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1 Introduction

There have been continuing expressions of interest from a variety of

quarters in the development of techniques for modelling national be-

havior in a long-term context of continuing international rivalry—for

short, ‘‘long term competition.’’ The most characteristic feature of these

models is that they extend over time in a fairly regular or repetitive

manner. The underlying structure of possible actions and consequences

remains the same, though parameters may vary and balances shift,

and the decisions and policies of the national decision makers are by

no means constrained to be constant or smoothly-varying, or even

‘‘rational’’ in any precisely identifiable sense. The use of game theory or

an extension thereof is obviously indicated, and considerable theoretical

progress has been made in this area. But the ability of the theory to

handle real applications is still far from satisfactory. The trouble lies less

with the descriptive modelling, i.e., formulating the ‘‘rules of the game’’

in a dynamic setting, than with the choice of a solution concept that

will do dynamic justice to the interplay of motivations of the actors.

(Game theoreticians, like mathematical economists, have always been

more comfortable with static than dynamic models.) Since any predictions,

recommendations, etc. that a mathematical analysis can produce will

likely be very sensitive to the rationale of the solution that is used, and

since the big di‰culties are conceptual rather than technical, it seems

both possible and worthwhile to discuss salient features of the theory

without recourse to heavy mathematical apparatus or overly formal

arguments, and thereby perhaps make the issues involved accessible to at

least some of the potential customers for the practical analyses that we

wish we could carry out in a more satisfactory and convincing manner.

Two general types of ‘‘solution concept’’ are distinguished in game

theory: cooperative notions, such as the core, bargaining set, von

Neumann–Morgenstern stable sets, and Shapley value; and noncoopera-

tive notions, principally the Nash equilibrium point and its variants and

elaborations, but including also the max-min solution based on ‘‘safety

level’’ or ‘‘worst case’’ considerations. Cooperative notions are appro-

priate for situations where contracts among players are customarily

adhered to and can be made legally binding; noncooperative notions

where there is mistrust and no external enforcement mechanisms are

available. The long-term international scene is most naturally classified

as noncooperative, since there is no e¤ective international jurisdiction
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in most cases, even in the short run. Adherence to major interna-

tional agreements is essentially a matter of national self-interest, and to

be e¤ective in the long run such agreements must be written to be self-

enforcing, i.e., so that it is to the continuing advantage of all sides to

adhere to them.

Quite a bit is known about Nash noncooperative equilibria in ‘‘con-

tinuingly competitive’’ situations, and we shall review some of this mate-

rial here. It turns out that individual self-interest in such situations can in

fact dictate a kind of cooperative behavior, in many cases, sustained by

the fear of ‘‘punishment’’ by the other players for failing to ‘‘cooperate’’

with the general plan—this in spite of the fact that the players have

no way of legally binding themselves to carry out such punishment.

The ability of the noncooperative theory to describe such arrangements

and to account for their stability in a ‘‘selfish’’ world is an encouraging

point in its favor. The price that is paid, however, is the high degree of

nonuniqueness in the Nash solutions (as revealed in the two theorems

described below), which removes from this theory most of its predictive

power.

2 Repeated Game Models

In this section we shall review some of the known theory of a special kind

of ‘‘continuingly competitive’’ game: that of repeated games. Given a

finite game G in strategic form,1 we consider an infinite game G�, each

play of which consists of an infinite repetition of plays of G. In each play

of G, or ‘‘round of G�’’ the players are assumed to know the outcomes

of all previous rounds. The payo¤ for G� may be assumed to be of the

limiting average form:2

lim
m!y

1

m

Xm
t¼1

ht: ð2:1Þ

Here hj is the payo¤ for G in the j ’th round of G�. Many authors call G�

the supergame of G.

An alternative form of the payo¤ for G� involves discounting of future

payo¤s at a positive discount rate:

Xy
t¼1

ð1� rÞtht: ð2:2Þ

1. a.k.a. ‘‘normal form.’’

2. A technical di‰culty is that this limit need not always exist; this technical di‰culty has a
technical solution, which we do not wish to get involved with at present.
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For the time being we shall confine our discussion to the limiting average

form (1), which treats the future as no less important than the present.

Indeed, cumulatively, the future is all important in (1), since the contri-

bution from any period of finite length will wash out in the long run.

