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ON THE RATE OF CONVERGENCE OF THE CORE*

By ROBERT J. AUMANN!

1. INTRODUCTION

The classical theorem of Debreu and Scarf [1963] asserts that the core of a
replicated pure exchange economy tends to the set of its competitive allocations
as the index k of the replication (the number of traders of each type) tends to
infinity. In separate contributions that complement each other nicely, Shapley
[1975] and Debreu [1975] have investigated the rate of this convergence.
Shapley showed that with C! utility functions, the convergence can be as slow as
one wishes; whereas Debreu showed that when the utility functions are C2? and
the indifference surfaces have positive Gaussian curvature, the rate of convergence
is generically O(1/k). Here ‘‘generically” means that for fixed utilities, the rate
O(1/k) will obtain except possibly when the initial allocation lies in a closed set of
Lebesgue measure 0.

These developments, though they went far toward settling the question of the
rate of convergence, still left a gap. Shapley’s example depends critically on an
essential discontinuity in the second derivative: it becomes unbounded in the
neighborhood of the unique competitive allocation. In the introduction to his
paper, he speculates that ‘‘a condition that bounds the second derivatives...
might suffice” to assure O(1/K). On the other hand, the generic nature of
Debreu’s theorem leaves open the possibility of slow convergence even when the
second derivative is bounded and in fact continuous.

Here we will show that the condition of genericity in Debreu’s theorem cannot
be removed; i.e., there are C? (in fact C®) utility functions, with indifference
surfaces that have positive Gaussian curvature, where the core converges as slowly
as we like.

2. THE EXAMPLE

First, some definitions. A null sequence is a sequence {5,} of positive numbers
tending to 0. A market is a pure exchange economy with a finite number n of
goods, a finite number m of agents, and consumption sets all equal to R%; it is
smooth if the utility functions are? C? and strictly quasiconcave, and have posi-
tive first derivatives and indifference surfaces with positive Gaussian curvature.

* Manuscript received October 27, 1977; revised January 30, 1978.

1 This work was supported by National Science Foundation Grant SOC 74-11446 at the
Institute for Mathematical Studies in the Social Sciences, Stanford University.

¢ A function is called C? on R? if it is C? on Int R?, continuous on R?, and the second partial
derivatives can be extended to continuous functions on R?.
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Given a smooth market M, its k-replication M, is the smooth market with km
agents and n goods, in which there are k agents corresponding to each agent of
M and having the same utility and endowment as that agent; these k agents are
said to be of the same type. By the ‘‘equal treatment principle” (Debreu and
Scarf [1963]), each allocation in the core of M, assigns the same commodity
vector to agents of the same type; therefore each core allocation in M, corresponds
to an allocation in M. The set of all allocations in M corresponding to core-
allocations in M, will be denoted C,. Let W be the set of Walras (i.e., competi-
tive) allocations of M; the Debreu-Scarf Theorem says that max {d(x, W): x
€ C,}—0 as k—oo, where d(x, W) denotes the Euclidean distance from the point
x to the compact set W..

~'THEOREM. Let {6,} be a null sbequenee. Then there is a smooth market M
such that : : ’

M max {d(x, W): xeCJ > 5,
for all k.

Proor. It is sufficient to prove (1) for all sufficiently large k, since by in-
creasing the scale of the market we can multiply the left side of (1) by as large a
constant as we want (simultaneously for all k); this will overcome any deficiency
in (1) for any finite number. of k’s. .

Before writing down formulas, let us describe the construction geometrically.
The markets we consider will have two goods and two agents (before replication).
We start out by recalling the condition for an allocation x in such a market to be
in C,. Letting e be the initial allocation, set

@ PG = x + 1 (= o),

hk(x)=x—%(x— e).

Then

(3) xeC,if and only if xe C, and both agents weakly prefer x to both h*(x)
and h(x).

