2^g strata.
- **2** W_{τ} is non-singular, quasi-affine of dimension $g \sharp \tau$.
- 3 $\exists h_{\beta}$, a Hilbert modular form of weight $p \cdot \sigma^{-1} \circ \beta \beta$, such that $(h_{\beta}) = Z_{\beta}$. (In classical terms: weight $(0, \dots, 0, p, -1, 0 \dots, 0)$.)
- **4** $\widehat{\mathcal{O}}_{\overline{X},P} \cong k[[t_{\beta} : \beta \in \mathbb{B}]]$ and if $h_{\beta}(P) = 0$ then we may identify h_{β} with t_{β} .
- **5** The kernel of the q-expansion map on the graded ring of Hilbert modular forms modulo p is the ideal $\langle h_{\beta} 1 : \beta \in \mathbb{B} \rangle$.

Canonica subgroup

Invariants for \overline{Y}

Given $\underline{A} \xleftarrow{f} \underline{B}$, we have

$$\bigoplus_{\beta} \mathsf{Lie}(\underline{A})_{\beta} \xrightarrow{\bigoplus_{\beta} \mathsf{Lie}(f)_{\beta}} \oplus_{\beta} \mathsf{Lie}(\underline{B})_{\beta}.$$

Define

- $\varphi = \varphi(f) = \{\beta \in \mathbb{B} : \text{Lie}(f)_{\sigma^{-1} \circ \beta} = 0\},$
- $\eta = \eta(f) = \{\beta \in \mathbb{B} : \operatorname{Lie}(f^t)_{\beta} = 0\},$
- $I = \ell(\varphi) \cap \eta$ (the "critical indices").

Properties:

- $\mathfrak{g} \quad \eta \supset \ell(\varphi)^{\mathsf{c}}.$

$\frac{\mathsf{St}}{\mathsf{Y}}$

Functoriality of local models

Valuations o $\mathfrak{X}_{rig}, \mathfrak{Y}_{rig}$

Canonic

A pair (φ, η) (for $\varphi, \eta \subseteq \mathbb{B}$) is admissible if

$$\eta \supseteq \ell(\varphi)^c$$
.

Exist 3^g such pairs.

Define strata in \overline{Y} :

$$W_{\varphi,\eta} \longleftrightarrow \{(f: \underline{A} \to \underline{B}) : \varphi(f) = \varphi, \eta(f) = \eta\} \text{ (loc. closed)},$$
 $Z_{\varphi,\eta} \longleftrightarrow \{(f: \underline{A} \to \underline{B}) : \varphi(f) \supseteq \varphi, \eta(f) \supseteq \eta\} \text{ (closed)}.$

Functoriality of

Valuations or $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonica subgroup

- 1 $\overline{W_{\varphi,\eta}} = Z_{\varphi,\eta} = \coprod_{(\varphi',\eta') \geq (\varphi,\eta)} W_{\varphi',\eta'}$ and so $\{W_{\varphi,\eta}\}$ is a stratification of \overline{Y} with 3^g strata.
- 2 $W_{\varphi,\eta}$ and $Z_{\varphi,\eta}$ are non-singular, equi-dimensional of dimension $2g (\sharp \varphi + \sharp \eta)$.
- **3** There are 2^g maximal strata, given by $Z_{\varphi,\ell(\varphi)^c}, \ \varphi \subseteq \mathbb{B}$. There are 2^r horizontal components, where $r = \sharp \{\mathfrak{p} | p\}$.

Two of which are $\overline{Y}_F = Z_{\mathbb{B},\emptyset} \longleftrightarrow (\underline{A}, \operatorname{Ker}(\operatorname{Fr}_A))$

$$\overline{Y}_V = Z_{\emptyset,\mathbb{B}} \longleftrightarrow (\underline{A}, \mathsf{Ker}(\mathsf{Ver}_A)).$$

- **6** If $C \subseteq Z_{\varphi,\eta}$ is an irreducible component then

$$C \cap \overline{Y}_F \cap \overline{Y}_V \neq \emptyset$$
.

