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ALMOST STRICTLY COMPETITIVE GAMES!
ROBERT J. AUMANN?

Introduction. Strictly competitive games (i.e., games equivalent to
2-person 0-sum games) can always be solved; it is always clear what each
player should do, and the outcome is strictly determined. As is well known,
this ceases to be true when we drop the assumption of strict competition.
However, there are certain two-person games which still retain this (some-
what vague) property, although they are not strictly competitive. Examples
are games that are obtained from strictly competitive games by the addi-
tion of strictly dominated strategies (e.g., the prisoner’s dilemma), and
certain games of perfect information, which we can “solve’” by working

“our way backward from the final move. We wish to give a characterization
f such games.

Roughly, we want to examine a class of games—we will call them almost
strictly competitive (a.s.c.)—in which it is possible to define a unique value
and a set of “‘good’’ strategies for each player, so that a pair of good strate-
gies yields the value. We also want a structural theorem of the following
kind: Suppose a game G in extensive form decomposes at a move X (cf.
[1]) and that the subgame Gx is a.s.c.; suppose further that we define the
difference game Gp by stipulating that the payoff at the terminal X of Gp
is the value of Gx, and that we assume Gp to be a.s.c., as well. Then it
should follow that the original game @ is a.s.c., and that the composition
of “good” strategies in Gp and Gx yields a ‘‘good” strategy in G. Such a
theorem is very important in applications which involve complicated games
in extensive form; it is also not unreasonable as a theoretical demand.

1. The definition. The definition of strict competition is that for each
player, helping himself and hurting his opponent are equivalent. Our basic
idea is to ‘“‘weaken” this condition while retaining its spirit.

Recall the definition of an equilibrium point [3]: it is a pair of strategies
at which neither player can increase his payoff by a unilateral change in
strategy.® Let us now define a twisted equilibrium point to be a pair of
strategies at which neither player can decrease the other player’s payoff
by a unilateral change in strategy. Twisted equilibrium points are the

1 Received by the editors January 7, 1961, and in revised form March 15, 1961.
The research described in this paper was supported partially by Carnegie Corpora-
tion of New York, and partially by Mathematica, Inc.

2 The Hebrew University, Jerusalem, Israel, and Princeton University.

3 Unless otherwise specified, the word ‘“‘strategy’ will be used throughout the
paper in the sense of mixed strategy (which may in particular be pure).
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same as equilibrium points, except that now the object of each player is
to hurt his opponent, rather than to help himself. We will call a game almost
strictly competitive if (i) these two notions are equivalent from the point of
view of their outcomes, i.e., if the set of payoff vectors to equilibrium
points is equal to the set of payoff vectors to twisted equilibrium points;
and (ii) if the set of equilibrium points and the set of twisted equilibrium
points intersect.

An alternative way of looking at a.s.c. games is the following: For a
given game G, define the twisted game G* to be the same as G except that
the object of each player is to minimize his opponent’s payoff rather than
to maximize his own; formally, the strategy spaces in G* are the same
as those in G, and if the payoff to a given strategy pair in G is (h1, h2),
then the payoff to the same pair in G* is (—hz, —h;). Then the twisted
equilibrium points of G are precisely the equilibrium points of G*, and G
is a.s.c. if and only if (i) the equilibrium payoffs of G* can be obtained
from those of G by “twisting” them (i.e., substituting (—h;, —h;) for
(h1, he)); and (ii) G and G* have some equilibrium points in common.

The prisoner’s dilemma
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is an example of an a.s.c. game.

2. Theorems.

THEOREM A. In an a.s.c. game, there is a unique equilibrium payoff
(v1, v2); @ fortiors this is also the unique twisted equilibrium payoff.

The unique equilibrium payoff will be called the value. We will also refer
to a particular player’s value or the value of the game to him; this is
simply his component of the value.

THEOREM B. In an a.s.c. game, each player has a strategy which simul-
taneously guarantees that (a) he will obtain at least his ouwn balue; and (b)
the other player will obtain at most the other player’s value.

Such a strategy will be called good.

TaEOREM C. In an a.s.c. game, a pair of good strategies is both an ordinary
and a twisted equilibrium point; and conversely, any point which s both an
ordinary and a twisted equilibrium point is a pair of good strategies.

This is the ¢nterchangeability property for points that are both ordinary
and twisted equilibrium points.

THEOREM D. Let G be a 2-person extensive game which decomposes at a
move X, and let Gx be a.s.c. Let Gp be the difference game, where the payoff to
Gp at X 1s the value of Gx ; assume that Gp is a.s.c. as well. Then G s a.s.c.,
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v(@) = v(Gp), and the composition of good strategies in Gx and Gp yields a
good strategy in G.

