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Abstract. We study a variant of the Kac-Zwanzig model of a particle in a heat
bath. The heat bath consists of n particles which interact with a distinguished
particle via springs and have random initial data. As n → ∞ the trajectories of
the distinguished particle weakly converge to the solution of a stochastic integro-
differential equation—a generalized Langevin equation (GLE) with power-law
memory kernel and driven by 1/fα-noise. The limiting process exhibits fractional
sub-diffusive behaviour. We further consider the approximation of non-Markovian
processes by higher-dimensional Markovian processes via the introduction of aux-
iliary variables and use this method to approximate the limiting GLE. In contrast,
we show the inadequacy of a so-called fractional Fokker-Planck equation in the
present context. All results are supported by direct numerical experiments.

Keywords: Fractional diffusion, Hamiltonian systems, heat bath, stochastic
differential equations, Markovian approximation, weak convergence

1. Introduction

Anomalous diffusion is a well-studied phenomenon applicable to a
broad variety of fields (e.g., particles moving through media with
internal degrees of freedom, such as actin networks [3]). A random
process X(t) is said to exhibit anomalous diffusion when the variance
of its displacement after time t has the asymptotic form

E|∆X(t)|2 ∼ tγ , t →∞,

where E denotes averaging, or expectation, and γ 6= 1. The process
is called sub-diffusive when γ < 1 and super-diffusive when γ > 1;
the case γ = 1 corresponds to regular diffusion.

Early work on anomalous diffusion dates back to the 1960s with
the Montroll-Weiss model of continuous-time random walk [39]. Ran-
dom walks serve as standard models for normal diffusion processes
(e.g., a discrete time random walk may weakly converge to Brownian
motion [18]). Continuous time random walk are characterized by two
parameters: a characteristic waiting time between jump events and
a jump distance. Anomalous diffusion arises when the characteristic
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waiting time diverges [5]. The divergence of relaxation times is the
key for the occurrence of anomalous diffusion. Systems that exhibit
anomalous diffusion are characterized by either a diverging waiting
time, or equivalently, by a strong non-Markovian nature—the evolu-
tion of the system at time t depends on its past, and the range of this
“memory” is long compared with the characteristic timescale of its
motion. In contrast, normal diffusion occurs when the microscopic
timescale is small compared to the observation time.

Mechanical models of a particle immersed in a heat bath were
introduced by Ford, Kac and Mazur [15, 14] and Zwanzig [54] as
simple models to study kinetics and irreversible statistical mechanics.
The “heat bath” is a collection of n particles which interact with a
“distinguished” particle through springs; the heat bath particles are
assumed to have random initial data distributed according to the
laws of statistical mechanics. There exists a huge amount of literature
in this subject. Heat bath models have received renewed interest in
recent years in the context of variable reduction [48, 33, 32], coarse
time stepping [48, 25], and transition state models [29].

In [33] a variant of the Kac-Zwanzig model was considered. For
a certain regime of parameters, the trajectory of the distinguished
particle tends, as n → ∞ (the “thermodynamic limit”), to a lim-
iting process Q(t), which satisfies a stochastic integro-differential
equation (SIDE), known as a generalized Langevin equation (GLE).
The convergence is in a weak sense (in distribution) in the space
of continuous functions [8]. The parameters of the model, namely,
the masses and spring constants, determine the parameters of the
limiting GLE, which are the driving noise and the memory kernel.

In this paper we construct a Kac-Zwanzig model within the set-
ting of [33], with the heat bath parameters chosen such that the limit-
ing GLE has a memory kernel that decays as a power-law (Section 2).
The limiting GLE for Q(t) has the form

Q̈(t) + k0

∫ t

0
(t− s)−γQ̇(s) ds + V ′(Q(t)) = z(t), (1.1)

where z(t) is a stationary centered Gaussian process with auto-
covariance Ez(t)z(s) = β−1k0|t − s|−γ , with β being an inverse
temperature. The process z(t) is a generalized random process which
can be identified with the derivative of fractional Brownian motion
[35]; it is often referred to as a 1/fα-noise. The weak convergence of
the trajectories of the distinguished particle is proved in Section 3.
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There are two simple, but instructive cases for which (1.1) can
be solved analytically: in the case of a free particle, V (Q) = 0,
and in the case of a quadratic potential well, V (Q) = 1

2Q2; in both
cases the equation is linear and can be solved by standard methods
(Section 4). In the case of a free particle the distribution of Q(t)
exhibits anomalous diffusion with exponent γ. Although anomalous
diffusion is often associated with non-Gaussian behaviour, here an
initial Gaussian distribution on Q and Q̇ remains Gaussian for all
times. In the case of a quadratic potential well the Boltzmann equi-
librium distribution is reached as t → ∞. The rate of equilibration
is sub-exponential (i.e., slower than exponential) as expected for a
sub-diffusive system.

In order to make quantitative predictions about solutions of (1.1)
it is necessary to derive equations for the one- and multi-dimensional
probability density functions (PDFs). For Markovian systems driven
by white noise the equation that determines the one-dimensional
PDF is the Fokker-Planck equation (FPE) [17]. There is, however,
no simple differential equation for the one- and multi-dimensional
PDFs for non-Markovian processes. The derivation of such equa-
tions is at the heart of the Mori-Zwanzig approach [42, 19]; see also
[28] and references therein for a review of non-Markovian GLEs. An
alternative is to approximate the non-Markovian system by a higher-
dimensional Markovian system through the introduction of auxiliary
variables. This approach dates back to Mori [40] and has been applied
extensively by K losek-Dygas et al. [12, 11], and recently, in the con-
text of 1/fα-noise, by Landis et al. [34]. In Section 5 we describe how
to approximate, in general, a Gaussian non-Markovian system by a
higher-dimensional Markovian SDE. We follow [34] to construct a
particular example where the memory kernel decays as a power-law.
The whole approach may seem circular: a high-dimensional system is
proved to converge to the solution of a non-Markovian SIDE, which
is then approximated by a higher-dimensional SDE. As we show in
this paper, a (deterministic) system of very large size may thus be
accurately approximated by a (stochastic) system of, say, 6 variables.

In Section 6 we consider the fractional Fokker-Planck equation
(FFPE), which is a partial integro-differential equation often viewed
as a natural generalization of the FPE for strongly non-Markovian
systems which exhibit anomalous diffusion [45, 37, 5, 6, 4, 52]. For
continuous-time random walk, the FFPE governs the distribution of
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the process in a certain limit where the jump distance tends to zero
[5]. It is however unclear whether it has a much wider scope as does
the FPE for Markovian system. We solve the FFPE for the case of
a free particle, and show that its solution differs substantially from
the solution found in Section 4. This simple example shows that the
FFPE does not describe systems governed by the GLE (1.1).

In Section 7 we present numerical experiments which test the
convergence of the trajectories to the solution of (1.1), and the
Markovian approximation considered in Section 5.