Nothing you actually do makes any di¤erence; only your policies for the

indefinite future have any significance. Despite this peculiarity, however,

it should be remarked that for many purposes, both technical and con-

ceptual, the limiting-average case behaves like the limit of the discounted-

sum case, as the discount rate r in (2) goes to zero. Thus, used with care,

the limiting average form can serve as an approximation to situations

where a very low discount rate is appropriate. Long-term competition,

almost by definition, would appear to fall into this category.

The basic theorem3 about supergames states that a necessary and su‰-

cient condition for h ¼ ðh1; . . . ; hnÞ to be the payo¤ vector of some Nash

equilibrium point of G� is that it be feasible and individually rational in G.

Let us explain the key terms in this theorem. A ‘‘payo¤ vector’’ is sim-

ply an n-tuple of real numbers, where n is the number of players. The

term ‘‘payo¤ vector’’ is used because the n coordinates signify the payo¤s

to the n players. By ‘‘feasible’’ we here mean ‘‘feasible in correlated

strategies’’; that is, a payo¤ vector is feasible if and only if it is in the

convex hull of the set of payo¤ vectors that can be obtained by having

the players play pure strategies. A payo¤ vector is called ‘‘individually

rational’’ if each player receives at least his min-max payo¤, which is the

level of payo¤ below which he cannot be forced by the remaining play-

ers.4 Finally, a ‘‘Nash equilibrium point,’’ or ‘‘EP’’ is an n-tuple of strat-

egies—one for each player in the game—such that each player’s strategy

is a best response to the ðn� 1Þ-tuple of the other players’ strategies. In

other words, no player can improve his own payo¤ by ‘‘defecting’’ to

another strategy while the other players are held fixed.

To clarify the meaning of this theorem, let us see what it says about the

well known ‘‘Prisoner’s Dilemma.’’ This is the two-player game whose

strategic form is of the type given in the following table:

Player II

4, 4 0, 5
Player I

5, 0 1, 1

The set of all feasible payo¤ vectors is indicated by the horizontally

3. This is a ‘‘folk-theorem’’; it has never been published, but is well known to most workers
in the field.

4. When there are just two players, min-max¼max-min.
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hatched region in Fig. 1, which is the convex hull of the four payo¤s

in the table. Since the minmax payo¤ to each player is 1, the set of all

individually rational payo¤ vectors is indicated by the vertically hatched

region. By the theorem, then, the set of payo¤ vectors arising from equi-

librium points in the supergame is given by the cross-hatched region.

Note in particular that the point (4, 4)—the traditional ‘‘cooperative’’

outcome—appears as the payo¤ to an equilibrium point in the super-

game of the Prisoner’s Dilemma. The proof of the theorem is not dif-

ficult, and as the idea of the proof is important to a proper understanding

of the situation we shall take a little space to outline it here. The

‘‘necessity’’ part is easily established; it is intuitively clear that equilib-

rium is not possible if any player is below his guaranteed minimum. The

more interesting and significant part of the proof is the ‘‘su‰ciency.’’

Assume for simplicity that n ¼ 2 (there are just two players). Suppose h

is a feasible, individually rational payo¤ vector. Here we may write

h ¼
Xk
m¼1

amhm;

where the a are nonnegative weights that sum to 1 and the hm are payo¤

vectors corresponding to pure strategy pairs in G. Suppose first that the

am are rational numbers and express them in the form am ¼ pm=q, where

pm are positive integers and q is their sum. The payo¤ vector h can then

be achieved as a limiting average in G� by having the players play for p1
consecutive periods an n-tuple that achieves h1, then for p2 consecutive

Figure 1
Feasible and individually rational payo¤s in the Prisoner’s Dilemma.
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periods an n-tuple that achieves h2, and so on; after q periods, we start

again from the beginning.

If the am are irrational, the same e¤ect can be attained by approximat-

ing to them by rational numbers, with increasing values of q, and playing

once through each approximation in turn, to yield the desired limiting

average.

This procedure, however, does not yet describe a Nash equilibrium

point in G�, and in fact does not even describe a pair of supergame

strategies. It only describes a particular, feasible course of play. A super-

game strategy must describe each player’s responses to all possible actions

of the other player, not only when he ‘‘plays along’’ with a prescribed

course of play, such as the one described above, but also when he

‘‘defects.’’ This is where the requirement that h be individually rational

comes in.

