3 9 The Core of a Cooperative Game without Side Payments

The core of an n-person game(!), though used already by von Neumann and
Morgenstern [15], was first explicitly defined by Gillies [5]. Gillies’s defini-
tion is restricted to cooperative games with side payments and unrestrictedly
transferable utilities(?), but the basic idea is very simple and natural, and
appears in many approaches to game theory. We consider a certain set of
“outcomes” to a game, and define a relation of “dominance” (usually not
transitive) on this set. The core is then defined to be the subset of outcomes
maximal with respect to the dominance relation; in other words, the subset
of outcomes from which there is no tendency to move away—the equilibrium
states. ,

To turn this intuitive description of the core notion into a mathematical
definition, we need precise characterizations of

(a) the kind of game-theoretic situation to which we are referring (co-
operative game, noncooperative game, etc.);

(b) what we mean by “outcome”; and

(c) what we mean by “dominance.”

Different ways of interpreting these three elements yield different applica-
tions of the generalized “core” notion, many of them well-known in game
theory. Gillies’s core, Luce’s y-stability [10], Nash’s equilibrium points [12],
Nash'’s solution to the bargaining problem [13](®), and the idea of Pareto
optimality—to mention only some of the applications—can all be obtained
in this way.

Here we shall be concerned exclusively with cooperative games without
side payments(%). Our procedure will be to generalize von Neumann's funda-
mental notion of characteristic function to this case, and on the basis of this
generalization to define the core in a way that generalizes and parallels the
core in the classical theory—i.e., Gillies’s core. The generalization of the char-
acteristic function is of interest for its own sake also; for example, a theory
of “solutions” has been developed that generalizes and parallels the classical
theory of solutions and is based on the characteristic function [3; 16].

(1) Most of the results proved here were announced in [3], to which the reader may refer
for additional introductory and background material. The basic ideas of this paper were con-
ceived jointly with B. Peleg, to whom the author is greatly indebted.

(®) Such games will be called classical games in the sequel, and the theory described in
[5; 15] will be called the dassical theory.

¢) CE. [6].

() Classical games are known to be special cases of these games.

This chapter originally appeared in Transactions of the American Mathematical Society 98 (1961): 539—
552. Reprinted with permission.
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As in the classical theory, our “outcomes” will all be payoff vectors. We
leave aside for the moment the question as to which particular set of payoff
vectors we wish formally to consider as our set of outcomes. This brings us to
the question of how to characterize the notion of “dominance.”

Although formally it is simpler to define the characteristic functlon first
and then to base on it the definition of dominance, the more intuitive pro-
cedure is the reverse: We must first state what we require from the dominance
relation, and this will enable us to motivate our definition of characteristic
function. Following the classical theory, then, we will say that a payoff vector
x dominates another one y if '

(i) there is a coalition S that prefers x to y, and

(i) this preference is “not idle,” i.e. S can actually achieve at least its por-

tion of x.
What is meant by condition (i) is clear; each member of S must get more in x
than in y. As for condition (ii), its exact meaning depends on how we wish to
interpret the words “can actually achieve”; or to say the same thing in more
technical language, it depends on when we wish to consider the coalition S
“effective” for the payoft vector x.

In the sequel we will give a number of different definitions of effectlveness
each one leading to a different notion of dominance and hence to a different
core. An alternative procedure is to assume that we already know for each
coalition S which are the payoff vectors x for which S is effective; on the basis
of this information we can then determine the core, without having to know
the normal form of the game or the definition of effectiveness. A game pre-
sented in this form is said to be in characteristic function form. The character-
istic function form of a game can always be calculated from its normal form
and a particular definition of effectiveness. Note the similarity with the char-
acteristic function of the classical theory; there there is associated with each
coalition .S a number v(.S), and the vectors x for which S is effective are pre-
cisely those for which(®) X ies x¢<v(S). Here the set of x for which S is effec-
tive need not have such a simple form, and cannot be characterized by a single
number; we therefore define v(S) to be the set itself, rather than a number
that characterizes the set. A considerable part of the theory can be developed
on the basis of the characteristic function, without referring to the original
game or to the particular notion of effectiveness we are using. As in the classi-
cal theory, some assumptions must be made about u(S) to justify this de-
velopment; these assumptions are natural ones, and we will establish that
they hold for the particular definitions of effectiveness that we will wish to
use. ‘