2. A Kac-Zwanzig heat bath model

We introduce a mechanical model of a particle immersed in a heat
bath of n particles. The model is defined by the Hamiltonian:

H(Qn, Pn, q, p) =
1
2
P 2

n + V (Qn) +
1
2

n∑
j=1

p2
j

mj
+

1
2

n∑
k=1

kj(qj −Qn)2,

(2.1)
where (Qn, Pn) are the position and momentum of the distinguished
particle, which has unit mass and resides in a potential field V (Qn);
q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) are the positions of mo-
menta of the n heat bath particles. The j-th particle in the heat
bath has mass mj , and interacts with the distinguished particle
through a linear spring with stiffness constant kj . We also define
ωj = (kj/mj)1/2, which is the characteristic frequency of the j-th
heat bath particle. All motions take place in one dimension. The
subscript n in Qn, Pn labels the size of the heat bath, which will even-
tually be taken infinitely large as we consider the thermodynamic
limit.

Hamilton’s equations are

Q̇n = Pn

Ṗn = −V ′(Qn) +
n∑

k=1

kj(qj −Qn)

q̇j = pj/mj

ṗj = −kj(qj −Qn),

(2.2)

supplemented with initial conditions Qn(0) = Q0, Pn(0) = P0,
qj(0) = qj 0, and pj(0) = pj 0. The initial data for the heat bath parti-
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cles are assumed to be randomly drawn from a Gibbsian distribution
with inverse temperature β, conditioned by the non-random initial
data Q0, P0. For fixed Qn, Pn the Hamiltonian (2.1) is quadratic in
q, p, hence the corresponding measure is Gaussian. It is easily verified
that

qj 0 = Q0 + β−1/2k
−1/2
j ξj

pj 0 = β−1/2m
1/2
j ηj ,

where ξj , ηj ∼ N(0, 1) are mutually independent sequences of i.i.d.
random variables.

The system (2.2) describes a particle interacting with a collec-
tion of n oscillators with spectrum ωj . Conceptually, a heat bath
is a mechanical system characterized by a broad and dense spec-
trum. A natural way to realize such a scenario, without being too
restrictive, is to choose the parameters kj ,mj such that the corre-
sponding frequencies ωj are random, uniformly distributed in the
range 1/nc + [0, na], with 0 < a, c < 1. Specifically,

ωj = n−c + na νj , νj i.i.d. , ν1 ∼ U[0, 1].

Thus, as n → ∞, the spectrum covers an increasingly large range
of frequencies in an increasingly dense manner. Note the use of a
low-frequency cutoff, ωj ≥ 1/nc, which was not necessary in [33].
This is because of the singularity in the auto-correlation of fractional
Brownian motion.

Having chosen the frequencies ωj , it remains to choose either the
masses mj , or the spring constants kj . In this paper we take

kj = f2(ωj) ∆ω, f2(ω) =
2a0

π
Γ(1− γ) sin

(
γπ

2

)
1

ω1−γ
, (2.3)

where ∆ω = na/n is the mean spectral density, Γ(z) is the Euler
Gamma function [1], and γ ∈ (0, 1) and a0 > 0 are parameters. The
reason for these choices will become apparent in the following.

The probability space is defined by the three mutually indepen-
dent sequences of random variables νj , ξj , and ηj ; the first is related
to the model parameters—the spectrum of the heat bath—and the
two other are related to the initial data. Our results for the limiting
behaviour of the system as n → ∞ hold almost surely with respect
to the choice of frequencies, which we denote by ν-almost-surely, or,
ν-a.s. Probabilities, expectations and variances with respect to the
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ν variables are denoted by Eν , Pν and Varν . Similarly, Pξη, Eξη, and
Varξη denote probabilities, expectations and variances with respect
to the initial data; when no confusion should arise, we use the shorter
notation P, E, and Var.

As usual, the qj , pj variables in (2.2) can be integrated, giving
rise to an integro-differential equation for the trajectory Qn(t) of the
distinguished particle:

Q̈n(t) +
∫ t

0
κn(t− s)Q̇n(s) ds + V ′(Qn(t)) = zn(t), (2.4)

where

κn(t) =
n∑

j=1

f2(ωj) cos(ωjt) ∆ω (2.5)

zn(t) = β−1/2
n∑

j=1

f(ωj) [ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2. (2.6)

The function κn(t) is the memory kernel, which encapsulates the de-
pendence of the force that the heat bath exerts on the distinguished
particle at time t on the history of its trajectory up to that time; it
is random only through the frequencies ωj . The function zn(t) is a
random forcing which depends both on the frequencies and on the
initial data. In the present setting it is a stationary centered Gaus-
sian process; its auto-covariance satisfies the fluctuation-dissipation
relation

Eξηzn(t)zn(s) = β−1κn(t− s),

irrespective of the choice of frequencies.
It will be shown below that zn(t) tends, as n → ∞, to a gener-

alized (distribution valued) random process. This suggests that we
should consider an integrated version of (2.4):

Q̇n(t)+
∫ t

0
Kn(t−s)Q̇n(s) ds+

∫ t

0
V ′(Qn(s)) ds = Q̇0 +Zn(t), (2.7)
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where Kn(t) =
∫ t
0 κn(s) ds and Zn(t) =

∫ t
0 zn(s) ds, i.e.,

Kn(t) =
n∑

j=1

ω−1
j f2(ωj) sin(ωjt) ∆ω (2.8)

Zn(t) = β−1/2
n∑

j=1

ω−1
j f(ωj) {ξj sin(ωjt) + ηj [1− cos(ωjt)]} (∆ω)1/2.

(2.9)

The integrated forcing function, Zn(t), is a centered Gaussian process
with auto-covariance,

EξηZn(t)Zn(s) = β−1 [Rn(t) + Rn(s)−Rn(t− s)] ,

where

Rn(t) =
∫ t

0
Kn(s) ds =

n∑
j=1

ω−2
j f2(ωj) [1− cos(ωjt)] ∆ω. (2.10)

Thus, Zn(t) has stationary (but not independent) increments,

Zn(t)− Zn(s) ∼ N
(
0, β−1Rn(t− s)

)
.

3. The thermodynamic limit

We now turn to analyze the “thermodynamic limit” of the above
model, that is, the asymptotic limit as n → ∞. We derive a SIDE
for the limiting process Q(t). The basic method is the same as in
[33, 32]. Some technical differences arise due to the singularity of
κn(t) as n → ∞. As a result, the second-order SIDE has to be
interpreted in the sense of generalized functions, in contrast with
the situation in [33, 32].

Consider first the kernel κn(t), defined by (2.5). It can be viewed
as a Monte-Carlo approximation of the integral∫ na+1/nc

1/nc
f2(ω) cos(ωt) dω,

which, as n →∞, tends to the Fourier cosine transform of f2(ω):

κ(t) =
∫ ∞

0
f2(ω) cos(ωt) dω =

a0

|t|γ
. (3.1)
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It is precisely in order to obtain this asymptotic limit that f2(ω) was
chosen as in (2.3).