Since h is individually rational, we have for each player i

hi Z max
s

min
t

Hiðs; tÞ;

where Hi is the payo¤ function to player i in the game G, s ranges over

all mixed strategies of player i, and t ranges over all mixed strategies of

the other player, j. By von Neumann’s minimax theorem, there is a mixed

strategy t of j such that for all mixed strategies s0 of i,

min maxHiðs; tÞZHiðs0;tÞ;

hence in particular

hi ZHiðs0; tÞ

for all mixed strategies s0 of i. That means that by playing t, j can hold i

down to his max-min value, and a fortiori to hi.

We may now describe an EP in G� as follows: The players start by

playing to obtain an average payo¤ of h, as outlined above. If at any

stage a player i ‘‘defects’’—i.e., does not play the prescribed choice in G

for that round—then starting from the next round, the other player j

plays the mixed strategy t forever after. This will hold i ’s limiting average

payo¤ down to at most hi, so that he will have gained nothing by his

defection. Thus, h is indeed the payo¤ to an EP.

3 Perfect Equilibrium Points

The above line of proof has been subjected to the following criticism:

Though there is no question that the strategy pair as described constitutes

an equilibrium point, it is not clear under what circumstances it would

ever be used. In particular, it is possible that the strategy t, while holding
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player i down to his minmax payo¤, may also be very5 disadvantageous

to the player using it (or to one of the set of players participating in it, if

n > 2). The equilibrium point dictates that t will continue to be played

‘‘forever,’’ even if i defects only once. As we pointed out at the end of the

previous section t is supposed to play the role of a deterrent. But an

infinite unremitting repetition of t seems like an unreasonable response to

a single act of defection, except for the fact that—in view of (1)—any

finite period of ‘‘punishment’’ is no punishment at all. But by the same

token, a single defection is also insignificant in the limit. Thus, the

threatened response may still seem unreasonable, especially when, as is

often the case, it is disadvantageous or costly to the user, and hence such

an unremitting repetition may not be believable as a deterrent. To have a

word for these EPs, let us call them ‘‘grim.’’

Let us try to pinpoint the dissatisfaction with grim EPs in a slightly

more general framework. The ‘‘knowledge’’ that j (or, more generally

N n fig) will respond to a defection on the part of i by an unrelenting

stream of t is what keeps i from defecting; but if i does in fact defect, it

may no longer be profitable for j (or N n fig) to respond with t. This is

what makes t unbelievable.

This kind of reasoning motivated a specialization of the notion of

equilibrium point, first considered by R. Selten [2] and called by him a

perfect equilibrium point.6 To define this notion, we must recall more

precisely the definition of a ‘‘strategy’’ for the player i in the supergame

G�. This is a function that tells i which pure G-strategy to choose on each

round, as a function of what all the players, including i himself, did on all

previous rounds. For each positive integer k, define G�
k to be the ‘‘sub-

game’’ starting from the k’th period, i.e., after k � 1 rounds have been

played, and continuing indefinitely from that point. Thus, G� ¼ G�
1. Each

n-tuple of strategies in G�, together with a series of actual actions on

the part of all players in the first k � 1 rounds, induces an n-tuple of

strategies in G�
k. An n-tuple s ¼ ðs1; . . . ; snÞ of strategies in G� is called a

perfect equilibrium point (or PEP) if for each k and for each series of

actions of the players in the first k � 1 periods of G�, the induced n-tuple

is an EP of G�
k.

If we set k ¼ 1 we see that a PEP is in particular an EP.

It’s easy to see that a grim EP is in general not perfect, since if player i

defects on round k � 1 it will in general not be a best response in G�
k for

the other players to ‘‘punish’’ him; it may even be individually irrational.

It thus appears that the notion of perfect equilibrium point might hold an

5. Compare [1].

6. See also [3].
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answer to the problem of the believability of deterrents. In the next three

sections we shall explore this matter somewhat further. To some extent

our hopes turn out to be in vain: we shall find in the next section that the

payo¤s associated with PEPs in G� are the same as those for grim EPs

though the grim EPs themselves are excluded. The methods may be

di¤erent, so to speak, and possibly more ‘‘believable’’ but the upshot is

the same: there is no narrowing of the class of outcomes that can be

sustained in equilibrium.