Essentially, this is the condition of Edgeworth [1881, p. 37]. The proof is also
indicated in Shapley [1975], and moreover it is a straightforward matter to verify
it directly. The condition is illustrated in the Edgeworth box of Figure 1. The
point x is in C,.because both h*(x) and h,(x) are ““beneath” the indifference curve
for x from the point of view of both agents; whereas y is not in C,, as h(y) is
above the indifference curve of y for agent 1;i.e., agent 1 prefers h(y) to'y.
Rathet than proceeding immediately with the construction of M, we construct
first an auxiliary market M*, illustrated in the Edgeworth box of Figure 2. Note
the contract curve, which for definiteness we can think of as the diagonal of the
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box, and the initial allocation e, which is assumed not to be on the contract
curve. The only special feature we require of M* is that every point in some
non-degénerate interval I along the contract curve be a Walras allocation. Ob-
viously these conditions can be satisfied in a smooth market.

Let us denote the lower (from agent 1’s standpoint) endpoint of I by w (see
Figure 3). To contruct M from M* we choose a sequence of points a, on I whose
distance from w is, for sufficiently large k, precisely &,. Since a, is a Walras
allocation in M*, the point a, is strictly preferred in M* by both agents to both
h*(a,) and h(a,). Let us now modify the utilities so that the slopes of the two
indifference curves at g, are very slightly changed, but remain equal to each other.
Then a, remains in the contract curve but is no longer a Walras allocation; more-
over, if the change in the utilities is sufficiently small, a, will still be preferred to
both h*(a,) and h,(a,), and so will be in C, (see Figure 3). If we make sure that
the slopes of the indifference curves at all points of I except w are changed (but
remain equal to each other), then [ remains part of the contract curve C,, but
there will be no Walras allocations in I other than w. Thus for sufficiently large k,

max {d(x, W): xeC 2 |la, — w| = J,

and so our construction is complete.
The only question that remains is whether the desired modification of the

FiGURE 3
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utility functions can really be carried out, simultaneously for all k, so that the
resulting market is smooth. This we will now show by carrying out the construc-
tion more or less explicitly.

For definiteness, let the total endowment of the economy (the sum of 1’s and 2’s
endowments) be (1, 1). Then an allocation — i.e., a ‘‘point” x in the Edgeworth
box —is of the form (x!, x2, 1 —x!, 1 —x2), where the superscripts index the
commodities. In particular, each a,, since it is on the diagonal, has the form

ap = (e 0 1 — 04 1 — ),
and similarly w has the form
w=(w,w | —ol1—-ow).

~ Denote the utility functions of agents 1 and 2 in M* by u* and v* respectively.
Let f be a C? function from the real line onto itself, with f* >0 everywhere, f'(«)
<a when w<a<1, and f(a)=a otherwise; such a function will be called admis-
sible. Define functions u and v by

{ u(x', x?) = w*(f(x"), f(x?))
o(l = x', 1 = x%) =o¥(1 — f(x), 1 — f(x?))

when (x!, x2, 1—x!, 1—x?) is in the box, i.e., when 0=<x'<1, 0sx?<1; for
other values of x! and x2, we will define u and v later. For appropriate choice
of f, we will take the utilities in M to be u and v.

First we show that the contract curve in M remains the diagonal. To this end,
note that for points («, o, 1 —a, 1—«) on the diagonal, we have3

{ Vu(e, ) = f'(@)Pu*(f(), (),
Po(l —a, 1 —a) = fa)f vl — f(@), 1 — f(w)).

Letting g, denote the normalized gradient, i.e.,

4

&)

= Vu(xla x2)
9u(x1 %) = T G T

and defining g,4, ¢,, and g,. similarly, we deduce from (5) that
[ gulot, ) = g f (@), f(2))
gl —o, 1 =) =gl = f(0), 1 = f(e)).

On the other hand, since the diagonal is the contract curve in M*, we have

(©)

gu(a’ OC) = gu(] - &, 1 - “)’

which means that the diagonal remains the contract curve in M, as asserted.
We next wish to show that none of the points (e, &, 1 —a, 1—a) in I other than

3 By Fuv(l1—a, 1 —a) we mean Fv evaluated at (1 —a, 1 —a).
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w are Walras allocations in M. Since by construction these points are Walras
allocations in M*, it is sufficient for this to show that

(7) : gu(a’ OC) 7& gu"(as a) .