Similarly, the kernel Kn(t), given by (2.8), can be viewed as a
Monte-Carlo approximation of

K(t) =
∫ t

0
κ(s) ds =

a0

1− γ
|t|1−γ , (3.2)

whereas Rn(t) approximates

R(t) =
∫ t

0
K(s) ds =

a0

(1− γ)(2− γ)
|t|2−γ . (3.3)

Finally, Zn(t) can be viewed as a Monte-Carlo approximation of the
stochastic integral:

Z(t) = β−1/2
∫ ∞

0
ω−1f(ω) sin(ωt) dB1(ω)+β−1/2

∫ ∞

0
ω−1f(ω)[1−cos(ωt)] dB2(ω),

where B1(ω), B2(ω) are independent standard Brownian motions.
This stochastic integral represents the (non-stationary) centered Gaus-
sian process whose auto-covariance is β−1 [R(t) + R(s)−R(t− s)],
a process which we identify as

Z(t) =
2β−1/2a0

(1− γ)(2− γ)
BH(t), (3.4)

where BH(t) is fractional Brownian motion with Hurst parameter
H = 1 − 1

2γ [35]. Unlike standard Brownian motion, the incre-
ments of fractional Brownian motion are not independent; for Hurst
parameter H > 1

2 , as is the case here, increments are positively cor-
related, meaning that if BH(t) is increasing in a certain interval, it is
likely to remain increasing in the future. The derivative of fractional
Brownian motion is often called a “1/fα-noise”, in reference to the
power-law behaviour of its auto-covariance. All these arguments are
made rigorous in the remaining part of this section.

We first prove that Kn, given by (2.8), converges to K, given by
(3.2), in L2[0, T ]; the interval [0, T ] is bounded, but arbitrary. Con-
vergence occurs for almost every set of frequencies (ν-a.s.). Having
proven the convergence of Kn, the convergence of Rn and the (weak)
convergence of Zn are immediate consequences.
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The kernel Kn(t) is of the form

Kn(t) =
n∑

j=1

h(ωj , t) ∆ω, (3.5)

where h(ω, t) = ω−1f2(ω) sin(ωt) satisfies

|h(ω, t)| ≤ C min
(
ωγ−1, ωγ−2

)
≡ h∗(ω), (3.6)

and C > 0 is a constant that may depend on T , γ, a, and c, but not
on n; throughout this section we use C as a generic notation for a
finite positive constant independent of n. We also define

µn(t) = Eνh(ω, t) =
1
na

∫ 1/nc+na

1/nc
h(ω, t) dω,

and observe that (3.6) implies that

|µn(t)| ≤ C

na
≡ µ∗n. (3.7)

It follows that EνKn = naµn converges uniformly to K; indeed,

|EνKn(t)−K(t)| ≤
∣∣∣∣∣
∫ 1/nc

0
h(ω, t) dω

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

1/nc+na
h(ω, t) dω

∣∣∣∣∣
≤ C

∣∣∣∣∣
∫ 1/nc

0
ωγ−1 dω

∣∣∣∣∣+ C

∣∣∣∣∫ ∞

na
ωγ−2 dω

∣∣∣∣
≤ C

[
n−cγ + n−a(1−γ)

]
,

(3.8)

which, for 0 < a, c < 1, converges to zero uniformly on [0, T ].

LEMMA 3.1. Let Kn(t) and K(t) be given by (2.8) and (3.2), re-
spectively. Then ν-a.s. Kn → K in L2[0, T ]:

Pν

(
lim

n→∞
‖Kn −K‖L2[0,T ] = 0

)
= 1.

Proof: The proof follows the lines of Lemma 3.1 in [33]. Since by
(3.8) EνKn(t) converges uniformly to K(t), it is sufficient to show
that ν-a.s. Kn − EKn → 0 in L2[0, T ], i.e., that for any ε > 0

Pν

(
‖Kn − EνKn‖L2[0,T ] > ε i.o.

)
= 0
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(i.o. = infinitely often), which, by the Borel-Cantelli theorem (see
e.g., [7]), holds if there exists an integer b for which

σn ≡ E‖Kn − EνKn‖2b
L2[0,T ] = E

(∫ T

0
|Kn(t)− EKn(t)|2 dt

)b

is summable. To evaluate σn we rewrite it as follows:

σn =
∫ T

0
· · ·
∫ T

0
E
{
|Kn(t1)− EKn(t1)|2 · · · |Kn(tb)− EKn(tb)|2

}
dt1 · · · dtb.

For any p = 1, 2, . . . , b,

Kn(tp)− EKn(tp) = ∆ω
n∑

j=1

[h(ωj , tp)− µn(tp)] ,

hence

σn = (∆ω)2b
∫ T

0
· · ·
∫ T

0

n∑
j1=1

· · ·
n∑

j2b=1

Vj1,...,j2b
(t1, . . . , tb) dt1 · · · dtb,

(3.9)
where

Vj1,...,j2b
(t1, . . . , tb) = E

{
[h(ωj1 , t1)− µn(t1)] [h(ωj2 , t1)− µn(t1)]

· · ·
[
h(ωj2b−1

, tb)− µn(tb)
]
[h(ωj2b

, tb)− µn(tb)]
}
, (3.10)

are the centered joint moments of degree 2b of h(ωj , tp).
Since ωj and ωi are independent for j 6= i, then many of these

moments vanish; every Vj1,...,j2b
(t1, . . . , tb) that contains an index j

which appears only once vanishes. We estimate σn by regrouping
the 2b-tuple sum (3.9) by the number k of distinct indices in the
product (3.10); k assumes values from 1 to b because each index
must occur at least twice, otherwise (3.10) is zero. The number of
terms corresponding to a given k can be bounded by Cnk, where C
is a constant that depends on b, but neither on k nor n (there are
nk ways to “decode” a k-letter pattern with an n-letter alphabet).
Now, each of the Vj1,...,j2b

(t1, . . . , tb) which corresponds to a given k
is of the form

Vj1,...,j2b
(t1, . . . , tb) =

k∏
r=1

1
na

∫ 1/nc+na

1/nc

mk∏
s=1

[h(ω, tr,s)− µn(tr,s)] ,
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where m1,m2, . . . ,mk ≥ 2 and m1 + m2 + · · ·+ mk = 2b; the times
tr,s belong to the set (t1, . . . , tb). Using the bounds (3.6) and (3.7)
on h(ω, t) and µn(t), Vj1,...,j2b

(t1, . . . , tb) can be bounded as follows:

|Vj1,...,j2b
(t1, . . . , tb)| ≤

k∏
r=1

(
1
na

∫ 1/nc+na

1/nc
[h∗(ω) + µ∗n]mr dω

)

≤ 1
nak

k∏
r=1

mr∑
`r=0

(
mr

`r

)
(µ∗n)mr−`r

∫ na

1/nc
[h∗(ω)]`r dω

≤ C

nak

k∏
r=1

mr∑
`r=0

(
mr

`r

)
(µ∗n)mr−`rnc(1−γ)`r

≤ C
n2c(1−γ)b

nak
.

Combining all together we have

σn ≤ C(∆ω)2b
b∑

k=1

nk n2c(1−γ)b

nak
≤ C

(
na

n

)2b

nb n2c(1−γ)b

nab
= Cnb[2c(1−γ)−(1−a)].

If we choose c < 1
2(1 − a)/(1 − γ) < 1

2(1 − a) then we can always
take b large enough so that σn is summable. �

COROLLARY 3.1.

