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It is well known [Gr67, Zie95℄ that the only linear equality that holds among fae numbersof d-polytopes is Euler's relation: d�1Xi=0 fi(P ) = 1 + (�1)d:As for inequalities for d > 5 the only known linear inequalities are quite trivial:fr(P ) �  d+ 1r + 1!;2f1(P ) � df0(P );2fd�2(P ) � dfd�1(P ):1.2 Flag numbersFor a d-polytope P , and a subset S = fi1; : : : ; ikg � f0; 1; : : : ; d � 1g the ag numberf dS(P ) is the number of hains of faes of P F1 � F2 � � � � � Fk suh that dimFj = ij.We will omit the supersript d if its value is lear from the ontext. (The same de�nitionapplies to ranked latties.) The vetor of ag numbers fS(P ) (where the indies are orderedaording to some �xed ordering) is alled the ag vetor of P . For simpliial polytopes theag numbers are determined by the fae numbers, but for general polytopes ag numbersseems to be the \orret" invariants.Problem 1.3 Charaterize ag vetors of d-polytopes.Again this may be hopeless and a more realisti task is:Problem 1.4 Find all the linear relations among ag numbers of d-polytopesWe will denote by Ad the aÆne spae spanned by ag vetors of d-polytopes and byPd � Ad the one spanned by ag vetors of d-polytopes.Remark: While these problems on ag numbers are more general than the orrespond-ing problems for fae-numbers, deriving onlusions for the fae numbers from informationon ag numbers may also be a non-trivial task.1.3 The theorem of Bayer and BilleraA remarkable theorem of Bayer and Billera [BayB85℄ asserts that the aÆne dimension ofthe spae Ad of ag vetors of d-polytopes is d� 1, were d is the d-th Fibonai number.Bayer and Billera used Euler's formula to dedue the following relation ommonlyreferred to as the \generalized Dehn-Sommerville relations":Let S � f0; 1; : : : d�1g, k 2 S[f�1; dg and i � k�2. If S ontains no integer betweeni and k then 3



k�1Xj=i+1 f dS[fjg(P ) = (1� (�1)k�i�1)f dS(P ):Bayer and Billera also showed that these relations span all the aÆne relations amongag numbers of d-polytopes.1.4 Bases for ag vetors and bases for polytopesA d-form will denote a linear ombination of ag numbers f dS. A basis for the spae of agnumbers of d-polytopes is a olletion of d-forms whih aÆnely span the spae Ad. Thespeial ag numbers are those ag numbers f dS suh that S � f1; 2; : : : d � 2g and S doesnot ontain two onseutive integers. It follows from the generalized Dehn-Sommervillerelation that every ag number an be represented as an aÆne ombination of speial agnumbers. Other bases of ag numbers of d-polytopes were found in [Kal88, BilL℄.A basis of polytopes is a olletion of d polytopes whose ag vetors are aÆnely inde-pendent. See [BayB85, Kal88℄ for two suh onstrutions.1.5 h- and g-numbers for simpliial polytopesLet d > 0 be a �xed integer. Given a sequene f = (f0; f1; : : : ; fd�1) of nonnegativeintegers, put f�1 = 1 and de�ne h[f ℄ = (h0; h1; : : : ; hd) by the relationdXk=0hkxd�k = dXk=0 fk�1(x� 1)d�k: (1)If f = f(P ) is the f -vetor of a simpliial d-polytope P then h[f ℄ = h(P ) is alled theh-vetor of P . The g-vetor g(K) = (g0; g1; : : : ; g[d=2℄) of P is de�ned by gi = hi � hi�1.Thus, g0 = 1, g1 = f0� (d+1), g2 = f1�df0+�d+12 � and g3 = f2� (d�1)f1+�d2�f0+�d+13 �and so on.In 1970 MMullen [MM71℄ proposed a omplete haraterization of f -vetors of bound-ary omplexes of simpliial d-dimensional polytopes. MMullen's onjeture was settled in1980. Billera and Lee [BiLe81℄ proved the suÆieny part of the onjeture and Stanley[Sta80℄ proved the neessity part. Stanley's proof relies on deep algebrai mahinery in-luding the hard Lefshetz theorem for tori varieties. Reently, MMullen [MM93℄ founda self-ontained proof of the neessity part of the g-theorem. It is onjetured that theg-theorem applies to arbitrary simpliial spheres.For positive integers n � k > 0 there is a unique expression of n of the formn =  akk !+  ak�1k � 1!+ : : :+  aii !; (2)where ak > ak�1 > : : : > ai � i > 0. This given, de�ne�k(n) =  ak�1 � 1k � 1 !+  ak�1 � 1k � 2 !+ : : :+  ai � 1i� 1 !: (3)4