We now return to the question of which payoff vectors we wish to con-
sider as “outcomes.” One possibility is the set H of all those payoff vectors
that can be obtained by means of some correlated mixed strategy of the set

(5) The coordinates of the payoff vectors are indexed with superscripts.
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N of all players. It is also possible to impose various more or less natural
restrictions on the set of outcomes. There are two such restrictions that have
received special attention in the literature, namely “individual rationality”
and “group rationality.” The former restricts the outcomes to payoff vectors
in which each individual player gets at least what he can guarantee himself
without any aid from the other players; under the latter restriction, a payoff
vector is not called an “outcome” if there is another payoff vector in H which
yields more to each player. These two restrictions can be imposed on the
“outcome” concept in various combinations, so that we obtain four possibili-
ties for this concept. In the classical theory it is easily established that all
four lead to the same core; in the present theory this is also true, but the proof
is no longer trivial. An interesting sidelight on this theorem is that its proof
depends essentially on the assumption that H is a polyhedron (this assump-
tion always holds if we stdrt out with a finite game). If we replace H by a non-
polyhedral convex set, the theorem becomes false; such a situation can ac-
tually be realized in the case of games with infinite strategy sets. :

The paper is divided into two parts: the first part (§§1-7) deals with the
theory of games in characteristic function form; the second part (§§8-10)
deals with applications to games in normal form. §1 is devoted to a review of
notation. In §2 we give the formal definition of a game in characteristic func-
tion form. §3 is devoted to the definition of various basic concepts such as
domination, individual and group rationality, and core. §§4 and 5 are devoted
to the statement and proof of the theorem that all the sets of outcomes dis-
cussed above lead to the same core. In §6 we give the counter-example to this
theorem when H is'not polyhedral. In §7 we discuss the composition of two
games, and remark that the core of the composition is the cartesian product
of the cores of the components. In §8 we pass to the normal form. We define
two kinds of effectiveness, both generalizations of the classical definition, and
show that they are different. In §9 we show that both these definitions lead
to characteristic functions that satisfy the conditions of §2. In §10 we discuss
the connection between the supergame(®) of a game and its various cores; in
particular we shall show that the set of acceptable payoff vectors of a game
[1; 2] coincides with the core for one of the two definitions alluded to above.

1. Notation. N will denote a fixed finite set with # members, who will be
called players. E¥ will denote euclidean space of # dimensions, the coordinates
of the points being indexed by the members of N; formally, E¥ may be con-
sidered the set of functions from N to the reals. The points of E¥ will be called
payoff vectors. If x€E?¥, the coordinates of x will be denoted by x?, where
1€ N. For fixed x&E¥ and SCN, we will call the S-tuple {x*} ies an S-vector
and denote it by x5.() Note that x=x?. If xS and yS are S-vectors, then any

(®) The game each play of which consists of an infinite sequence of the plays of the original
game.

(") %% is the projection of x on ES; if x is considered a function, then xS is x restricted to S.
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relation between x5 and yS is to be understood coordinate-wise; e.g., x5 =y5
means x: =y for all i€S. If SCN then (x5, y¥—5) denotes the payoff vector z
such that z5=x% and gV =S =y¥—5,

Subsets of N will be called coalitions, and will be denoted by S and T.
Lower case latin letters towards the end of the alphabet will denote payoft
vectors. & denotes the empty set. In addition to its usual meaning, 0 will
sometimes denote a vector all of whose components are 0; no confusion will
result. The letter  always denotes a player. Unless the contrary is specifically
indicated, summation, the taking of maxima or minima, etc., will be over %;
for instance, Y s means Y ses. The symbol X denotes the cartesian product.

We shall need a norm on EV. Any norm with reasonable properties would
serve our purposes; we shall use the maximum, defined by ||| = maxy | %7
In addition to the usual norm properties, we note

(1) if > 0and y > 0, then ||« + y|| > max (||« ll51)-

Similar to the definition of norm on E¥, we define a norm on ES by [|x5||
=maxg lx'l .

The numbering of formulas, theorems, etc., starts from the beginning in
each section; references from one section to another specify the section num-
ber as well as the formula number. '

2. The definition of a game in characteristic function form. :

DEFINITION. A characteristic function(?) is a pair (N, v), where N is a finite
set and v is a function that carries each subset S of N into a subset #(S) of
EX so that

(1) v(S) s convex;

(2) v(S) s closed;

(3) »(B)=EY;

(4) if x€Ev(S) and yS x5, then yEv(S);

(5) if ST =, then v(S\IT) Dv(S)Nu(T).