1. ν-a.s. Rn(t) converges to R(t) pointwise.

2. ν-a.s. Rn(t), R(t) are uniformly (both in n and t) Hölder con-
tinuous with exponent α = 1

2 .

Proof: The first statement is an immediate consequence of the ν-a.s.
L2-convergence of Kn → K,

|Rn(t)−R(t)| =
∣∣∣∣∫ t

0
[Kn(s)−K(s)] ds

∣∣∣∣ ≤ T 1/2 ‖Kn−K‖L2[0.T ] → 0.

The second statement follows from Cauchy-Schwarz,

|Rn(t)−Rn(s)| =
∣∣∣∣∫ t

s
Kn(s) ds

∣∣∣∣
≤
(∫ t

s
ds′
)1/2 (∫ t

s
K2

n(s′) ds′
)1/2

≤ |t− s|1/2‖Kn‖L2[0,T ],
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and ‖Kn‖L2[0,T ] is uniformly bounded since Kn → K. �

THEOREM 3.2. ν-a.s. the random processes Zn(t), given by (2.9),
converge weakly in C[0, T ] to the fractional Brownian motion Z(t),
given by (3.4).

Proof: The proof relies on the following theorem (Gikhman and
Skorokhod [18], p. 450): Let Zn be a collection of real-valued almost-
surely continuous stochastic processes on [0, T ], such that

1. The finite dimensional distributions of Zn weakly converge to
those of an almost-surely continuous process Z.

2. There exist positive constants b, η, M such that for all n

E|Zn(t + u)− Zn(t)|b ≤ M |u|η

(the tightness condition).

Then Zn ⇒ Z in C[0, T ].
Kolmogorov’s condition ([31] p. 22) applied to Gaussian processes

states that Z has a continuous version if its auto-covariance is Hölder
continuous, as is the case since EνZ(t)Z(s) = β−1 [R(t) + R(s)−R(t− s)].
To show that the finite dimensional distributions of Zn converge
weakly to those of Z we need to show that for any collection of times
0 ≤ t1 < t2 < · · · < tk ≤ T , the joint probability density function of
(Zn(t1), . . . , Zn(tk)) converges pointwise to the joint probability den-
sity function of (Z(t1), . . . , Z(tk)). For Gaussian processes this task is
greatly simplified as it is sufficient to show the pointwise convergence
of the auto-covariance, which was established in Corollary 3.1.

It remains to show the tightness property. For integer b,

Eν |Zn(t + u)− Zn(t)|2b = (2n− 1)!!
(
Eν |Zn(t + u)− Zn(t)|2

)b

= 2bβ−b(2n− 1)!! [Rn(u)]b.

Since the Rn are uniformly Hölder continuous with exponent α = 1
2

and Rn(0) = 0, then |Rn(u)| ≤ C|u|1/2, and the tightness condition
is satisfied by taking b > 2. �

Comment: Tauberian theorems relate asymptotic properties of func-
tions to asymptotic properties of their integral transforms (e.g., [23]

Submit.tex; 22/04/2003; 11:14; p.12



13

p. 91). Thus, the power-law decay of κ(t), as t → ∞, results only
from the power-law divergence of f2(ω), as ω → 0 (in addition to
the requirement that the Fourier integral exists), and is insensitive
to the precise structure of f2(ω) at finite ω.

Having established the (ν-a.s.) convergence of Kn → K and
Zn ⇒ Z, we can now prove the weak convergence of Qn to a limiting
process:

THEOREM 3.3. Suppose that V ′(Q) is globally Lipschitz continu-
ous, then ν-a.s the random processes Qn(t), defined by (2.4), weakly
converge in C1[0, T ] to the process Q(t) satisfying the SIDE:

Q̇(t) +
∫ t

0
K(t− s)Q̇(s) ds +

∫ t

0
V ′(Q(s)) ds = P0 + Z(t). (3.11)

Proof: Since ν-a.s. Kn → K in L2[0, T ] (in particular, in L1[0, T ])
and Zn ⇒ Z in C[0, T ], then the required result follows if the map-
ping (K, Z) 7→ Q defined by (3.11) is a continuous mapping from
L1[0, T ] × C[0, T ] to C1[0, T ] (weak convergence is preserved under
continuous mappings). This continuity is a well-known property of
the Volterra equation (see [38, 21] and Section 12 in [25]). �

Comment: Since the original system (2.4) is a second order IDE,
we rewrite (3.11) as

Q̈(t) +
∫ t

0
κ(t− s)Q̇(s) ds + V ′(Q(t)) = z(t), (3.12)

where z(t) = Ż(t) is a generalized random process, namely, a Gaus-
sian noise with auto-covariance Ez(t)z(s) = β−1κ(t− s).

4. Solutions of the generalized Langevin equation

In this section we study the generalized Langevin equation (3.12),
which, as just shown, governs the weak limit Q(t) of the trajectories
Qn(t); the weak limit is with respect to the initial data ξj , ηj , and
is attained almost surely with respect to the random frequencies νj .
Throughout this section, expectations and variances are with respect
to the initial data, but will be denoted for convenience by simply E
and Var.

We solve (3.12) in two particular cases: for a free particle, V (Q) =
0, and for a particle in a quadratic potential, V (Q) = 1

2Q2. In the
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first case the process diffuses anomalously from its initial position. In
the second case it approaches, as t →∞, a stationary distribution—
the equilibrium Boltzmann distribution. These two cases are solvable
since (3.12) is then linear, and can be solved by standard methods;
see e.g. [44]. Since z(t) is a Gaussian (generalized) process, Q(t)
obtained by a linear mapping of z(t) is also Gaussian. It follows that
the statistics of the trajectories Q(t) are fully determined by the
mean EQ(t) and the auto-covariance Cov(Q(t), Q(s)).

4.1. Free particle

We start with the case of a free particle, V (Q) = 0, so that Q(t)
solves the SIDE

Q̈(t) +
∫ t

0
κ(t− s)Q̇(s) ds = z(t). (4.1)

Equations of this type are commonly solved using the Laplace trans-
form. We denote the Laplace transform of a function Y (t) by

Ŷ (p) =
∫ ∞

0
Y (t)e−pt dt.

Transforming equation (4.1), using the fact that convolutions trans-
form into products, we obtain

−P0 −Q0p + p2 Q̂(p) + κ̂(p)
[
−Q0 + p Q̂(p)

]
= ẑ(p). (4.2)

Note that the Laplace transform turns generalized functions, such as
z(t), into classical functions.

Introducing the functions H(t) and h(t) = Ḣ(t), which we define
by their transforms:

Ĥ(p) = p−1[p + κ̂(p)]−1, ĥ(p) = [p + κ̂(p)]−1,

the solution to (4.2) is

Q̂(p) =
Q0

p
+ P0Ĥ(p) + Ĥ(p)ẑ(p).

Reverting to t space we get:

Q(t) = Q0 + P0H(t) +
∫ t

0
H(t− s)z(s) ds

P (t) = P0h(t) +
∫ t

0
h(t− s)z(s) ds,

(4.3)
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Since Ez(t) = 0 it follows that

µQ(t) = EQ(t) = Q0 + P0H(t)
µP(t) = EP (t) = P0h(t).