Theorem 1.1 (The g-theorem) For a vetor h = (h0; h1; : : : ; hd) of nonnegative inte-gers the following onditions are equivalent:(i) h is the h-vetor of some simpliial d-polytope.(ii) h satis�es the following onditions(a) hk = hd�k for k = 0; 1; : : : ; [d2 ℄Put gk = hk � hk�1.(b) g0=1 and gk � 0 , k = 1; 2; ; : : : ; [d2 ℄.() �k(gk+1) � gk; k < [d2 ℄1.6 h- and g-numbers for general polytopesIntersetion homology theory has led to deep and mysterious extensions of h- and g-numbers from simpliial polytopes to general polytopes. The de�nition [Sta9400℄ goes asfollows. For a polytope P denote by Pk the set of k-faes of P . De�ne by indution twopolynomials hP (x) = dXk=0hdkxd�k; gP (x) = [d=2℄Xk=0 gdkxd�k;by the rules: (a) gdk = hdk � hdk�1, (b) If P is the empty polytope or a 0-polytope P ,hP = gP = 1, and hP (x) = dXk=0(x� 1)d�kXfgF (x) : x 2 Pkg:Thus gd1(P ) = f0(P )� d� 1 andgd2(P ) = f1(P ) +Xff0(F )� 3 : F 2 P2g � df0(P ) +  d+ 12 !:The value of gd2 for general polytopes has also a rigidity theoreti meaning and isnonnegative for every polytope. The nonnegativity of gd2 is still open for more generalobjets like polyhedral spheres and manifolds. It follows from intersetion homology theoryfor tori varieties that gdk is nonnegative for every rational polytope. This is still open forgeneral polytopes.Problem 1.5 Charaterize g-vetors of d-polytopes.It is onjetured that g-vetors of arbitrary d-polytopes satisfy (and therefore are har-aterized by) the same non linear relations whih were proved for simpliial polytopes.Problem 1.6 What is the signi�ane of the g-numbers for the ombinatorial theory ofd-polytopes?
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1.7 Duality of polytopesFor a d-polytope P we denote by P � the dual of P . There is an order-reversing bijetionbetween faes of P and faes of P �. Put �gdk(P ) = gdk(P �). Clearly �gdk(P ) is nonnegative forevery rational polytope P .There are various onnetions between ag numbers of polytopes and their dual whihare quite mysterious and are related to mirror symmetry. See [Sta92, BaBo96, Kal88℄.1.8 Intervals in fae-latties of polytopesThe set of faes of a d-polytope form a ranked poset of rank d+1 with the lattie property.We will use the dimension as the grading and thus the empty fae will have grade �1.Intervals in the fae latties of polytopes are themselves fae latties of polytopes, see[Gr67, Zie95, Kal88℄. Intervals of type [a; b℄ are intervals [F;G℄ where dimF = a anddimG = b. If a = �1 then F is the empty fae and [F;G℄ is simply the fae lattie of G.1.9 ConvolutionsLet md; me be linear ombinations of ag numbers of d- and e-polytopes respetively. Fora polytope P of dimension d+ e+ 1 de�ne the onvolution of md and me bymd �me(P ) =Xfmd(F ) �me(P=F ) : F a d-fae of Pg:For a Hopf-algebrai treatment of ag numbers and their onvolutions, see [BilL℄. Thefollowing lemma [Kal88℄ is immediate.Lemma 1.2(1) md �me(P ) is a linear ombination of ag numbers of (d+ e+ 1)-polytopes.(2) If md(P ) = 0 for every d-polytope P or me(Q) = 0 for every e-polytope Q thenmd �me(R) = 0 for every d+ e + 1-polytope R.(3) If md(P ) � 0 for every d-polytope P and me(Q) � 0 for every e-polytope Q thenmd �me(R) � 0 for every d+ e+ 1-polytope R.Convolutions of the gi's and �gi's yield a large olletion of linear inequalities for agnumbers of d-polytopes. We will denote by Qd the one of ag numbers desribed by allthese inequalities. As it turns out the simple inequalities f di (P ) � �d+1i+1� do not follow fromonvolutions of the gi's. We denote by Q0d the one of ag numbers obtained by addingthese inequalities, their polars and the derived inequalities by onvolutions.1.10 The d-indexRemarkable lasses of invariants for Eulerian posets are given by Fine's d-index. See[BayK91, Sta940℄. The d-index for d-dimensional polytopes is a polynomial of degree din two non-ommuting variables of degrees 1 and 2, respetively. This polynomial has d6