Indeed, when (a, o, 1—a, 1—a)el—w, then w< f(ax)<a; hence (f(a), f(x),
1—f(a), 1—f(2)) is in I —w and is different from (o, &, 1—a, 1 —0a), and so both
are Walras allocations in M*. Hence

(® 9u(f(9), f(9)) # g, @),

and combining this with (6), we get (7).
Before proceeding, it will be convenient to establish the following lemma:

LemMA. Let {y,} be a sequence of numbers tending to w, and let {g;} be an
arbitrary sequence of positive numbers. Then there is an admissible function f
such that

9 lfy) =yl S &

for all l. Furthermore, if ¢ is an arbitrary positive number, then an admissible
f can be found satisfying (9) and, in addition,

(r0) . Ifl@) —al <& |f(@)—1]<e [f'(0<e
for all real a. ' ' ‘

Proor. Since we will define f(¢)=o whenever o is not in the open interval
(w, 1), we may assume w.l.o.g. (without loss of generality) that w<y,<1 for all I.
Since w is the only limit point of the y,, we may then also assume w.l.o.g. that y,
is decreasing in [ (no more than a finite number of 9, can coincide, since y,—w;
if, then, there are several equal y,, we can simply eliminate all but one and use the
smallest of the corresponding g;). Finally, we may assume w.l.o.g. that ¢ =<1 for
all I and that g—0; for if not, we can substitute min (g, 1/]) for ¢,

Now let f; be a continuous function on R such that 1= f;(¢)>0 on (w, 1),

(11) fi(@=0 outside of (w, 1),
and
(12) fip)=¢  forall L

For example, such a function can be constructed by defining it by (11), (12), and
the requn‘ement that it be linear on each of the segments (e, D) and (341 7)s
i=1, 2,.... "Next, define

RORAWACY

and

£ = fat.
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Let f, be a C? function such that 1= f,(¢)>0 for a € (w, 1) and f,(«)=0 for a=>1
(for example, f,(0)=(a¢—1)* when a<1, and f,(@)=0 when «=1). Define f5s
= f4f3; then f5 € C?, f3(¢)>0 on (w, 1), fs(«)=0 outside of (w, 1), and

fs) = fs(n) < fiy) S ¢
for all 1.

Let K, =maxfs, K,=maxf%, K;=maxf% K=max(K,, K,, K5), and define
R
f@) = o = (55 )fs@.

Then f obeys all the requirements of the lemma, and so the proof of the lemma
is complete.

We are now ready to show that when f is appropriately chosen, a, e C, for k
sufficiently large. Since q, is a Walras allocation in M*, it follows from (3) and
(4) that a, € C, if the mapping '

(% x2%, 1 = x1, 1 = x3) — (f(x"), f(x?), 1 — f(x1), 1 — f(x?))

moves the three points a,, h*(a,), and ha,) sufficiently little. To state this
formally, set

h¥(a) = (B}, BE, 1 — Bk, 1 — BR)
h(a) = (B, Bt L — B, 1 — B).
Since a, is a Walras allocation in M*, we have
u*(BL, BR) < u*(ou, o) > u*(BE, BY)

(L = B 1 — B < v*(1 — oy, 1 — o) > 0*(1 — B}, 1 — BY).

(13)

(14)

From the continuity of u* and v* it follows that for each k there is a positive
number 7, such that if we change each of the five numbers «,, S, B2, 3, Bt by
at most 7, then the strict inequalities in (14) will continue to hold. From this it
follows that if fis constructed such that for all k,

(15)  1f(w) —oul <m and |f(B) — Bil <m  for i=1,2,3,4,

then we will have q, € C, for all k.
From (2) and (13) we deduce

(16) pi— @ as k—> oo

for i=1, 2, 3,4. We can therefore combine the o, and the B} into a single se-
quence {y;} defined by ys,,;=pi for i=1, 2, 3, 4 and ys,45=0,. Setting &s;,;
=n, (i=1, 2, 3, 4, 5) and applying the Lemma (in particular (10)), we conclude
that it is possible to construct f so that (15) is satisfied, as desired.