However, when we modify the payo¤ in G� by introducing a positive

discount rate (2), which we do in Sec. 5, we find that requiring ‘‘perfec-

tion’’ can significantly reduce the set of equilibrium outcomes. Moreover,

the concept of believability does appear to play a significant role in the

description of the perfect equilibria. Thus, the notion of perfection of

equilibria, though not a panacea, does appear to give us a somewhat

better handle on some of the problems that we wish to model.

4 Characterization of PEPs

This section is devoted to the following theorem:

theorem 4.1 The set of payo¤s to perfect EPs in G� coincides with the

set of payo¤s to ordinary EPs—i.e., it is the set of all feasible, individually

rational payo¤s in G.

Again, to gain a good understanding of this theorem it is essential to

outline the proof. As before, it is ‘‘su‰ciency’’ that is the interesting part

of the proof; the ‘‘necessity’’ follows from the previous theorem. We shall

find the argument considerably more intricate than before.

To simplify the presentation we again assume that there are only two

players. Moreover, in order to make the use of mixed strategies unneces-

sary, we shall assume that G is not in strategic form, with simultaneous

choices by the two players, but is a game of perfect information with a

single move for each player and no chance moves. Player I moves first, II

is informed of I’s move, and then II moves.7 None of these assumptions

are really required for the truth of the theorem, but they do simplify the

proof.

Suppose h is a feasible, individually rational payo¤ vector of G. We

shall describe a PEP with payo¤ h. As in Section 2, the description will be

couched in terms of a tentative ‘‘agreement’’ on prescribed course of

play. The agreement starts out as before with a sequence of choices

7. Note that the apparent asymmetry of the players disappears in the supergame: in G� the
players move alternately, each with perfect information.
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which, when adhered to by both players, will lead to the desired limiting

average payo¤ h. Let us call this ‘‘the cooperative sequence.’’ Next, we

shall specify how the players react to a defection—i.e., a departure from

the cooperative sequence by one of the players. In the previous proof, the

reaction was unrelenting punishment. Here, instead, the PEP strategies

will specify that a defection on the part of either player be punished by a

sequence of choices by the other that forces the defector’s average payo¤

down to within e of his max-min value, where e is a small number that

may depend on the ‘‘date’’ of the defection. After the defector has thus

been ‘‘beaten to within an inch of his life,’’ the punisher relents and pre-

scribed play returns to the cooperative sequence at the point of defection.

If should be noted, however, that not only are defections from the

cooperative sequence punished, but also defections from any punishing

sequence (in the subgame resulting from an earlier defection) are pun-

ished. A player who ‘‘should’’ punish and does not do so will himself be

punished. This is what provides the motivation for the punisher actually

to carry out the punishment, and so keeps the EP perfect.

The situation is a little complex; in order to convince ourselves that we

have actually described a PEP we shall now give a more formal treat-

ment. Without loss of generality we may assume that the number of

choices available to I on each move is the same as the number of choices

available to II; call the number m. Thus, M ¼ f1; . . . ;mg is the set of

possible choices of the players at each move. When it’s Player I’s turn in

the n-th round of G� he has before him the full history of previous moves;

this takes the form of a sequence (x1; . . . ; x2n�2), where xi A M represents

the choice made on the i ’th move in G� (it is I’s or II’s choice according

as i is odd or even). Similarly when II must move, he has before him a

sequence (x1; . . . ; x2n�1), where again each xi A M. Let us call any finite

sequence of members of M a history. A strategy for Player I [Player II]

may be defined as a function from histories of even [odd] length to M.

Thus, a pair of strategies is simply a function f from the set of all histories

to M.

Now let h ¼ ðhI ; hII Þ be the given feasible individually rational payo¤

vector. Let (c1; c2; c3; . . .) be a fixed cooperative sequence, i.e., a sequence

of moves leading to the payo¤ h in G�. Let p be a G-strategy for I (i.e., a

member of M) that holds II to his max-min payo¤ in G, and let qð�Þ be a
G-strategy for II (i.e., a function from M to M) that holds I to his max-

min payo¤ in G.