oeÆients, eah one of whih is a d-form. (Namely, a linear ombination of ag numbersof d-polytopes) and together they onsist of a basis of suh forms. It was proved byStanley [Sta940℄ that these oeÆients are nonnegative for every d-polytope, and Billeraand Ehrenborg [BiEh℄ proved that the values of these forms are at least as large as theirvalue for the d-simplex. In low dimensions these inequalities already follows from thosein Q0d.2 FLAGTOOLThe previous setion shows that the Generalized Dehn Sommerville Equations and thenonnegativity of onvolutions of the numbers gki and gik (0 � k � d, 0 � i � bk=2) yield alot of linear relations between the ag numbers of general d-polytopes for a �xed dimensiond. It is very hard to ompute them or to derive new results from them without using aomputer beause the number of those relations is large already for small dimensions.Therefore, Meisinger [Mei94℄ developed a program alled FLAGTOOL. The main purposeof this program is to� ompute all (known) linear relations between the ag numbers of general d-polytopesfor small dimensions, say 3 � d � 10,� extrat and automatially prove new results from those relations.The aim of the following setion is to present the main features of the program.2.1 Basi ideas and motivationIn 1990 Kalai [Kal90℄ proved that every d-polytope (d � 5) has a 2-fae with less than5 verties. This implies that there does not exist a 5-polytope all 2-faes of whih arepentagons. The proof was obtained by taking for dimension �ve all known linear inequal-ities for ag numbers and all possible onvolutions of the inequality orresponding to thenegation of the theorem's laim (f 20 � 5 � 0 for intervals of type [�1; 2℄). The resultingset of linear inequalities, as an input of a Linear Programming Problem, had no feasiblesolution and therefore the orretness of the theorem followed.This suggests that more results an be proved in a similar way by using this ideasystematially. The main aspet for the development of FLAGTOOL is based on this ideaand an be summarized as follows. We inlude examples for a better understanding. Seealso Figure 1 for the general sheme of supporting theorem proving with FLAGTOOL.1. Consider a �xed dimension d. FLAGTOOL works with dimensions 3 � d � 10.This value an be inreased if it does not exeed the omputer's memory apaity orauses runtime problems.2. For a �xed dimension d we derive all known nonnegative d-forms from the numbersgki and gik (0 � k � d, 0 � i � bk=2) and their onvolutions. (It turned out that a7



BASIC INPUTrr g-numbersGeneralizedDehn Sommer-ville Equations
USER INPUTrrr DimensionNegation ofonjeturedinequalityInterval(s)Convolutionof Input- �?System A of li-near inequalities?Conversion of Ato speial ags?LP-solver -� A infeasibleA feasible NEW THEOREMNO STATEMENT �Prove the theorem\by hand" or by asymboli algebra programFigure 1: Automated theorem proving by FLAGTOOL
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lot of the resulting inequalities are redundant. FLAGTOOL omits those redundantinequalities and omputes a system B of linear inequalities in terms of ag numbersfor eah dimension d.)3. (a) In order to prove a linear inequality for ag or fae numbers in this �xed di-mension d, we have to add the negation of this inequality to the system B. Toprove �2f1+3f2�2f3 � 0 whih holds for all 5-polytopes, we add the negation2f1 � 3f2 + 2f3 � 1 � 0.(b) To prove fats about low dimensional faes or quotients, we have to add inequal-ities (negation of onjetured inequalities) to intervals (in the fae-latties) ofa d-polytope and to onvolve them with the numbers gki and gik (0 � k � d,0 � i � bk=2) to reate a system of inequalities whih ontains the systemB. To prove the result that 5-polytopes always have a 2-fae with less than 5verties, we have to add the 2-dimensional inequality f 20 � 5 � 0 to the bottominterval [�1; 2℄.4. Express all the new linear inequalities in terms of speial ag numbers. This resultsin a set A (that ontains B) of linear inequalities.5. If the set A of linear inequalities has no feasible solution, the negation