A game in characteristic function form, or simply a game, is a triple (N, v, H ),
where (N, v) is a characteristic function and

(6) H is a convex compact polyhedral subset of EVN.

Condition (5) is the natural generalization of the classical notion of super-
additivity: it says that if a certain outcome can be achieved by the disjoint
coalitions S and T when acting separately, then it can also be achieved by
them when acting in concert. -

We shall say that (N, v, H) is an ordinary game if

(7) xEv(N) if and only if there is a yS H such that x=y.

This condition is easily justified intuitively, if we consider the interpretations
of H and »(N): H is the set of all payoff vectors that can be achieved by a
joint strategy of all of N, whereas 9(NV) is the set of payoff vectors x such that

(%) Note the similarity with the “end games” used by Isbell [8] in a somewhat different
context. (This work is independent of Isbell’s.) '
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N can jointly achieve at least x. The notion of game as originally defined
(without (7)) provides a generalization of von Neumann and Morgenstern’s
“extended” game [15](®); this is why (7) was not included in the original
definition(19).

3. Domination, core, rationality. Fix a game (N, v, H). A payoff vector x
is said to dominate a payoff vector y via S (notation: x>gy) if xSv(S) and
x5>9y8; x is said to dominate y (notation: x> y) if there is an S such that
x>gy. If Ris an arbitrary set of payoff vectors, we define the R-core C€(R) to
be the set of all members of R not dominated by any other member of R.

It is easy to show that for each 1€ N, there is an extended real number(*?) -
v* such that v({i}) = {x: x"<v"}. A payoff vector x is called 1ndividually ra-
tional if x=v"N. x is called group rational if there is no yEH such that y>x.
We will denote by E the set of group rational payoff vectors in H, and by 4
the set of individually rational payoff vectors in H; also, we set(!?) A =ENA
and E=H.

x3

Fic. 1

We will consider the R-cores for R=E, E, A, and 4. For two-person
games, all these cores turn out to be equal to A. This is a set which is related
to what has been called the “negotiation set” [11, p. 118], but is not always
the same thing. (See Figure 1, in which the negotiation set is the line bc,
whereas the set A is the broken line ebcf. Note that eb is horizontal and ¢f is
vertical.)

(°) See [3, §7].

(**) Half of (7)—the “only if” half—was included in the definition of “game” as given in
[3, §2]. What we call “game” here is called “extended game” in [3], and what we call “ordinary
game” here is slightly stronger than either of the definitions in [3].

(1) A real number or 4+ « or — «.
(1) Following the notation of [5, p. 58].
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4. A lemma on polyhedral sets. If BC EY, denote by I(B) the set(*¥) of
all members x of B for which there is no y such that y>x. For example,
A=1I(Z) and E=I(E). The lemma we shall establish in this section may be

described as follows:
' If B is a bounded polyhedron in EN, then for each x in B but not in I(B),
there is a payoff vector x' in I(B) such that if we move along the ray connecting
x to x'' at a constant speed (which is the same for all xEB), then the rate of in-
crease of each of the coordinates is uniformly bounded away from zero (for all
xEB). .

If B is not a polyhedron this need not be true, as we shall see in an exam-
ple.

For x>0, define f(x) = max;,jen(xi/x7). We have

(1) f(x + ) = max(f(x), f(¢))-

LEMMA 2. For every closed polyhedron B in EY, there is a positive number K
such that for all x€B —I(B), there 1s an x' ©B such that

(3) ¥ >x aond f(x' —x) £ K.

Proof. Suppose B to be defined by the set of linear inequalities Li(x)
=by, - -+, Lu(x) Zbm; we denote this set by M. Each subset Q of M defines
a subset Bg of B, namely the set of those elements of B which satisfy the
inequalities in Q strictly, and the inequalities in M —Q as equalities. Some of
the Bq may be empty; but those that are not are distinct, and we have
B =Ugcux Baq. (Geometrically, the By are the interiors of the faces of B.)