7 Let $\overline{Q} \in \overline{Y}$ be a closed k-point, then

$$\widehat{\mathcal{O}}_{Y,\overline{Q}} \cong \frac{W(k)[[\{x_{\beta}: \beta \in I\}, \{y_{\beta}: \beta \in I\}, \{z_{\beta}: \beta \in I^{c}\}]]}{\langle \{x_{\beta}y_{\beta} - p: \beta \in I\} \rangle}.$$

Moreover, the variables can be chosen so that: If

$$\varphi \supseteq \varphi' \supseteq \varphi - r(I), \quad \eta \supseteq \eta' \supseteq \eta - I,$$

and (φ', η') is admissible, write

$$\varphi' = \varphi - J, \quad \eta' = \eta - K,$$

then $Z_{arphi',\eta'}$ is described in $\widehat{\mathcal{O}}_{\overline{Y},\overline{Q}}$ by the ideal

$$\langle \{x_{\beta} : \beta \in I - K\}, \{y_{\beta} : \beta \in I - \ell(J)\} \rangle.$$

Moreover, if $\overline{Q} \in Z_{\varphi',\eta'}$ then (φ',η') are as above.

Canonica subgroup

Key Lemma

Let $\beta \in \varphi \cap \eta = \tau$, $\pi(\overline{Q}) = \overline{P}$,

$$\pi^*:\widehat{\mathcal{O}}_{\overline{X},\overline{P}}\longrightarrow \widehat{\mathcal{O}}_{\overline{Y},\overline{Q}}.$$

Then:

$$\pi^*(t_{eta}) = egin{cases} ux_{eta} + vy_{\sigma^{-1}\circeta}^{eta} & \sigma\circeta\inarphi, \quad \sigma^{-1}\circeta\in\eta, \ ux_{eta} & \sigma\circeta\inarphi, \quad \sigma^{-1}\circeta
otin \eta
otin \eta, \ vy_{\sigma^{-1}\circeta}^{eta} & \sigma\circeta
otin arphi, \quad \sigma\circeta
otin \eta,
otin \eta, \quad \sigma\circeta
otin arphi, \quad \sigma\circeta
otin \eta, \quad \sigma\circ\eta
otin \eta, \quad$$

where u, v are units.

Ideas coming into the proof

- Study the situation on components of $\mathrm{Spf}(\widehat{\mathcal{O}}_{\overline{Y},\overline{Q}})$; they correspond to strata $Z_{\varphi',\eta'}$ passing through \overline{Q} .
- Gain data on $\pi^*(t_\beta)$; roughly, $\pi^*(t_\beta) = u x_\beta^M + v y_{\sigma^{-1} \circ \beta}^N$.
- Globalize so as to be able to study these expressions on components of $Z_{\varphi',\eta'}$ but at other points then \overline{Q} .
- Reduce to computation at a "special superspecial point" (using that any component C of any strata $Z_{\varphi,\eta}$ intersects $\overline{Y}_F \cap \overline{Y}_V$).

Functoriality

Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonical subgroup

Introduction

2 Stratifications of the special fibers

 $oldsymbol{3}$ Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

4 Construction of the canonical subgroup

Introduction

Stratification of X
Stratification of Y
Functoriality of local models

Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonical subgroup

$$u(P) = (\nu_{\beta}(P)), \quad \nu_{\beta}(P) = \begin{cases} \nu(t_{\beta}(P)) & \beta \in \tau(\overline{P}), \\ 0 & \text{else.} \end{cases}$$

 $(
u(x) = \min(\operatorname{val}(x), 1).)$ For $Q \in \mathfrak{Y}_{\operatorname{rig}}, \overline{Q} = \operatorname{sp}(Q) \in \overline{Y}$, let

$$u(Q) = (\nu_{\beta}(Q)), \quad \nu_{\beta}(Q) = \begin{cases}
1 & \beta \in \eta(\overline{Q}) - I(\overline{Q}), \\
\nu(x_{\beta}(P)) & \beta \in I(\overline{Q}), \\
0 & \beta \notin I(\overline{Q}).
\end{cases}$$

 $u(P), \nu(Q)$ belong to the valuation cube $\Theta = [0, 1]^{\mathbb{B}}$. $u(Q) + \nu(wQ) = \underline{1} \text{ (easy!)}.$

Canonica subgroup

The Cube Theorem

Parameterize the "open faces" of Θ by $\underline{a}=(a_{\beta}), a_{\beta}\in\{0,1,*\}$. For such a define

$$\varphi(\underline{a}) = \{\beta \in \mathbb{B} : a_{\beta} \neq 0\}, \quad \eta(\underline{a}) = \{\beta \in \mathbb{B} : a_{\sigma^{-1} \circ \beta} \neq 1\}.$$