of at leastone of the added inequalities is true for all rational polytopes. If only gd0 , gd1 andgd2 are used in onvolutions, the result holds for all polytopes. The infeasibility anbe proved for example by using phase I of an LP-solver or symboli mathematialprograms.The program itself onsists of a set of subtools whih are desribed briey in the Ap-pendix. For more details see the user manual of FLAGTOOL [Mei94℄.3 The linear one of ag vetors and f-vetors3.1 What are all the linear inequalities for ag numbers?It was onjetured in [Kal88℄ that Pd = Qd, i. e., that every linear inequality on the agnumbers of general d-polytopes is equivalent to the nonnegativity of some nonnegativeombination of onvolutions of the gki and gik (0 � k � d, 0 � i � bk=2). It turned outthat this onjeture is false.Proposition 3.1 The linear inequality (�)f2 � 35 � 0 whih holds for all 6-polytopes isnot a nonnegative ombination of onvolutions of the numbers gki and gik (0 � k � 6; 0 �i � bk=2).Proof: We determined using FLAGTOOL all the linear inequalities for the one Q6. Thepoint(f0; f1; f2; f3; f4; f02; f03; f04; f13; f14; f24; f024) = (7; 21; 0; 0; 21; 105; 350; 315; 630; 840; 630; 2520)9



satis�es all these inequalities but violates (*).3.2 Flag numbers of 4-polytopesEuler's theorem easily implies a omplete desription of fae numbers (hene ag numbers)of 3-polytopes. In the Appendix we give a list of the known nonredundant inequalities for4-, 5- and (rational) 6-polytopes.The situation for 4-dimensional polytopes was onsidered by Barnette [Ba74℄ and Bayer[Bay87℄. Bayer desribed the one Q4 and in partiular identi�ed its seven extreme rays.It is not hard to show that four of these rays are indeed extreme rays of P4 the one of agnumbers of 4-polytopes. In order to show that Q4 desribes all linear inequalities among4-polytopes ertain onstrutions of 4-polytopes are needed. For examples an in�nite lassof self-dual 2-simpliial polytopes with vanishing g2 will take are of one suh ray. Anin�nite family of self-dual 2-simpliial polytopes so that the ratio f2f1 is unbounded willtake are of a seond ray.On the other hand, Billera and Ehrenborg onjetured that for 4-polytopes10f0 � f1 + 9f3 � 2f03 � 45:They showed that if true this relation added to Q4 would haraterize the linear one ofag numbers of 4-polytopes.Note the interesting onsequenes of this inequality for 2-simpliial 2-simple 4-polytopes.For all suh polytopes f0 = f3 and f1 = f2 and f03 = f0 + 2f1. The inequality of Billeraand Ehrenborg would be for suh polytopes f1 � 9f0 � 45, namely it will give a linearupper bound for the number of edges in terms of the number of verties.3.3 What are all the linear inequalities for fae numbers?When studying the linear inequalities for the ag numbers of arbitrary d-polytopes thequestion arises what information on the ordinary f -vetor an be derived from those in-equalities. For a �xed dimension d � 4 we have a set of n linear inequalities A1 �0; : : : ; An � 0 obtained by onvolution of the numbers gki and gik (0 � k � d, 0 � i �bk=2). Eah Aj (1 � j � n) is a d-form in d � 1 variables (the speial ag numberswithout f;) and d � d variables among them are not fae numbers.Information about the ordinary f -vetor an be obtained by projeting the one of ag-vetors onto the spae of f -vetor. We obtained the image of Q0d under this projetion bya suessive elimination of the d � d variables whih are not fae numbers. Eliminationof a variable fS (fS a speial ag number) here means to generate all possible nonnegativeombinations of the Ai where fS does no longer appear.For dimensions 4 and 5 projeting Q0d into the spae of fae-numbers gave, beside theinequalities mentioned in the introdution, two nontrivial inequalities whih were foundearlier by Bayer and Kalai. Bayer [Bay87℄ showed that for 4-polytopesg42 + g00 � g21 � g0010