For each Q such that Bq—I(B)# &, choose a payoff vector xq in
Bq—I(B). Then there is a payoff vector yo& B such that yg>xqe. Now let x
be an arbitrary element of Bg; define y; =x+ 6(yo—xq). For sufficiently small
positive 8, y; satisfies the inequalities in Q strictly; the inequalities in M —Q
are satisfied by v; for all positive 8. Hence for positive & sufficiently small,
y;EB and y;>x; we define x' =y; for this 8. Then x' —x=08(yq—xq), so that
F(x' —x) =f(ye—%q). Setting K =maxqcy f(¥o—%q), We obtain flx'—x) =K
for all those x that are located in some Bq for which Bo—I(B) # &. But since
every x&B —I(B) is located in some such Byg, our proof is complete.

LEMMA 4. For every compact polyhedron B in EVN, there is a positive number
K such that for all xEB—I(B), there is an x''€I(B) such that x''>x and
f(x''—x) =K. «

Proof. For each x€B—I(B), let F; be the union of the single point x
with the set of all x’ EB satisfying (3). F is compact, and therefore the func-
tion Hy—xH, considered as a function of y, attains its maximum in F, say

(13) If B is closed and convex, then I(B) is the weak top of B over its base as defined in [7]
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at the point x"’. Suppose x’’ & I(B). Then by Lemma 2 there is a point y&B
such that y>x'’ and f(y—x'") =K. From (1) it then follows that f(y—x) =K
and from (1.1) that “y xH —H(y x”)—l—(x”—x)” >|[x”—x|| hence x’’ does
not have the maximum property by which it was defined, which is a contra-
diction. This completes the proof.

COROLLARY 5. [ f B 1s a compact polyhedron in EN, then there is a positive
number K, such that for each x&B —I(B), there is an x''€I(B) such that
x''>x and for each iEN, x"'i—xiz||x" —x|| /K.

5. Relations between the R-cores for R=E, E, A, and 4. Fix a game
(N, v, H). The crux of this section is the following theorem:

THEOREM 1. Let B be a compact polyhedron in EN, and let y&I(B). If
there 1s a z&B which dominates vy, then there is also a w&I(B) which
dominates y.

Proof. We may assume without loss of generality that y=0. Let V denote
the closed positive orthant {x: x;O}. Since 0=y&I(B), B cannot intersect
the interior of V, and there is therefore a hyperplane g(x) = Y_y ¢ixi=0 which
separates B from V. W. L. 0. g. g(x) =0 for all x&€B, and g(x) =0 for all xE V;
from the latter fact it follows that ¢¥ 2 0. Note that if *€B and g(x) =0, then
x&I(B); otherwise we would have an x;EB such that x;>x, and since not
all the ¢* vanish, it would follow that g(x) <g(x;) <0. :

Let the effective set for the domination of zover 0 be S;set h(x) = D> x_gscix'.
Suppose there is an x€ B such that x>0 and %(x) =0. Then since x>0 and
¢520 it follows that D5 cixi=0. Hence g(x) =0, and therefore x€I(B); but
then we are finished (set w=x). Therefore we may assume without loss of
generality that

(2) if xtx&€B and x >g0, then A(x) <0.

Let 2= (ming 2%)/2; note that £>0. Let C be the set of those x in B for
which x820 and ||x5|| =k. C is compact, and therefore k(x) attains its maxi-
mum in C at a point x, in C. If x, & I(B), then there is an x,&B for which
%2> x1; hence ||«3]| >||«5|| =, and

Set x3=(k/||x5||)xz. Then ||x§|| =%, x>0, and since B is convex, x;B. Hence
x3& C, and therefore

(4) h(x1) 2 h(xs).

Since ||«3|| =, it follows that %3 § <z°; but since z€9(S), it follows from (2.4)
that x;Ev(S). Hence from x5 >0, it follows that x;>50. Hence by (2),
h(x3) <0. But 2(x;) = (k/“xSH)h(xz), and k/”x‘gH <1; hence k(x;) <h(x3) which
contradicts (3) and (4). We conclude that x; & I(B).
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Now since Hx‘f“ =k, it follows that x5 < 25; therefore x1Ev(S). If x3>0it
then follows that x1 >0, and since x1&I(B), we are finished (w=x,). It there-
fore remains only to deal with the case in which one of the coordinates of x5
vanishes. In this case, set d=Fk/(K+1), the K being that of Corollary 4.5.
Let x.CB be such that x3 >0 and Hx4—x1H <§; such an x4 can be constructed
by choosing a point sufficiently close to x; on the line segment joining z to xi.
Define x/’ in accordance with Corollary 4.5. If “x{”—-m”’ >K§$, then x{’ i—x}
> § for each 1€ N; therefore for i€ N we have