We wish to define a strategy-pair f for G� which is a PEP and whose

associated payo¤ is h. The definition of f will be inductive, based on the

length k of the history on which it is being defined. On a history of length

0 we define f to be c1; this simply means that the PEP will prescribe the

choice of c1 for the first move of Player I. Suppose now that f has
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been defined on all histories up to length k � 1; we wish to define it on

all histories of length k. Let (x1; . . . ; xk) be such a history. We shall say

that the l0th move of that history (1Y lY k) is a defection if

xl 0 f ðx1; . . . ; xl�1Þ. If (x1; . . . ; xk) contains no defection, we define

f ðx1; . . . ; xkÞ ¼ ckþ1. Otherwise, suppose the most recent defection in

ðx1; . . . ; xkÞ occurred at move l. If l and k þ 1 have the same parity—

i.e., the player who is about to move is the same as the one who most

recently defected—then we define f ðx1; . . . ; xkÞ ¼ ckþ1. If l and k þ 1

have opposite parity, consider first the case in which l is even, i.e., Player

II was the last to defect. In that case k is also even, so exactly k=2 rounds

of G� have now been completed and it is Player I’s turn to move. Con-

sider the average payo¤ of Player II as measured at the end of each of the

rounds l=2þ 1; . . . k=2, and let el ¼ 1=l. If any one of these averages

is Y el þ II’s max-min value in G, then we define f ðx1; . . . ; xkÞ ¼ ckþ1;

otherwise, we define f ðx1; . . . xkÞ ¼ p. That means that Player I brings the

o¤ending Player II to within el of his max-min payo¤ and then returns to

cooperative play.8

Finally, consider the case in which l and k þ 1 have opposite parity

and l is odd, i.e., Player I was the last to defect. In that case k is odd,

ðk � 1Þ=2 rounds of G have been completed, Player I has already made

his move in the ðk þ 1Þ=2’th round, and it is now II’s turn to move. Pro-

ceeding as before, we consider I’s average payo¤ as measured at the

end of each of the periods ðlþ 1Þ=2; . . . ; ðk � 1Þ=2. If any of these aver-

ages was Y el þ the max-min value to I in G, then we define

f ðx1; . . . ; xkÞ ¼ ckþ1; otherwise, we define f ðx1; . . . ; xkÞ ¼ qðxkÞ. As

before, that means that II brings the o¤ending Player I to within el of his

max-min value, then returns to cooperative play. (The di¤erence is only

that, because of the asymmetry in G, II’s punishing move must depend on

I’s move in the same ‘‘round.’’)

This completes the formal description of the PEP that we described

informally before; the reader should be able to convince himself that

it is in equilibrium, is perfect, and yields the cooperative sequence

(c1; c2; . . . ; ck; . . .) with limiting average payo¤ h.

5 Discounted Payo¤s in Repeated Games: Discussion of an Example

Thus far, we have been considering only the limiting average form of

payo¤ for repeated games, corresponding intuitively to a future discount

rate of zero. We shall now try to give an idea of how positive discount

8. Note that he never has occasion to look back beyond the most recent defection; the el
level of punishment su‰ces for all past transgressions.
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rates can a¤ect the behavior of EPs and PEPs by studying an apparently

simple but surprisingly revealing example.

Consider the following payo¤ matrix for G in strategic form, the

players moving simultaneously:

Player II

L R

T 0, 1 � p; �cþ 1
Player I

B 1, 0 � pþ 1;�c

Here, p and c are positive numbers (‘‘punishment’’ and ‘‘cost’’); we may

think of them as being rather large. Thus, II may be in a position to

damage I severely, but only at a cost to himself that may perhaps be

unacceptable.9

In the repeated G�, we shall use the discounted payo¤s

Xy
t¼1

athIt and
Xy
t¼1

bthIIt

to Players I and II, respectively, where 0 < a < 1 and 0 < b < 1. Some-

times we shall further assume that aW b, i.e., that Player I has, if any-

thing, a bigger discount rate (¼ shorter ‘‘utility horizon’’) than Player II.

As is easily seen, the one-shot game G has a unique EP, namely (B, L),

which yields the payo¤ (1, 0). This means that the strategy-pair in which I

always plays B and II always plays L (regardless of history) is a perfect

EP of G�, since obviously no defection, even in a subgame, can ever be

profitable.

Player II, however, would naturally prefer the outcome (0, 1), corre-

sponding to ðT ;RÞ. We shall now investigate under what conditions this

outcome can be sustained by an EP, or by a PEP, in the discounted

repeated game. Indeed, we shall find that it can be sustained by an EP if

and only if pZ 1=a; and, when aZ b, that it can be sustained by a PEP if

and only if pZ 1=a and p=cZ ð1� bÞ=ab. Thus, whereas the existence of
an EP is independent of the cost of the punishment to the punisher (the

parameter c), the existence of a PEP is not.