= (f02 � 3f2 + f1 � 4f0 + 10) + (6f1 � 6f0 � f02)= �3f2 + 7f1 � 10f0 + 10 � 0:and Kalai [Kal88℄ showed that for 5-polytopesg21 � g21 + g00 � g21 � g10 + g10 � g21 � g00= (�6f3 + 3f03 � f13 � 3f02 + 9f2)+(2f13 � 3f03)+(�6f1 � f03 � f13 + 3f02)= 6f1 � 9f2 + 6f3 � 0) 2f1 � 3f2 + 2f3 � 0No further inequalities for 4- and 5-polytopes are obtained by projeting Q04 and Q05.In dimension d = 6 we have 28 nonredundant linear inequalities A1 � 0; : : : ; A28 � 0obtained by FLAGTOOL. When we eliminated suessively the variables f02, f03, f04, f13,f14 and f024 and remove redundany the result is that no new linear inequality for theordinary f -vetor is obtained.If no further inequalities for fae numbers exist this would imply, for example, thatthere is a sequene Pn of 6-polytopes so that for every k 6= 3, f3(P ) = o(fk(Pn)) as ntends to in�nity. This seems very unlikely. Barany onjetured that for every d-polytopefk(P ) � minff0(P ); fd�1(P )g and this seems very likely albeit beyond our reah.4 Low dimensional faes and quotients of high dimen-sional polytopes4.1 Some basi onjeturesMuh of the rest of the paper is related to the following three onjetures:Conjeture 4.1 For every integer k > 0 there exist integers n(k) and d(k) so that everyd-polytope d � d(k) has a k-dimensional fae with at most n(k) verties.It an be onjetured that n(k) an be hosen to be 2k and that the following strongeronjeture holdsConjeture 4.2 For every integer k > 0 there exists d0(k) so that every d-polytope, d �d0(k) has a k-dimensional fae whih is either a simplex or ombinatorially isomorphi toa ube.Conjeture 4.3 (Perles) For every integer k > 0 there exists f(k) so that every d-polytope d � f(k) has a k-dimensional quotient whih is a simplex.11



For simple polytopes the �rst onjeture follows from a fundamental result of Nikulin,see [Nik86, Kal90℄. The seond onjeture is open even for simple polytopes.And �nally,Problem 4.4 Is it true that for every k there is g(k) suh that for every d-polytope, d >g(k) either P or its polar P � has a k-dimensional fae whih is a simplex.4.2 Small low dimensional faes of high dimensional polytopesTheorem 4.1 Every rational d-polytope (d � 9) has a 3-fae with less than 78 vertiesor 78 faets. Using the simple relation f0 � 2f2 � 4, whih holds for all 3-polytopes, thisimplies that there exists always a 3-fae with less than or equal to 150 verties.Proof: Assume that every 3-fae of an arbitrary 9-polytope has 78 or more verties orfaets. This assumption an be expressed by the inequalities f 30 � 78 � 0 and f 32 � 78 � 0.A system of 53 linear 9-forms obtained by onvolutions of the g-numbers and of thesetwo added inequalities (in the bottom interval [�1; 3℄) has no nonnegative feasible solutionand therefore Theorem 4.1 is proved. See [MKK℄. The proof was obtained as follows.FLAGTOOL reates 227 linear inequalities whih ontain the 53 inequalities above. Theinfeasibility was �rst heked using phase I of the LP-solver CPLEX and then provedusing the symboli mathematial program MAPLE V. It seems impossible to prove theinfeasibility \by hand." The details of this proof (whih for a omputer generated proof isquite short) do not seem to ontribute to our (human) insight for understanding why thetheorem is true.4.3 Small (k+1)-faes for high dimensional k-simpliial polytopesConjeture 4.2 would imply that for high enough dimension d every 2-simpliial polytopeontain a k-dimensional fae whih is a simplex. In this setion we show that every k-simpliial (2 � k � 3) d-polytope P (all k-dimensional faes of P are simplies) has small(k + 1)-dimensional faes if the dimension d is high enough.Theorem 4.2 Every 2-simpliial d-polytope (d � 5) has a 3-fae with less than 8 verties.Proof: It suÆes to show that Theorem 4.2 holds for 5-polytopes, beause every 5-dimensional fae of every 2-simpliial d-polytope (d > 5) is again 2-simpliial and thereforehas a small 3-fae.Assume that every 3-fae of a 2-simpliial 5-polytope has 8 or more verties. This assump-tion is expressed by the inequality f 30 � 8 � 0 in the bottom interval [�1; 3℄. Consider thefollowing �ve inequalities for 5-polytopes obtained by onvolutions of the g-numbers andthe added inequality.