xih — = (x.’,“— x;) + (xl — x;) > 6 — 1x1 — xll =6 — ”x4 - xx“ = 0.
Hence %!’ >x: and x{’ €I(B), contradicting x1EI(B). Hence Hx{' —x4H <K..
But then

|44 = @l < [l28" = @l + [l20 — =] = K8+ 8= &

hence
ns

s L

o ®|| < || — wll 4 |2l = 2 = minsz.
Hence x{'5=<325 and from (2.4) we deduce x{’ €v(S). Since x]'8>x52=0, we
obtain xJ’ >s0 and x{’ €I(B). The proof of Theorem 1 is now complete
(‘w=x4"). L

COROLLARY 5. If B is a compact polyhedron, then C(I(B)) = e(B)NI(B).

Proof. If yE c(I(B)), then surely yEI(B). If y were not in C(B), then it
would be dominated by a member z of B, and hence by Theorem 1, by a mem-
ber w of I(B); but then it would not be in @(I(B)). Hence y& €(B) also.

Conversely, if yEI(B) and is not dominated by any member of B, then
a fortiori it is not dominated by any member of I(B). Hence yEe(I(B)).

CoROLLARY 6. €(E) =C(E)NE; e(4) =e(4)NA.

CoROLLARY 7. If (N, v, H) is an ordinary game, then e(E) = c(E) and
e(4) =e(4).

Proof. We need only remark that if B Cu(N) then €(B) CI(B); for any
payoff vector not in I (B) is dominated via N by some other payoff vector.
Our result now follows by applying Corollary 5 with B=E or 4.

THEOREM 8. If (N, v, H) is an ordinary game, then e(E)=c(E)=¢(4)
= e(4).

Proof. It is sufficient to prove that e(E) = e(4). Clearly v¥ ENy v({i});
hence by (2.5), ¥ €v(V). Hence by (2.7) there is a yEH such that y=oV.
Now let x€ @(E). If x€E4, then for some i, xi<vi<yi. Let y: be on the line
segment connecting ¥ to x, but so close to x so that viZ=y;>x% Since Eis
convex and both x and y are in E (which is the same as H), so is y1; but then
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y1>(9%, and therefore x & (E), a contradiction. Therefore x & 4. Therefore
if x & @(4) then there is a &4 such that z>x; but since 4 CE, it follows
that zE E, and therefore x € @(E), again a contradiction. We have shown
that (E) Ce(4).

Conversely if x&€(4), then surely x€ E, since EDADe(4). Hence if
x & @(E), there must be a yE E and an S C N such that y >sx. In particular,
¥5>x% and y&v(S). Set z=(y5, v¥—5); then by (2.4), 2E9(S), and therefore
2Cv(S) NNy s'v({ }) Hence by (2.5), 2E9(N). Hence by (2.7) there is a
w&H such that w=3z In particular, w$2=3z5=95>x5295 (since xE4), and
wN=8 > z¥N—8=yN=S, hence w& A. Now let w; be on the line segment connect-
ing w to x, but so close to x so that yS>w#>x5. Since 4 is convex and both
x and ware in 4, so is w;; but since yEv(S), it follows from (2.4) that w, Ev(S).
Since #?> xS and w,Ev(S), it follows that w, > sx; therefore since w;C 4, it
follows that x& €(4), a contradiction. Hence x& €(E), and the proof is
complete.

If G is an ordinary game, we shall call the common value of C(E), C(E),
e(4), and €(4) the core of G.

6. A counter-example. The results of §§4 and 5 may fail if B (or H) is
not polyhedral. In the case of Lemma 4.2 a circle in two dimensions is a
counter-example. In the case of Theorem 5.1, let N ={1, 2, 3} and let B
be the convex hull of the sets C and D, where

C={2:2120,2220,2° =0, (a)2 + («3)2 < 1},
D={x:0120,222 0,0 =1, («1)2 4+ (22 + 1)2 < 4}.
Then
I(B)=DVU{zxiat=0,22=1,0< a3 < 1}.
Define the characteristic function v by
=0, v({ij}) = {x:x‘é 1/2 and o' < 1/2},
?(N) = {x: there is a y € H such that y = x{.

We have (1/2,1/2,1/2)EB and (1/2, 1/2, 1/2) > (13(0, 1, 0), but there is no
member of I(B) that dominates (0, 1, 0). If we set H=B we obtain counter-
examples to the other results of §5.