(4.4)

Equation (4.3) implies that H(0) = 0 and h(0) = 1. Hence,

̂̇
h(p) = −1 +

p

p + κ̂(p)
= − κ̂(p)

p + κ̂(p)
= −κ̂(p)ĥ(p),

or in t space,

ḣ(t) = −
∫ t

0
κ(t− s)h(s) ds

Ḣ(t) = 1−
∫ t

0
κ(t− s)H(s) ds.

(4.5)

We proceed to calculate the variances of the displacement and the
momentum,

σQQ(t) = Var Q(t) = β−1
∫ t

0
H(t− s1)

∫ t

0
H(t− s2)κ(s1 − s2) ds2ds1

σPP(t) = Var P (t) = β−1
∫ t

0
h(t− s1)

∫ t

0
h(t− s2)κ(s1 − s2) ds2ds1

(4.6)
where the relation Ez(t)z(s) = β−1κ(t − s) has been used. Substi-
tuting (4.5) we finally obtain, after some manipulations,

βσQQ(t) = 2
∫ t

0
H(s) ds−H2(t)

βσPP(t) = 1− h2(t).
(4.7)

To summarize, the statistics of Q(t), P (t) at time t satisfy

Q(t) ∼ N (µQ(t), σQQ(t)) P (t) ∼ N (µP(t), σPP(t)) ,

with µQ(t), µP(t) and σQQ(t), σPP(t) given by (4.4) and (4.7), respec-
tively.

So far, the kernel κ(t) was assumed arbitrary. In this paper κ(t) =
a0 t−γ , or in p-space,

κ̂(p) = a0
Γ(1− γ)

p1−γ
≡ k0 pγ−1 and ĥ(p) =

1
p + k0pγ−1

.
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The inverse Laplace transform of ĥ(p) is expressible in terms of a
special function

h(t) = E2−γ

(
−k0t

2−γ
)

,

where Eα(t) are the Mittag-Leffler functions [13] defined by the series
expansion,

Eα(t) =
∞∑

n=0

tn

Γ(αn + 1)
.

We also introduce the generalized Mittag-Leffler functions,

Eα,β(t) =
∞∑

n=0

tn

Γ(αn + β)
,

so that Eα(t) = Eα,1(t). The Mittag-Leffler functions play an impor-
tant role in fractional differential calculus; they are a generalization
of the exponential function, and reduce to it for α = 1. The long-time
behaviour of Eα,β(t) is

Eα,β(t) ∼ − t−1

Γ(β − α)
t →∞. (4.8)

A direct term-by-term calculation shows that for all α, β∫ t

0
sβ−1Eα,β(−k0s

α) ds = tβ Eα,β+1(−k0t
α),

hence

H(t) = t E2−γ,2

(
−k0t

2−γ
)

,

∫ t

0
H(s) ds = t2 E2−γ,3

(
−k0t

2−γ
)

,

which combined with (4.7) gives,

βσQQ(t) = 2t2 E2−γ,3

(
−k0t

2−γ
)
−
[
t E2−γ,2

(
−k0t

2−γ
)]2

βσPP(t) = 1−
[
E2−γ

(
−k0t

2−γ
)]2

.
(4.9)

The long-time asymptotic behaviour of the variances is obtained by
substituting (4.8),

βσQQ(t) ∼ 2
k0 Γ(1 + γ)

tγ , βσPP(t) ∼ 1− t2(γ−1)

[k0 Γ(γ − 1)]2
. (4.10)
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Thus, the limiting behaviour of free particle is sub-diffusive with
exponent γ. Graphs of βσQQ(t) and βσPP(t) for three values of γ
are shown in Figure 4.1. Normal diffusive behaviour is recovered as
γ → 1. The particularly remarkable property of sub-diffusion is the
slow approach of σPP(t) toward its equilibrium value β−1. This is
in contrast with the exponential equilibration rate of the velocity
variance in a diffusive regime.

4.2. Quadratic potential well

We next consider the case of a particle in a quadratic potential well,
V (Q) = 1

2Q2. The trajectory Q(t) satisfies the SIDE

Q̈(t) +
∫ t

0
κ(t− s)Q̇(s) ds + Q(t) = z(t). (4.11)

Here again, the equation is linear hence Q(t) is a Gaussian process.
As in the previous subsection, we use the Laplace transform; equation
(4.11) transforms into

−P0 −Q0p + p2 Q̂(p) + κ̂(p)
[
−Q0 + p Q̂(p)

]
+ Q̂(p) = ẑ(p). (4.12)

Introducing the functions H1(t) and h1(t) = Ḣ1(t) defined by

Ĥ1(p) = [p2 + p κ̂(p) + 1]−1, ĥ1(p) = p[p2 + p κ̂(p) + 1]−1,

The solution to (4.12) is

Q̂(p) =
Q0

p
+
(

P0 −
Q0

p

)
Ĥ1(p) + Ĥ1(p)ẑ(p).

Note the structural similarity between this case and the free particle
case. There is however a fundamental difference, which arises from
the different asymptotic behaviours of Ĥ(p) and Ĥ1(p) as p → 0.
Small p asymptotic behaviour in the Laplace domain determines the
large t asymptotic behaviour in the time domain. Thus, trajectories
diffuse away for the free particle, and remain bounded for a confin-
ing potential (a potential V (Q) is called confining if the Boltzmann
factor e−βV (Q) is normalizable).
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Reverting to the time domain, the solution to (4.11) is

Q(t) = Q0 + P0H1(t)−Q0

∫ t

0
H1(s) ds +

∫ t

0
H1(t− s)z(s) ds

P (t) = P0h1(t)−Q0H1(t) +
∫ t

0
h1(t− s)z(s) ds,

(4.13)
so that

µQ(t) = Q0 + P0H1(t)−Q0

∫ t

0
H1(s) ds

µP(t) = P0h1(t)−Q0H1(t).

The variance of Q(t) and P (t) is given by (4.6) with H(t) and h(t)
replaced by H1(t) and h1(t). Here too, simplified expressions can be
derived. Noting that

̂̇
h1(p) = −1+

p2

p2 + p κ̂(p) + 1
= − p κ̂(p) + 1

p2 + p κ̂(p) + 1
= −κ̂(p)ĥ1(p)−Ĥ1(p),

we obtain

ḣ1(t) = −
∫ t

0
κ(t− s)h1(s) ds−H1(t)

Ḣ1(t) = 1−
∫ t

0
κ(t− s)H1(s) ds−

∫ t

0
H1(s) ds

and after straightforward manipulations:

βσQQ(t) = 2
∫ t

0
H1(s) ds−H2

1 (t)−
[∫ t

0
H1(s) ds

]2
βσPP(t) = 1− h2

1(t)−H2
1 (t).