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[1℄ g10 � g21 � g00 = �6f1 � f13 + 3f02 � 0[2℄ (f0 � 8) � g10 = f03 � 8f3 � 0[3℄ g21 � g21 = �6f3 + 3f03 � f13 � 3f02 + 9f2 � 0[4℄ g00 � g42 = �8f1 + 2f13 + f02 � 3f03 + 10f0 � 0[5℄ g15 = �f0 + f1 � f2 + f3 � 4 � 0By using the fat that for 2-simpliial polytopes the inequality f02 = 3f2 holds we anprove the infeasibility of these �ve inequalities. The following nonnegative ombination ofthe inequalities shows the infeasibility. This was obtained by Fourier-Motzkin Elimination.3 � [1℄ + 3 � [2℄ + [3℄ + 2 � [4℄ + 24 � [5℄ = �4f0 � 10f1 � 6f3 � 96 < 0 2Theorem 4.3 Every 2-simpliial d-polytope (d � 7) has a 3-fae with less than 7 verties.Proof: Again it suÆes to prove the theorem for 7-polytopes. Assume that every 3-faeof a 2-simpliial 7-polytope has 7 or more verties (inequality f 30 � 7 � 0 in the bottominterval [�1; 3℄) and that every 2-fae is triangular (inequality 3 � f 20 � 0 in the interval[�1; 2℄). Note that g21 = f 20 � 3 � 0 and therefore f 20 = 3. Consider the following 15inequalities for 7-polytopes obtained by onvolutions of the g-numbers, their duals and theadded inequalities. The theorem follows again from the infeasibility of this system of linearinequalities.[1℄ (3� f0) � g00 � g21 � g00 = 18f03 � 36f3 + 18f24 + 3f035 � 6f35 � 6f13�6f024 � f135 � 0[2℄ (f0 � 7) � g21 � g00 = �6f03 � f035 + 3f024 + 42f3 + 7f35 � 21f24+15f14 � 15f04 � 0[3℄ g10 � g41 � g00 = �f024 + f025 � 10f1 � 3f13 + 5f14 � 5f15+5f02 � 0[4℄ g10 � g42 � g00 = 3f024 � f025 + 20f1 + 4f13 � 10f14 + 4f15�10f02 � 0[5℄ g61 � g00 = �14 + 7f0 + 7f2 � 7f3 + 7f4 � 7f5 � f02+f03 � f04 + f05 � 5f1 � 0[6℄ (3� f0) � g21 � g10 = 6f35 � 3f035 + f135 � 9f25 + 3f025 � 0[7℄ (f0 � 7) � g00 � g21 = �3f024 + 2f035 + 15f04 � 15f14 + 21f24�14f35 � 0[8℄ (3� f0) � g10 � g21 = f135 � 3f035 + 6f35 � 9f24 + 3f024 � 0[9℄ g10 � g21 � g21 = �3f024 � 6f15 � f135 + 3f025 + 9f14 � 0[10℄ g40 � g21 = 2f5 � f05 + f15 � f25 + f35 � 3f4 � 0[11℄ (f0 � 7) � g30 = f03 � 7f3 � 0[12℄ g20 � g42 = �8f3 + 4f03 � 4f13 + 2f35 � f035 + f135+f24 � 3f25 + 10f2 � 0[13℄ g21 � g42 = 24f3 � 12f03 � 6f35 + 3f035 + 4f13 � f135+f024 � 3f025 + 10f02 � 3f24 + 9f25�30f2 � 0[14℄ (3� f0) � g40 = �f02 + 3f2 � 0[15℄ g00 � g16 = �f02 + f03 � f04 + f05 + 2f1 � 7f0 � 013



The following positive ombination of the 15 inequalities obtained by FLAGTOOLproves the infeasibility of the system.112 � [1℄+ 84 � [2℄+ 84 � [3℄+ 105 � [4℄+ 540 � [5℄+ 112 � [6℄ + 168 � [7℄+ 336 � [8℄+ 210 � [9℄+ 1260 �[10℄ + 252 � [11℄ + 189 � [12℄ + 315 � [13℄ + 1260 � [14℄ + 720 � [15℄ = �1260f5 � 1260f0 � 7560 < 02Theorems 4.2 and 4.3 were obtained by diret support of FLAGTOOL. The addedinequalities, as part of the user input for our program, are f0 � 3 � 0 in the bottominterval [�1; 2℄ and f0 � xd � 0 in the bottom interval [�1; 3℄. The quantity xd is aonjetured lower bound for the number of verties of a 3-fae. Several tests with di�erentvalues for the dimension d and the quantity xd lead to the following lower bounds for xd,whih are suÆient to show the infeasibility of the system of n inequalities. Note that inall ases the numbers g0; g1; g2 are suÆient to prove the theorems