7. Composition. Let G1= (N, v1, H;) and G2 =(Ns, v, H;) be games whose
player sets Ny and N, are disjoint. Intuitively, the composition G of G: and
G, is the game each play of which consists of a play of Gi and a play of G,
played without any interconnection. Formally, we define G=(N, v, H),
where N=N,UN,, H=H;XH,, and for each SCN, v(S)=u.(SNNy)
sz(SnNz)

Let RyCEM and R,CE™, and set R Ry X R,. Then it is easily seen that
C(R) = C1(R1) X C2(Ry). Furthermore, if G1 and G are ordinary, then so is G.
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It follows that in this case, the core of G is the cartesian product of the cores of
G:1 and Go.

8. a-effectiveness and S-effectiveness. Up to now we have been treating
games in characteristic function form only; we now turn to games given in
normal form, and ask how we may obtain the characteristic function form
from the normal form. As we remarked in the introduction, this may be done
in a number of ways, depending on our definition of effectiveness. Here we
shall give two such definitions.

A (finite) game I' in normal form consists of a finite set /V, called the set
of players, a finite set P for each 4N, called the set of pure strategies for
player i, and a function F from the cartesian product P of all the P to E¥;
F is called the payoff function(), and its sth coordinate Fiis the payoff to 7.
If SCN, we write PS= ][] s P¢, the cartesian product being meant. A proba-
bility measure on PS5 will be called a c-strategy S-vector (c for correlated); the
set of all ¢c-strategy S-vectors will be denoted CS. Note that a c-strategy
{i}-vector is the same as a mixed strategy for player 4. If cN&C¥, then
F(c") will denote the expected payoff if the ¢-strategy N-vector ¢V is played.
If S, TCN, SN\T=, then (c5XcT) denotes the product measure(') on
PS8UT = PSx% PT induced by ¢5 and ¢T. Occasionally we shall have cause to
consider a topological and a convex structure on C; in this case C5 will be
considered a subset of EF”.

DEFINITION. (1) A coalition S is said to be a-effective for the payoff vector
x if there is a ¢SE CS such that for each ¢¥N=-S& CV=S, we have F5(cSXc¥—5)
= x5,

(2) Sis said to be B-effective for x if for each ¢N"S& CV¥=5 there isa ¢’ € Cs
such that FS(cSXcV¥—5) 2«5, :

Intuitively, a-effectiveness means that S can assure itself, independently
of the actions of N—.S, that each of its members ¢ will receive at least his
coordinate x* of x. B-effectiveness means that S can always act so that each
of its members ¢ receives at least x?, but the strategy that it must use to
achieve this end may depend on the strategy used by N—S; in other words,
N—.S cannot effectively prevent S from obtaining at least('%) x5. Although
a-effectiveness seems at first to be the intuitively more straightforward con-
cept, technically speaking B-effectiveness possesses certain interesting prop-
erties not shared by a-effectiveness (see §10) which lead one to think that it
may eventually turn out to be the more significant concept.

To construct a game in which a-effectiveness and B-effectiveness are not
the same, let N= {1, 2, 3} and S= {1, 2}‘. Let PS have two members 9}
and p5, and P? two members p? and pj;. Define FS by the matrix

(1) Denoted by H in [1; 2].

(%) Denoted (c5, ¢T) in [t].

(1) The difference between the two kinds of effectiveness may be formulated as the dif-
ference between a maxmin and a minmax; for 2-person games it follows from the von Neumann
theorem that the two concepts coincide, but this does not generalize to more players.
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S
71
ps |0, 0|—1, 1

the values of F?® need not concern us. Then for (0, 0, 0), S is S-effective but not
a-effective. .

9. Passage from the normal form to the characteristic function form. Fix
a game I' in normal form, and for each SCN, let v.(S) be the set of payoff
vectors for which S is a-effective. Define v3(S) similarly, using B-effectiveness
instead of a-effectiveness. Define H=F(C¥); H is the convex hull of all the
payoff vectors of the form F(p), where p&P. Both (N, va, H) and (N, v, H)
are ordinary games (though they may be different, as we saw in the previous
section) ; except for Condition 2.5 in the case of S-effectiveness, all the condi-
tions of §2 are easily verified for both these games. To establish Condition 2.5
for (N, vs, H), let xEv(S)Nvp(T) and ¥—5-T€ CV—5-T. Define subsets U
and V of C85XCT as follows:

U = {(c5 cT): FT(cS X ¢T X N-5-T) = a7},

V= {(05, ¢T): FS(c8 X ¢T X N 5-T) = xs}.