(4.14)

Figure 4.2 shows graphs of the functions h1(t), H1(t), and
∫ t
0 H1(s) ds

for γ = 0.6; these curves were obtained by numerically inverting the
Laplace transform [10]. In Figure 4.3 we show βσQQ(t) and βσPP(t),
given by (4.14). Both approach, as t →∞, to the equilibrium value
1. Note the very slow algebraic decay of σQQ(t).
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5. Markovian approximation of the generalized Langevin
equation

The generalized Langevin equation (3.12) defines a non-Markovian
process. In the previous section we considered particular cases where
the equation is linear, and can therefore be solved by analytical
methods. Markovian systems can be analyzed through the differ-
ential equations that determine the evolution on the one- and multi-
dimensional PDFs— the Fokker-Planck equation for system driven
by white noise [17]. It is not known, in general, how to derive such
differential equations for non-Markovian system (a general formalism
does exist [42, 19], but does not provide closed equations without
further approximation). A classical approach is to approximate the
non-Markovian system by a Markovian one, through the addition of
auxiliary variables. This approach was already proposed by Mori [40]
in the context of the Mori-Zwanzig projection formalism [41, 53]; see
also [20]. It was further developed and applied in a series of papers by
K losek-Dygas et al. [12, 11]. Recently, a Markovian approximation
was used for 1/fα-noise [34]; it is this approximation which we adopt
in this section.

We rewrite the generalized Langevin equation as a first-order
system:

Q̇(t) = P (t)

Ṗ (t) = −V ′(Q(t))−
∫ t

0
κ(t− s)P (s) ds + z(t),

recalling that z(t) is a stationary centered Gaussian process with
auto-covariance

Ez(t)z(s) = β−1κ(t− s)

The goal is to approximate the trajectories (Q(t), P (t)) by trajec-
tories (Q̃(t), P̃ (t)) that solve a Markovian system with m auxiliary
variables:

dQ̃(t) = P̃ (t) dt Q̃(0) = Q0

dP̃ (t) = −
[
V ′(Q̃(t))− gT u(t)

]
dt P̃ (0) = P0

du(t) = −
[
P̃ (t)g + Au(t)

]
dt + C dB(t) u(0) ∼ N(0, Σ),

(5.1)
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where u(t) = (u1(t), . . . , um(t))T , g is a constant m-vector, A,C,Σ
are constant m×m matrices, and B(t) is a vector of m independent
standard Brownian motions.

The equation for u(t) is linear, and its solution can be written
explicitly; after multiplication by the row vector gT we obtain

gT u(t) = −
∫ t

0
κ̃(t− s)P̃ (s) ds + z̃(t),

where
κ̃(t) = gT e−Atg

z̃(t) = gT e−Atu(0) +
∫ t

0
gT e−A(t−s)C dB(s).

Since gT u(t) represents in (5.1) the interaction term between the heat
bath and the distinguished particle, the parameter A,C, Σ, g have to
be chosen such that z̃(t) is a stationary centered Gaussian process
with auto-covariance β−1κ̃(t), the latter being an approximation of
β−1κ(t).

By our choice of u(0), z̃(t) is a centered Gaussian process with
auto-covariance

Ez̃(t)z̃(s) = gT e−At
[
Σ +

∫ t∧s

0
eAτCCT eAT τ dτ

]
e−AT sg.

Comparing with the expression for κ̃(t) we need

Σ +
∫ s

0
eAτCCT eAT τ dτ = β−1eAseAT s,

which is satisfied if

Σ = β−1I, CCT = β−1
(
A + AT

)
. (5.2)

Thus, A and g determine Σ and C.
The relation between the parameters A,g and the kernel is best

viewed through the Laplace transform of κ̃(t),

̂̃κ(p) =
∫ ∞

0
e−ptgT e−Atg dt = gT (A + pI)−1g. (5.3)

The right hand side is a rational function of p; the numerator is a
polynomial of degree m− 1 and the denominator is a polynomial of
degree m. Thus, the Markovian approximation consists of two steps:
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First one has to approximate the Laplace transform of the memory
kernel by a rational function. Then, a matrix A and a vector g have
to be constructed such to yield the required ̂̃κ(p) via (5.3). The first
step invokes approximation theory whereas the second step is made
systematic within linear system theory (see e.g. Zadeh and Desoer
[51]).

Exponential approximation. The simplest case occurs when κ(t)
can be approximated by a sum of exponentials:

κ̃(t) =
m∑

k=1

∆2
k e−αkt,

αk > 0, which corresponds in p-space to

̂̃κ(p) =
m∑

k=1

∆2
k

p + αk
.

This approximation is realized by taking A diagonal with elements
Aii = αi > 0, and g = (∆1, ∆2, . . . , ∆m)T .

Jacobi-fractions. Another class of problems is when κ̂(p) has a
continued fraction representation in the form of a Jacobi fraction
[49]: ̂̃κ(p) =

∆2
1

p + α1 +
∆2

2

p + α2 +
∆2

3

p + α3 +
.. .

, (5.4)

where the αk are positive. Approximating κ̂(p) by its m-th conver-
gent, this approximation can be realized by taking A tridiagonal of
the form

A =


α1 −∆2

∆2 α2 −∆3

∆3 α3 −∆4

. . . . . . . . .
∆m αm


and g = (∆1, 0, . . . , 0)T . Since A + AT is diagonal, so is C with
Cii =

√
2αi. Continued fraction approximations of this type are used
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by K losek-Dygas et al. [12, 11]. A GLE based on a continued fraction
expansion was also constructed by Adelman and Doll for a particle
interacting with an harmonic chain [2].

Comment: If A is diagonalizable, A = T−1ΛT , then (5.1) can be
brought into the equivalent form

dQ̃(t) = P̃ (t) dt Q̃(0) = Q0

dP̃ (t) = −
[
V ′(Q̃(t))− gT Tv(t)

]
dt P̃ (0) = P0

dv(t) = −
[
P̃ (t)T−1g + Λv(t)

]
dt + T−1C dB(t) v(0) ∼ T−1N(0, Σ),

where the equations for v1(t), . . . , vm(t) are now decoupled, i.e., an
exponential approximation of the memory kernel can be constructed.

In this paper the memory kernel has Laplace transform κ̂(p) =
Γ(1 − γ) pγ−1, 0 < γ < 1. A Markovian approximation for the
case γ = 1/2 is constructed by Landis et al. [34], and the same
construction can be applied for arbitrary γ . For γ = 1/2 we have
the continued-fraction representation:

̂̃κ(p) =
Γ(1− γ)

1 +
1

2
p− 1

+
1

2 +
1

2
p− 1

+
1

2 +
.. .

,

whose first four convergents are

̂̃κ1(p) =
2Γ(1− γ)

p + 1

̂̃κ2(p) =
2Γ(1− γ) (2p + 2)

p2 + 6p + 1

̂̃κ3(p) =
2Γ(1− γ) (3p2 + 5p + 3)

p3 + 15p2 + 15p + 1

̂̃κ4(p) =
2Γ(1− γ) (4p3 + 28p2 + 28p + 4)

p4 + 28p3 + 70p2 + 28p + 1
.
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A direct verification shows that this approximation is realized by the
choice

A =


1 2 2 2 · · · 2
2 5 6 6 · · · 6
2 6 9 10 · · · 10
...

...
...