Let us first consider the EP question. We claim that the following

‘‘grim’’ strategy-pair:

I plays T always

II playsL so long as I plays T , but plays R forever

if I ever plays B

8><
>:

9. One could think of I and II as North Vietnam and the United States in the 1960s.
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is an EP of G�, provided that pZ 1=a. Moreover, we claim that if

p < 1=a there is no EP sustaining (1, 1). Note first that II will certainly

not wish to defect, as he cannot possibly improve on the sequence of

payo¤s (1, 1, 1, . . .). On the other hand, if I wishes to improve on his

sequence (0, 0, 0, . . .), his best chance is to deviate to B at some time

t0, then keep playing B forever. This yields him the payo¤ sequence

(0; . . . ; 0; 1;�pþ 1; . . .), and this is worth

at0
1

1� a
� pa

1� a

� �
:

Since this is profitable to him if and only if 1 > pa the truth of our

claims is now evident.

For a numerical example, let p ¼ 2. Then if a < :5 there will be no EP

sustaining the (0, 1) outcome, as the rewards for defecting will outweigh

any possible punishment. But if aW :5, the strategy pair given above is

clearly an EP.

Nothing in this result depends on the values of c or b. Yet, intuitively,

one feels that the credibility of II’s ‘‘threat,’’ with which he extracts such

a favorable outcome, ought to be very dependent on its cost. Our next

object will be to show that a PEP that sustains the (0, 1) outcome is not

possible for large values of c.

First let us give an example of such a PEP. It happens that we can

define it in a very simple way, making the instructions to the two players

almost independent of the history:

1. In the first round, play (T, L).

2. If the choices in round t� 1 were (T, L) or (B, R), play (T, L) in round

t.

3. If the choices in round t� 1 were (T, R) or (B, L), play (B, R) in round

t.

The cooperative sequence resulting from this strategy pair is just a

repetition of (T, L); this is worth b=ð1� bÞ to II and 0 to I. In checking

for the PEP property, it is su‰cient to look merely at deviations that

occur in the first round of a typical subgame G�
t . Suppose Player I defects

when he is supposed to play T. His best possible payo¤ sequence from

then on is (1;�pþ 1;�pþ 1; . . .), which is worth

at
a

1� a
� a2p

1� a

� �

to him. So if pZ 1=a he will not have any incentive to defect. Player

II likewise will not defect when he is supposed to play L, as he cannot
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possibly improve on the payo¤ sequence (1; 1; 1; . . .). When I is sup-

posed to play B, a defection could yield him at best the sequence

(�p;�pþ 1; 0; 0; . . .); this is clearly inferior for all pZ 0 to the prescribed

sequence (�pþ 1; 0; 0 . . .). Finally, when II is called upon to play R at

the beginning of G�
t , he will have to compare his prescribed payo¤

sequence (�c; 1; 1; 1; . . .) with sequences like (0;�c; 1; 1; 1; . . .),

(0; 0;�c; 1; 1; 1; . . .), etc., which he can obtain by defecting for 1,2, etc.

rounds, or even the sequence (0; 0; 0; . . .) which he can obtain by perpet-

ually defecting. In the discounted sum, these ‘‘heresies’’ are worth

bkð�cbþ b2=ð1� bÞÞ; k ¼ tþ 1; tþ 2; . . . ;

or 0, while ‘‘orthodoxy’’ is worth

btð�cbþ b2=ð1� bÞÞ:

So if cY bð1� bÞ, II cannot gain by defecting. The given strategy pair is

therefore a PEP on the assumptions that pZ 1=a and cY b=ð1� bÞ, as
diagrammed in Figure 2.

To wrap up our example, it is necessary to show that there are signif-

icant cases, where, because of the positive discount rate, a PEP does not

exist. Showing nonexistence is a more di‰cult undertaking, because in

general a PEP can be a very complex thing. In particular, while pure G-

strategies have su‰ced up to now, we cannot ignore the possible use of

mixed strategies against a defection. In our example, if p and c are both

large numbers, the threat of a small probability of using R may be

Figure 2
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enough to keep I in line while holding the (expected) cost to a level that II

can accept.10 However, it would be out of place in this discussion to

develop the elaborate technical apparatus of mixed strategies just for the

sake of one example, whose purpose is only illustrative. Instead, we shall

adopt a far simpler expedient, called ‘‘convexification in pure strategies,’’

which is more or less equivalent to the introduction of mixed strategies.