This is the theorem that enables us to build up complicated a.s.c. games
from simple ones, and to ‘“solve” the complicated games.

We mention that the question of deciding whether a given game is a.s.c.
or not can be answered by using the algorithm of Vorobyev [6], which
gives a method for calculating all the equilibrium points of a given two-
person game.

3. Discussion.

(a). Theorem B is the analogue of the minimax theorem; it may be
restated in saddle-point form as follows: There is a pair of strategies
(s, s"), such that for all s, , s, , we have the two sets of inequalities,

h(si, 82') S ha(st’, 82) < ha(s, ),
(1, 8") = ho(ss’, 82°) 2 ha(st’, 82),

where h; and hy are the payoff functions. A consequence is the following
minimax statement:

(3.1)

min,, maxs, hi(s;, s2) = max,, min,, ks, s2) = v1,
and
min,, maxs, hs(81, 82) = Max,, min, hi(s1, s2) = vs.

The minimax statement is not as strong as the saddle-point statement,
because it does not provide for the existence of a strategy for (say) player
1 that simultaneously guarantees that he will obtain v; and that player 2
will not obtain more than v, . Neither statement assures almost strict
competitiveness, as is demonstrated by the example

1,1]0,0
0,0 0,0

(b). The definition of almost strict competitiveness may be applied
without change to games with infinite pure strategy sets. Theorems A,
B, and C also remain true in this context; the proofs go through without
change. As far as Theorem D is concerned, in principle there is nothing
to prevent this, too, from applying to the broader context of infinite games.
However, both the statement and the proof of Theorem D depend on
extensive game theory, and the elements of this theory of which we make
use are available only for the finite case. Presumably an appropriate theory
for at least some infinite games can be developed without too much diffi-
culty, but we do not propose to do this here.
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(¢). Although the theory of a.s.c. games is basically noncooperative
in its viewpoint, it has some applications to bargaining models for two-
person cooperative games. The chief work in this area is that of Nash [2, 4]
and Raiffa [5]. We will not attempt here to summarize it, but merely re-
call some of the terminology. Given a two-person game C to be treated
cooperatively, Nash [4] breaks it up into a threat game and a demand game.
The pure strategies of the threat game are threats to use mixed strategies
of the original game C; the payoffs for the threat game depend on how the
demand game is treated. Nash shows that if the demand game is treated
by the method of [2], then the threat game has a saddle point in pure
strategies (in the sense of (3.1)). Raiffa [5, p. 372] generalizes this by show-
ing that the same result holds if any one of a large class of differ-
ent schemes—including Nash’s—is used for solving the demand game (we
shall call these demand schemes). The solution of the threat game will
depend on which demand scheme is used, but it always yields a payoff that
is Pareto optimal [8] in the prospect space of C.

Our first remark is that the threat game is always a.s.c., no matter which
demand scheme is used. This is a special case of the following theorem:
Let G be a game which is “strictly competitive in pure strategies,” i.e., if
h and h* are the payoffs to two pairs of pure strategies, and if hy > h*,
then hy < ho*. Assume further that one of the payoff functions (and hence
also the other) has a pure strategy saddle-point. Then @ is a.s.c. The proof
is easily given. To apply this theorem to the threat game we need only
verify that the threat game is “strictly competitive in pure strategies.”
This follows from the fact that the outcomes are all Pareto optimal.

Our second remark is of a completely different nature. Optimal behavior
in the threat game usually depends strongly on the demand scheme being
used. It is of great interest to know under what conditions this optimal
behavior will be independent of the demand scheme, since cooperative
games must often be played without a clear and fixed formal notion of
which demand scheme is being used. A sufficient condition is that the
original game C be a.s.c. This condition is not necessary; the necessary
and sufficient condition is that our condition (ii) be satisfied, i.e., that the
set of ordinary and the set of twisted equilibrium points meet. This is
equivalent to the existence of a saddle-point in the sense of (3.1). The
reader should note, however, that this only assures invariance of the
optimal strategies, not of the payoffs.

(d). We investigated a number of other possible definitions that are
similar in spirit to the one given. I'or example, motivated by the discussion
in the previous subsection, we might consider dropping condition (i) of our
definition entirely. The remaining condition (ii) is equivalent to the
saddle-point formulation (3.1). Theorem A would fail, as is shown by



548 ROBERT J. AUMANN

example (3.2); but we could redefine value to be the unique saddle-point
payoff, and the remaining theorems go through (the proof of Theorem D
becomes much easier, but on the other hand the conclusion of the theorem
would be less significant).