. . .
2 6 10 14 · · · 4m− 3

 g =
√

2Γ(1− γ)


1
1
1
...
1

 . (5.5)

The matrix C is subsequently extracted from (5.2).
In Figure 5.1 we compare the function 1/p1/2 with the m-th

convergent ̂̃κm(p) for m = 2, 4, 8, 16. For the 16-th convergent the
graphs are indistinguishable over almost five decades.

The Markovian approximation (5.1) with A, g given by (5.5) can
be solved for the two problems considered in Section 4. One only has
to replace κ̂(p) by ̂̃κ(p) and numerically invert the Laplace transform.
Consider the free particle: in Figure 5.2 we compare σQQ(t) given by
(4.10) with β = 1 and γ = 1/2 (solid line) with the result of the
Markovian approximation with m = 2, 4, 8 (dashed lines). The larger
m the longer is the intermediate asymptotic regime of anomalous
diffusion. For m = 8 the curves almost coincide up to time t = 120.

6. Comparison with the fractional Fokker-Planck equation

For a particle satisfying a Markovian equation driven by random
noise, the phase space density w(Q,P, t) is governed by a Fokker-
Planck equation (FPE) [17]. In the limit of high friction the FPE may
be reduced into a Smulochowsky equation for the marginal density
W (Q, t):

∂

∂t
W (Q, t) = LW (Q, t),

where

Lg(Q) = KD

[
− ∂

∂Q
V ′(Q) +

∂2

∂Q2

]
g(Q),

and KD is a diffusion constant. (We are assuming here unit temper-
ature and a dimensionless setting in which dimensional constants,
such as the Boltzmann constant, can be ignored.) The terminology
used in the literature is non-uniform; the equation for w(Q,P, t) is
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sometimes called a Klein-Kramers equation, whereas the equation
for W (Q, t) is sometimes called a Fokker-Planck equation.

Several authors addressed generalizations of the Fokker-Planck
equation for non-Markovian systems that exhibit fractional diffusion.
One such generalization is the fractional Fokker-Planck equation
(FFPE):

∂

∂t
W (Q, t) = 0D

1−γ
t LW (Q, t), (6.1)

where 0D
1−γ
t is the Riemann-Liouville fractional derivative [43]

0D
1−γ
t g(t) =

1
Γ(γ)

∂

∂t

∫ t

0

g(s)
(t− s)1−γ

ds.

The formal solution of (6.1) can be expressed in terms of the Mittag-
Leffler function:

W (Q, t) = Eγ(Ltγ) W (Q, 0).

The attractive features of the FFPE are: (i) W (Q, t) remains non-
negative and normalized, as required by a probability density. (ii)
In the presence of a stationary potential, V (Q), the distribution
tends as t → ∞ to the Boltzmann distribution exp[−V (Q)]. (iii)
The relaxation rate is sub-exponential; in fact, the solution operator
of the FFPE is expressible in terms of Mittag-Leffler functions. (iv)
The FFPE tends to a normal Fokker-Planck equation as γ → 1. (v)
Finally, the FFPE can be shown to be the correct governing equation
in certain cases. For example, it is the limiting master equation for
continuous time random walk [5]. The literature on the FFPE is too
vast to be fully covered. We address to reader to [45, 37, 5, 4] for
recent developments.

Comment: Several authors derived fractional diffusion equations
for solutions to linear SIDE [26, 50, 36, 44]. The drawback of these
derivations is that they are restricted to the problem at hand; in
order to construct the diffusion equation one has to know before-
hand the evolution of the probability density. These fractional diffu-
sion equations are not used as a predictive tool; they are merely a
reformulation of a result that can be obtained independently.

In the rest of this section we solve the FFPE (6.1) for a free
particle and compare the solution with the Gaussian distribution
derived in Section 4. A general method for solving the FFPE, based
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on an integral transform that maps fractional diffusion into normal
diffusion, was presented by Barkai [4]. The case of a free particle can
be solved by more direct methods; we follow here [5].

The FFPE for a free particle is

∂

∂t
W (Q, t) = 0D

1−γ
t

[
KD

∂2

∂Q2
W (Q, t)

]
, (6.2)

where we take W (Q, 0) = δ(Q). A solution for this problem was
derived by Schneider and Wyss [45], expressible in terms of the Fox
H function [16]. From a computational point of view it is easier to
solve (6.2) in p-space and revert back to t-space using a numerical
inversion of the Laplace transform. Using the fact that fractional
derivatives satisfy the transformation rule

0D
1−γ
t g(t) 7→ p1−γ ĝ(p),

equation (6.2) reads in p-space

−δ(Q) + pŴ (Q, p) = KDp1−γ ∂2

∂Q2
Ŵ (Q, p),

and W (Q, p) vanishes as |Q| → ∞. This equation can be solved by
standard methods, yielding

Ŵ (Q, p) =
1

2 K
1/2
D p1−γ/2

exp

(
− pγ/2

K
1/2
D

|Q|
)

.

In Figure 6.1 we plot W (Q, t) for γ = 0.6 and t = 0.5, 1, 2, 4, 8.
Note the sharp non-Gaussian shape of the solution, in contrast with
the Gaussian distribution of Q(t). In addition to the cusp at Q =
0, the large-Q tail of the distribution also exhibits non-Gaussian
behaviour; as Q →∞

W (Q, t) ∼ Q−1

(
Q2

tγ

)1−γ/2

exp

−c

(
Q2

tγ

)1/(2−γ)
 ,

where c is a constant that depends on γ and on KD [5].
Thus, we conclude that the FFPE does not apply to the GLE

(3.12). As mentioned above, it is possible to derive diffusion equa-
tions for W (Q, t) both for the free particle and for the quadratic
potential, but these equations do not generalize for other cases.
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7. Numerical results

In this section we present numerical results for the Hamiltonian sys-
tem (2.2) and provide some comparison with the Markovian approx-
imation (5.1) with A, g, C, Σ given by (5.5) and (5.2). To integrate
(2.2) we used a symplectic Euler scheme ([24] p. 312), which is known
to exhibit good stability properties, and in particular, allows the use
of relatively large time steps [48, 25]. The results presented below
are for heat baths consisting of n = 2000 particles; we used a = 1/3
and c = 1

2(1 − a) in the selection of the random frequencies. En-
semble averages were calculated by averaging over collections of 104

realizations. Only small variations were found when the number of
particles was increased to n = 5000 or when the size of the ensemble
was increased.

In Figure 7.1 we show a sample path of Qn(t) for the case of a
free particle, V (Q) = 0 and γ = 0.6.

In Figure 7.2 we show the evolution of the variance of Qn(t) and
Pn(t) for a free particle with initial conditions Q0 = P0 = 0. The
thick line corresponds to the statistics generated by 104 realizations.
The dotted lines are the n → ∞ theoretical predictions σQQ(t)
and σPP(t), given by (4.9). For Var Qn(t) the two curves are almost
indistinguishable up to t = 6. The agreement between Var Pn(t)
and σPP(t) is less sharp; in particular, Var Pn(t) oscillates around its
asymptotic value 1, which we interpret as a sampling error.