In our example, this convexification merely means allowing Player II

the option of ‘‘scaling down’’ his punishment by giving him a continuum

of strategies in G, as follows:

Player II

L Rl ð0 < lY 1Þ

T 0, 1 �lp; �lcþ 1
Player I

B 1, 0 �lpþ 1;�lc

Here, l ¼ 1 corresponds to the old R and l ¼ 0 corresponds to the old

L. (However, we still indicate the latter choice by a separate column in

the matrix.) Playing Rl has much the same e¤ect as playing a mixed

strategy fR with probability l, L with probability 1� lg, and it can be

shown (though we shall not do it here) that if the new G� has no PEP in

pure strategies that sustains the cooperative sequence ððT ;LÞ; ðT ;LÞ; . . .Þ,
then the original G� (with the same values of a; b; p; c) has no PEP in pure

or mixed strategies that sustains that sequence.

Consider now a play of the revised G�, with II making the sequence of

moves L ¼ ðl1; l2; . . . ; lt; . . .Þ. The total punishment received by I is then

given by P ¼ PðLÞ ¼
Py

t¼1 lta
tp, and the total cost incurred by II

is C ¼ CðLÞ ¼
Py

t¼1 ltb
tc. We now bring in the assumption, not used

until now, that aY b. This implies that
Py

t¼1 ltðbt � atÞZ 0, so that

P=CY p=c. This inequality shows that it is most e‰cient, in terms of the

damage/cost ratio, for II to punish immediately; he thereby minimizes his

cost for a given level of deterrence. It follows that the game has a PEP, of

the type described above, whenever there is any number l such that lp

and lc satisfy the inequalities

lpZ 1=a; lcY b=ð1� bÞ:

This is illustrated in Fig. 3. As we can see, there is a critical ratio of c to

p, namely

10. This is a realistic consideration for the world of nuclear politics and arms races, where
the pressure of the nuclear deterrent is felt in every situation that creates any perceptible risk
that the situation might escalate out of control.
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R0 ¼
ab

1� b
;

above which no such l can be found.

For a numerical example, if a ¼ b ¼ :75 then R0 ¼ 2:25. If p ¼ 100

and c ¼ 200 then c=p < R0, and we may, for example, choose l ¼ :014,

giving us lc ¼ 2:8 < b=ð1� bÞ ¼ 3 and lp ¼ 1:4 > 1=a ¼ 1:33. So a 1.4

percent chance of II using his threat strategy R after a defection by I sus-

tains the perfect equilibrium at (0, 1).

We can also make the converse argument. If (c, p) is not in the cross-

hatched region indicated in Fig. 3, then there is no way for II to inflict

any given amount P of punishment without incurring a cost of more than

R0P. By the foregoing, it is clear that this is above the cost that he can

‘‘a¤ord’’; in other words, he would prefer to accept his max-min payo¤ of

0 forever, rather than carry out the requisite threat. So a PEP cannot

exist.
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Note added in proof Professor Jacek Krawczyk of the Victoria University of Wellington
has pointed out an error on Page 405. If Player I defects when he is supposed to play T, his
best possible payo¤ sequence from then on is ð1;�pþ 1; 1;�pþ 1; 1; . . .Þ, and not as written
there. The given strategy pair is therefore a PEP on the assumptions that pX 1þ ð1=aÞ and
cW b=ð1� bÞ, and not as written on Page 406. As a result, the neat picture presented in
Figure 3 is called into question. Specifically, an EP certainly exists in the strip between the
vertical lines p ¼ 1=a and p ¼ 1þ ð1=aÞ, but it is unclear whether a PEP exists anywhere
in this strip. The exact placement of the diagonal that divides EP’s from PEP’s becomes
similarly unclear. Nevertheless, it appears that our basic point remains valid: that for the
existence of PEP’s, the cost-to-punishment ratio is the determining factor, whereas for EP’s,
only the magnitude of the punishment matters—the cost of the punishment to the punisher
is irrelevant.
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