Applying the von Neumann-Kakutani fixed point theorem(!?), we obtain the
existence of a point (5, ¢f) in UNV. Setting ¢SYT=c5Xcl, we obtain
FSUT (89T c¥—5-T) 2 x%VUT | and it follows that xEvs(SUT).

From (2.6) and (2.7) it follows that in an ordinary game, v(N) must be
polyhedral. The reader may suspect that in the characteristic function form
of a finite game in normal form, »(S) must be polyhedral for all S. This is
true for v.(S), but not for v5(S). The example is the same as in the previous
section, except that F1(p5, pd) = F2(p5, p3) =0 rather than 1. (See Figure 2;
v8(S) is the cylinder whose cross-section is the shaded area.)

Note that we always have v.(NV) =3(N) and s¥ =1} (the former is trivial,
the latter follows from the minimax theorem for 2-person zero-sum games
[15]). In particular, a- and B-effectiveness are equivalent for all 2-person
games.

If T'; and T'; are games in normal form with disjoint player sets, we may
define their composition T by N = Ni\UN,, P = Py X Py, F(p1, p2)
= (F1(p1), Fa(ps)). It is easily established that either definition of effective-
ness yields a characteristic function form for I' that is the composition of the
corresponding characteristic function forms of I'; and T'; in the sense of §7.

10. The supergame. Nash’s notion of equilibrium point for noncoopera-
tive games [12] is an example of the core notion as described in the introduc-

(7 [9, Theorem 2]; see also [14].
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tion. The “outcomes” are strategy n-tuples; one strategy n-tuple f “domi-
nates” another one g if they coincide for all but one of the players, and that one
player prefers('®) f to g. Thus an equilibrium point is a strategy n-tuple f
with the property that if all the players have reason to believe that f will be
played, then no player will be tempted to deviate from f. In the context of
cooperative games, it is natural to broaden the definition of dominance so
that f dominates g whenever they coincide for all players not in a certain
coalition S, and the players in S each prefer f to g. When dominance between
strategy n-tuples is defined in this way, members of the core are called sirong
equilibrium points(**).

a?

~ x!

T2
/ =25 — |t -1, —1<21<0

0

This definition of dominance seems well justified for a single play of a
game which is not to be repeated. If the game is to be played repeatedly,
though, then a player or group of players may be unwilling to deviate even
if the deviation will yield a temporary advantage, for fear of future retalia-
tion. If future retaliation is to be ruled out, then S must be able to maintain
its payoff at the level of f; that is, S must be effective for f. We are thus led
to the conclusion that a strategy n-tuple for one of a long sequence of plays
of a game I should be considered in equilibrium if its payoff is in the core of
the characteristic function form of T'.

The question now arises, is it the a-core or the B-core that is appropriate
for use in this context, or possibly we should use an altogether different notion
of effectiveness? To answer this question, we consider a long sequence of
plays of T' as a single play of a game I'*, which we call the supergame of T
[1; 11]. It stands to reason that equilibrium behavior for T, knowing that

F1G. 2

(18) L.e., receives a higher payoff when g is played.
(19 Arelated definition is given in [4].
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there will be more plays of I' in the future, should correspond to equilibrium
behavior in I'*, provided that I'* is not repeated. But for games that are not
repeated, we have a perfectly well-defined equilibrium notion, namely that
of strong equilibrium point. And it turns out that it is precisely the B-core
of the characteristic function form of F that corresponds to the strong
equilibrium points in T'*,

Formally(2?), the supergame I'* is the game each play of which is an in-
finite sequence of plays of I'. As in finite games, an n-tuple f of supergame
strategies is said to dominate another n-tuple g if they coincide for all players
not in a certain coalition S, and the players in S each prefer f to g. To define
the word “prefer” in this context, we consider a sequence I',, I's, - - - of plays
of ', and look at the average payoff for all the plays up to the kth. A number
of definitions of preference are now possible, of which the following are the
two “extreme” possibilities:

(a) S prefers f to g if the probability is positive that infinitely often the
average payoff to each member of .S will be uniformly(2!) larger if f is used
than if g is used.