In Figure 7.3 we show the evolution of the distribution of Qn(t)
generated by an ensemble of 104 realizations. The top figure shows
snapshots of the distribution, which, as t increases, approaches the
Boltzmann distribution (thick dashed line). The figure on the bottom
show the evolution of Var Qn(t) and Var Pn(t), which we compare
to the n → ∞ predictions σQQ(t) and σPP(t), given by (4.14). The
agreement is again very good, except for the persistent fluctuations
in Var Pn(t).

In Figure 7.4 we show the evolution of the distribution of Qn(t) for
a particle in a double-well potential, V (Q) = Q4/4−Q2/2. Here too,
the distribution approaches, as t → ∞, the equilibrium Boltzmann
distribution.

So far, the statistical analysis was generated by evolving ensem-
bles. It is also of interest to compare ensemble averages with long
term time averages generated by sample paths. Jakšić and Pillet
studied the ergodicity of GLEs [30], but it is not known whether
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the finite n system is ergodic and if it is, whether the sequence of
invariant measures converges to the invariant measure of the limiting
equation (recall that our theorems are restricted to bounded time
intervals). In Figure 7.5 we show the empirical distribution for a
particle in a single-well potential (open circles), and compare it with
the Boltzmann distribution (dashed line). In Figure 7.6 we repeat the
calculation for a double-well potential. Our results indicate that the
process is indeed ergodic, however, the convergence of the empirical
distribution requires very long averaging intervals (cf. [33]). This is
due, presumably, to the very long correlation time associated with
the algebraic decay of the memory kernel.

Finally, we compare the Hamiltonian system (2.2) with the Marko-
vian approximation (5.1). In Figure 7.7 we show the distribution
of exit times1, τ , from a potential well. We used the double-well
potential V (Q) = Q4/4−Q2/2 and started the distinguished particle
in the left well, assigning initial conditions Q0 = −1, P0 = 0. We ran
104 realizations, defining the exit time as the first crossing time of
the point Q = 0. The solid lines represent the distribution of τ for
the Hamiltonian system with n = 2000 and γ = 1/2. The symbols
represent the distribution of τ for the SDE (5.1) with m = 4 (circles)
and m = 8 (crosses). The agreement is very good, and the difference
between 4 and 8 auxiliary variables is very small, probably dominated
by sampling errors.

8. Concluding remarks

We presented a simple particle-in-a-heat-bath model, which gives
rise to fractional kinetics. While anomalous diffusion strictly occurs
only in the limit of an infinitely large heat bath, thousands of heat
bath particle suffice to observe anomalous diffusion over tens of time
units. Indeed, anomalous diffusion should be viewed as intermediate
asymptotics when the relaxation time is larger than the observation
time. The limiting process was found to satisfy a SIDE driven by

1 The problem of exit times for non-Markovian process was studied extensively
in the context of activation rate theory. Kramers’ theory and its extension to
systems with memory kernels is reviewed by Hänggi et al. [28]. The original work
can be found in Grote and Hynes [22], Hänggi and Mujtabai [27], and Carmeli and
Nitzan [9]; numerical tests for an exponential memory function were conducted
by Straub et al. [46, 47].
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1/fα-noise. Since the limiting driving noise was Gaussian, the SIDE
could be approximated by a Markovian SDE through the addition of
auxiliary variables. Our numerical results show that the trajectories
induced by a heat bath of a large number of particles may be well
approximated by an SDE with, say, four extra variables. This work
generalizes some of the results in [33] where an exponential memory
was eliminated by the addition of one extra variable.

We note that the method of Markovian approximation applies
only for the case where the driving noise is Gaussian and the memory
term is linear. The treatment of SIDEs driven by non-Gaussian noise
is an open problem. While the FFPE was found inadequate in the
present problem is may well be appropriate for other classes of non-
Markovian systems with diverging relaxation times.
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Figure 4.1. σQQ(t) (top) and σPP(t) (bottom) for k0 = Γ(1 − γ), β = 1, and
γ = 1/3 (solid lines), γ = 1/2 (dashed lines) and γ = 2/3 (dash-dotted lines).
The dotted lines in the top graph show the asymptotic solutions (4.10).
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Figure 4.2. The functions h1(t) (solid line), H1(t) (dashed line), and
∫ t

0
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(dash-dotted line) for γ = 0.6.
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Figure 4.3. βσQQ(t) (solid line) and βσPP(t) (dashed line) for k0 = Γ(1− γ) and
γ = 0.6.
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Figure 5.1. Solid line: Log-log graph of the function 1/p1/2. Dashed lines:
continued fraction approximation with m = 2, 4, 8, and 16 terms.
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Figure 5.2. Solid line: σQQ(t) for a free particle with γ = 1/2 and β = 1. Dashed
lines: σQQ(t) for the Markovian approximation with m = 2, 4, 8.
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Figure 6.1. Solution of (6.2): W (Q, t) versus Q for t = 0.5, 1, 2, 4, 8 and γ = 0.6.
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Figure 7.1. Sample path of Qn(t) for a system of n = 2000 oscillators and γ = 0.6.
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Figure 7.2. The mean square displacement Qn(t) (top) and mean square momen-
tum Pn(t) (bottom) for a free particle in initial state Q0 = P0 = 0 and γ = 0.6.
The thick lines were obtained by averaging over 3000 realizations. The dotted
lines represent the asymptotic predictions (4.9).
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Figure 7.3. Top: snapshots of the distribution of an ensemble of 104 trajec-
tories for a particle in a single-well potential V (Q) = Q2/2, initial data
Q0 = P0 = 0, and γ = 0.6. The solid lines show the distribution at times
t = .5, .6, .7, .8, .9, 1, 2, 4, 8. The dashed line corresponds to the Boltzmann dis-
tribution. Bottom: time evolution of Var Qn(t) (thick solid line) and Var Pn(t)
(thick dashed line). The dotted lines are the n→∞ predictions (4.14).
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Figure 7.4. Snapshots of the distribution of an ensemble of 104 trajectories
for a particle in a double-well potential V (Q) = Q4/4 − Q2/2, initial data
Q0 = P0 = 0, and γ = 0.6. The solid lines show the distribution at times
t = .5, .6, .7, .8, .9, 1, 2, 4, 8. The dashed line corresponds to the Boltzmann
distribution.
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Figure 7.5. Open circles: empirical distribution of Qn for a particle in a single-well
potential V (Q) = Q2/2 and γ = 0.6; the distribution was calculated over a sample
path of length T = 50000. Dashed line: the Boltzmann distribution.

Figure 7.6. Same as Figure 7.5 for a double-well potential V (Q) = Q4/4−Q2/2.
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Figure 7.7. Distribution of exit times from the potential-well
V (Q) = Q4/4 − Q2/2 for initial data Q0 = −1, P0 = 0; the exit time is
defined as the first passage time through the point Q = 0. The distributions
are based on ensembles of 104 realizations. The solid line corresponds to the
Hamiltonian system (2.2) with n = 2000 particles and γ = 1/2; the dashed line
corresponds to the Markovian approximation (5.1) with m = 4 (circles) and
m = 8 (crosses). The temperature is β−1 = 1 (top) and β−1 = 4 (bottom).
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