Finally, we must show that u and v can be constructed so that they are every-
where C? and have positive first derivatives and positive .Gaussian .curvature.
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Let ¢ be a C? function from R to itself such that g(a)=1 for «<1 and g(x)=0
for «=2. For arbitrary (x!, x2) € RZ, define

u(x!, x?) = u*(@(x?) f(x") + (1 — g(x))x', ¢(x")f(x?) + (1 — q(x")x?).

When (x!, x2, 1—x!, 1—x2) is in the box, i.e.,, when 0<x!<1 and 0<x2<1,
this coincides with the definition at (4). When x!>2 or x2>2, then u(x!, x?)
=u*(x!, x2), in which case the required smoothness properties are inherited from
M*. We must therefore only concern ourselves with the compact set {(x!, x2):
0<x!'<2 and 0<x2<2}. In this set, u* and its first and second derivatives are
bounded, and the first derivatives of u* and the Gaussian curvatures are bounded
away from zero. Hence if we change the first and second derivatives by suffi-
ciently little, the smoothness properties will continue to hold.* A straightforward
calculation of-the derivatives, together with an application of the Lemma (in
particular (10)), then yields the desired result.

Similar considerations apply to v. Define f(«)=1—f(1—a), and for (', y?)
€ R, set

o(yt, ¥?) = v¥ (@A) f (YY) + (1 = gy, gy (D) + (1 — q(y))y?).

Again, when 0<y!'<1 and 0<y?2<1, this coincides with the definition at (4).
If we note that the inequalities (10) for f follow from the same inequalities for
Jf, then the argument for v may be completed like that for u.

3. REMARKS AND CONCLUSION

The reader who has followed the construction through will realize that it can
be carried out at no additional cost with C® utility functions. Furthermore,
the example can be constructed so that it has a unique Walras equilibrium. Thus
unlike in the Shapley example, there is absolutely nothing pathological here,
nothing overt that one might have guessed would lead to “‘trouble.” The con-
clusion is that though Debreu’s theorem shows that a slow-converging core is a
rarity, it nevertheless can and does occur in the smoothest of environments, and
can apparently not be ruled out by any kind of economically reasonable a priori
requirement.

The measure with which we chose to gauge the speed of convergence was simply
the Euclidean distance in the ‘‘equal treatment allocation space” E'™. Of course,
any other norm on E' would have done as well. But one might ask whether
the example would go away if one used some economically more meaningful
measure, such as difference in value at, say, the equilibrium prices. Again, the
answer is no; the value at any price will yield the same slow rate of convergence,
since the "core is laid out along the diagonal, which is transversal to any budget
line.

Finally, it is useful to examine our example in the light of the result of Dierker

¢ The Gaussian curvature is a continuous function of the first and second derivatives of w.
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[1975],° which assumes no differentiability or even continuity. Roughly speaking,
this result says that no matter how large an economy may be, the total deviation
of a member of its core from ‘‘competitiveness’’, summed over all agents in the
economy, will not exceed some constant (which is independent of the size of the
economy). Translated to the replication context, it implies that for each k and
each allocation x=(xy,..., x,,) in C,, there is a normalized price vector p such that
for each agent i, |p(e;— x;)| = 0(1/k) and |p(y;— x;)| = O(1/k), where ¢, is i’s endow-
ment and y; is the bundle of minimal value, at prices p, on the indifference surface
of x;. If in these two equations, O(1/k) would be replaced by 0, then x would be
a Walras allocation; this, therefore, strongly suggests the O(1/k) convergence.
The reason that such a conclusion would be erroneous is that p depends on x and
k and need not itself be competitive (i.e., Walras); indeed, our example (and
Shapley’s) shows that convergence of p to the competitive price may be arbitrarily
slow.

Intuitively, though, Dierker’s theorem makes it clear that O(1/k) is the “‘right”
rate, even when the actual convergence is slower. Though p is not within O(1/k)
of a competitive price, it is a price that is within O(1/k) of being competitive.
The distinction here is similar to that between being near a fixed point of a map-
ping and being at a point that is nearly fixed. It is, of course, the second kind of
approximation that has been the object of the approximation algorithms pioneered
by Scarf [1973], and that seems, intuitively, to be the more significant concept.

The Hebrew University, Jerusalem, Israel
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