There is a 1:1 order-reversing correspondence

$$\{ \text{open faces of } \Theta \} \longleftrightarrow \{ \text{strata } W_{\varphi,\eta} \} \; .$$

$$\mathscr{F}_{\underline{a}} \longmapsto W_{\varphi(\underline{a}),\eta(\underline{a})}$$

- $\nu(Q) \in \mathscr{F}_{\underline{a}} \iff \overline{Q} \in W_{\varphi(a),\eta(a)}$.
- $\nu(Q) \in \operatorname{Star}(\mathscr{F}_{\underline{a}}) \iff \overline{Q} \in Z_{\varphi(\underline{a}),\eta(\underline{a})}.$

The open faces of Θ produce a "dissection" of $\mathfrak{Y}_{\mathrm{rig}}:$

$$\mathscr{F}_a \longleftrightarrow \{Q : \nu(Q) \in \mathscr{F}_a\}.$$

Functoriality

Valuations o $\mathfrak{X}_{rig}, \mathfrak{Y}_{rig}$

Canonical subgroup

1 Introduction

2 Stratifications of the special fibers

 $oldsymbol{3}$ Valuations on $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

4 Construction of the canonical subgroup

Valuations of $\mathfrak{X}_{\mathrm{rig}}, \mathfrak{Y}_{\mathrm{rig}}$

Canonical subgroup

The canonical subgroup theorem

$$egin{aligned} \mathcal{U} &:= \{P \in \mathfrak{X}_{\mathrm{rig}} :
u_eta(P) + p
u_{\sigma^{-1}\circeta}(P) < p, orall eta \in \mathbb{B}\} \end{aligned} \ \mathcal{V} &:= \{Q \in \mathfrak{Y}_{\mathrm{rig}} :
u_eta(Q) + p
u_{\sigma^{-1}\circeta}(Q) < p, orall eta \in \mathbb{B}\} \end{aligned}$$

Theorem

$$\pi(\mathcal{V}) = \mathcal{U}$$
 and there is a section

$$s^{\dagger}: \mathcal{U}
ightarrow \mathcal{V},$$

extending the canonical section on the ordinary locus.

Ideas in the proof

• Define for $\mathfrak{p}|p$,

$$\mathcal{V}_{\mathfrak{p}} := \{Q : \lambda_{eta}(Q) < p, \ orall eta \in \mathbb{B}_{\mathfrak{p}}\}\ \mathcal{W}_{\mathfrak{p}} := \{Q : \lambda_{eta}(Q) > p, \ orall eta \in \mathbb{B}_{\mathfrak{p}}\}$$

We first show that:

- ullet *U* is admissible.
- $\pi^{-1}(\mathcal{U}) = \mathcal{V} \coprod \mathcal{W}$, admissible disjoint union, where

$$\mathcal{W} = igcup_{\emptyset
eq S \subseteq \{\mathfrak{p}|
ho\}} \left[igcap_{\mathfrak{p} \in S} \mathcal{W}_{\mathfrak{p}} \cap igcap_{\mathfrak{p}
otin S} \mathcal{V}_{\mathfrak{p}}
ight].$$

This uses the notion of tubular neighborhoods (cf. Grosse-Kloenne's talk) and our strata on \overline{Y} .

- $\pi|_{\pi^{-1}(\mathcal{U})}$ is finite-flat.
- The connected components of $\mathcal V$ are in bijection with those of $\mathcal U$.
- We calculate that $\pi|_{\mathcal{V}}$ has degree 1 by restricting to $\operatorname{sp}^{-1}(W_{\mathbb{B},\emptyset}) \subseteq \operatorname{sp}^{-1}(\overline{Y}_F)$.

Canonical subgroup

Further properties

We can determine what happens under

$$P \mapsto s^{\dagger}(P) \mapsto w \circ s^{\dagger}(P) \mapsto \pi \circ w \circ s^{\dagger}(P),$$

and so can iterate the construction to construct higher level canonical subgroups $(\subseteq A[p^n])$.

- Can prove functorial behavior relative to morphisms between Hilbert modular varieties. In particular, (i) decent to \mathbb{Q}_p of the canonical subgroup, and (ii) prove \mathcal{U} is maximal (in a suitable sense) for the construction of the canonical subgroup.