(b) S prefers f to g if it is certain(??) that from a certain play I'x onwards,
the average payoff to each member of .S will always be uniformly larger if f
is used than if g is used. '
An n-tuple f of supergame strategies is said to have the payoff x if with proba-
bility 1 the average payoffs(?) tend to x. f is said to correspond(*) to a
c-strategy vector ¢ in I' if the payoff to f exists and is the same as the payoff
to ¢ in I'. An n-tuple of supergame strategies is said to be a strong equi-

librium point if it is undominated and if it possesses a payoff. Actually we
get two sets of strong equilibrium points, one for each of the two (inequiva-
lent) notions of preference defined above. However, it turns out that both
these sets correspond to the same set of c-strategy vectors, called acceptable
points [1, §4]. By making use of Lemma 9.1 of [1], it is not difficult to show
that the set of payoff vectors to acceptable points—the set of acceptable
payoff vectors—coincides with the B-core(??). Hence the (-core of a finite

(%) For a more detailed treatment of the supergame, see [1]

() The difference must be larger than a fixed (independent of %) positive S-vector.

(2) The probability is 1.

(3) Care should be taken to differentiate between the average payoff for the first 2 plays,
and the expected payoff (for the latter, probability statements would of course be meaningless).
Because of the law of large numbers, the existence of a payoff to f is quite plausible. For exam-
ple, if a “steady state” in strategy choices on the individual I is ever reached, then f certainly
has a payoff. As we have shown in [1, §12], considerations of expected payoff are inappropriate
for T™*.

(#) The correspondence must be defined via the payoffs because there is no direct method
for comparing strategies for individual games with supergame strategies.

(%) Definitions “between” (a) and (b) yield the same set of payoff vectors. For example, in
either of the definitions we could substitute “with probability at least 1/2” for the respectlve
probability statements.
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game is the set of payoff vectors to strong equilibrium points in its super-
game.
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Introduction to “Some Thoughts on the Theory of Cooperative
Games”

The author of this paper, Gerd Jentzsch, died while still a young man on
March 26, 1959. This is apparently his only publication. Judging from
its originality and all-around brilliance, his death was a loss of the first
magnitude to game theory.

The von Neumann-Morgenstern (N-M) theory of n-person games [5] is
concerned with cooperative games in which side payments are permitted
and utility is “unrestrictedly transferable”—that is, each player’s utility
for money is linear in money.! Jentzsch’s investigations grew out of an
attempt to generalize the N-M theory either by eliminating the require-
ment that the utility functions® be linear, or more generally, by eliminat-
ing side payments altogether. He notices at the outset that the notion of
“effectiveness”—which is crucial in the N-M theory—does not generalize
in a straightforward manner. In the classical theory, a coalition K is effec-
tive for a payoff vector f if, roughly speaking, the coalition can assure
itself of getting at least . An equivalent definition of effectiveness is that
the opposition—the complement of K—cannot prevent K from obtaining
at least /. But when utilities are nonlinear in money or side payments are
forbidden, these two definitions of effectiveness are in general no longer
equivalent—in Jentzsch’s terminology, the game need not be “clear”
(Example 4). Jentzsch addresses himself to the task of broadening the
class of games considered by von Neumann and Morgenstern, while still
retaining the clearness property.

The chief result is Theorem 21. Rather than stating it here in its most
general form, we will describe its application to games with side pay-
ments (“‘money games” for short) in which the utility functions need not
be linear. The problem that Jentzsch considers is, what kinds of utility
functions of the players will always lead to clear games (as linear utility
functions do)? More precisely, what conditions, when placed on the util-
ity functions of the players, will ensure that all money games in which

‘these players participate are clear? The answer is that each coalition must

have a kind of “social utility function” for money. For example, this
involves the demand that $50 be indifferent—from the point of view of
the coalition as a whole—to some probability combination of 0 dollars
and $100 (though not necessarily the 1/2-1/2 combination). The sums of
money involved ($50, $0, $100) are not given to the individual players,

This chapter is an introduction to [4]. It originally appeared in Advances in Game Theory,
Annals of Mathematics Studies 52, edited by M. Dresher, L. S. Shapley, and A. W. Tucker,
pp. 407-409, Princeton University Press, Princeton, 1964. Reprinted with permission.

1. See R. D. Luce and H. Raiffa, Games and Decisions, p. 168.

2. By the phrase “utility function” we shall henceforth a/ways mean “utility of money as a
function of money.” T