Another possibility is to retain condition (i) and drop condition (ii).
Theorem A would remain true, but Theorems B and C would fail. For
example, in the game

0,0 —2,-1]2, -1

33
(33) 0,0 1,—-2|1, 2

player 1 can guarantee himself at least 0 by playing the bottom strategy
and can guarantee that player 2 won’t obtain more than 0 by playing the
top strategy, but there is no strategy that will guarantee both (I am in-
debted to L. S. Shapley for this example). Theorem D can be made to go
through if “good” is appropriately redefined.

Finally, we could strengthen the definition by demanding that the set of
ordinary and the set of twisted equilibrium points (rather than the payoffs)
coincide. In this case Theorem D would fail; in fact the extensive game

player 1’s move
/ X = player 2’s move

(3,1) (2,00 (0,2)
does not satisfy this strengthened definition, though Gx and G do satisfy it.

4. Proofs. B

Proof of Theorem A. Let s and t be equilibrium points. Let t* be a twisted
equilibrium point such that h(t) = h(#*); by the definitions of equilibrium
point and twisted equilibrium point, hi(s) = (¥, s2) = ha(t*) = ().
Similarly, ki (¢) = hi(s); hence hi(¢) = hi(s). The proof is similar for &, .

Proof of Theorem B. Any component of a twisted equilibrium point
will assure (a), and any component of an equilibrium point will assure (b).
By condition (ii) of the definition of a.s.c. games, some points are both;
this completes the proof.

Proof of Theorem C. The first statement follows at once from the definition
of good strategies, and the converse from the proof of Theorem B.

Proof of Theorem D. Let s be an equilibrium point in G. Denote by s*
and s” the strategy pair s restricted to Gx and Gp respectively; subscripts
will denote components.

LemMa 1. If X occurs with positive probability when s s played, then s*
1s an equilibrium point in Gx .
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Proof. Suppose that player 1 can improve his payoff in Gx by playing #;*
instead of s, while player 2 plays s,*. Then he can also improve his payoff
in G by playing a strategy composed of s;” and t;*, while player 2 plays s. .

LemMA 2. s° ¢s an equilibrium point in Gp .

Proof. Suppose player 1 can improve his payoff in Gp by playing 4°
instead of s,°. Denote by Gp’ the game in which we attach to X the out-
come of Gx if the players play s* (rather than attaching the value of Gx).
If X occurs with positive probability when s is played, then s* is an equi-
librium point in Gx , and hence its payoff is the value of Gx ; thus Gp’ =
Gp . Hence by composing #” with s;*, player 1 can improve his payoff in
G, contrary to the assumption that s is an equilibrium point. If X occurs
with probability 0 when s is played, then the payoff to s in Gp is the same
as that in Gp’ (since the two games differ at most in their payoff at X).
By assumption, player 1 can improve his payoff in Gy ; hence if he plays a
good strategy in Gx and #” in Gp, he will obtain in G at least what he
obtains in Gp by playing #,°. But this is more than the payoff to s,” in
@b, which is the same as the payoff to s,” in Gp°, which is the same as
the payoff to s; in G (cf. [1], Theorem 2). So s is not an equilibrium point
in G, contrary to assumption.

LeMMA 3. Let the value of Gp be v. Then every equilibrium poini in G
has payoff v.

Proof. Follows at once from Lemmas 1 and 2.

CoroLLARY 4. Condition (i) of the definition of a.s.c. games 1s satisfied
by G.

Proof. We can apply Lemma 3 to the game G*, obtaining v* (=
(—ve, —v1)) for payoffs to equilibrium points in G*, hence twisted equi-
librium points in G have payoff v.

LeMMA 5. The composition of equilibrium points in Gx and Gp yields an
equilibrium point in G.

Proof. Let s* and s” be the respective equilibrium points. The payoff
to s* is the value of Gx ; hence Gp° = Gp. Hence s” is an equilibrium
point in Gp°. The result now follows from Theorem 3 of [1].

To complete the proof of Theorem D, apply Lemma 5 to G*, and deduce a
result corresponding to Lemma 5 for twisted equilibrium points. Now
let s* and s” be strategy pairs in Gx and Gp respectively, that are both
ordinary and twisted equilibrium points. Let s be a strategy pair in G
that decomposes into s* and s”. By Lemma 5 s is an equilibrium point;
and by the corresponding result for twisted equilibrium points, s is also
a twisted equilibrium point. Hence condition (ii) of the definition of
a.c.s. games is satisfied, and hence G is a.s.c. (because of Corollary 4). Finally,
suppose good strategies s;* and s,” to be given; choose good strategies s,*
and s,°. Then s¥ and s” are both ordinary and twisted equilibrium points,
and therefore their composition s also is. Hence (by Theorem C)s; is good.
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