and so they are notrestrited to rational polytopes. (The �rst and third rows of the table are just Theorems5 and 6 above.) d xd use of gi n5 8 g2 166 8 g2 327 7 g2 658 7 g2 1229 7 g2 22710 7 g2 424Similar work with FLAGTOOL shows that every 3-simpliial d-polytope (d � 7) has asmall 4-fae.The added inequalities are f0 � 4 � 0 in the bottom interval [�1; 3℄ and f0 � xd � 0in the bottom interval [�1; 4℄. The following lower bounds for the vertex number xd ofa 4-fae for whih the infeasibility holds, the use of the g-numbers and the number n ofgenerated inequalities were obtained.d xd use of gi n7 10 g2 608 10 g2 1119 9 g2 20610 9 g2 3824.4 Low dimensional quotients with few vertiesIt is a lassial result that every 3-polytope or its dual has a triangular 2-fae. It followsthat every d-polytope (d � 3) has a 2-quotient Q whih is a triangle. Indeed if a 3-polytopeP and his dual both has no triangular fae then we will obtain that14



[1℄ (f0 � 4) � g00 = �8 + 4f0 � 2f1 � 0[2℄ g00 � (f0 � 4) = 2f1 � 4f0 � 0[1℄ + [2℄ = �8 < 0In what follows we will prove that higher dimensional analogous of this fat hold as well.We show that high dimensional polytopes always have small 3-dimensional quotients insome interval of the fae lattie. The most important result is that every d-polytope (d � 9)has a 3-quotient whih is a simplex. For lower dimensions we show that every d-polytope(5 � d � 8) has a 3-quotient with less than xd verties. These results were obtained byadding the 3-dimensional inequality f0 � xd � 0 to all intervals [�1; 3℄ : : : [d � 4; d℄. Thelower bounds for the quantity xd, the use of the g-numbers and the number n of nonnegativeonvolutions (inequalities) produed by FLAGTOOL are as follows:d xd use of gi n5 8 g1 146 7 g1 287 6 g1 558 6 g1 1039 5 g2 243In partiular,Theorem 4.4 Every d-polytope (d � 9) has a 3-quotient whih is a simplex.In a similar way we prove that every d-polytope (7 � d � 9) has a 4-quotient withless than xd verties. The values for xd, the use of the g-numbers and the number n ofnonnegative d-forms produed by FLAGTOOL are as follows:d xd use of gi n7 16 g2 618 13 g2 1129 10 g2 2104.5 Low dimensional \small" quotients in presribed loationsNote that Conjeture 4.2 would imply that if d is large enough we an always �nd a k-dimensional quotient of the form G=F whih is a simplex, where the dimension e of F isspei�ed and e 6= �1; d�k�1. In this setion we show that 2- and 3-dimensional quotientswith small number of verties appear in ertain spei�ed intervals of a high dimensionalpolytope.A onsequene of the fat that every 3-polytope or its dual has a triangular 2-faeand of the fat that the union of two adjaent 2-dimensional intervals are representing a3-dimensional interval is the following orollary.15



Corollary 4.5 Every d-polytope (d � 3) has a triangle as a 2-quotient either in the interval[e; e+ 3℄ or in the interval [e+ 1; e+ 4℄ (�1 � e � d� 4).In what follows we present similar, but new results onerning triangular 2-quotientsin ertain loations. Again all results were obtained by diret support of FLAGTOOL.Theorem 4.6 Every d-polytope (d � 6) has a triangular 2-quotient either in the interval[0; 3℄ or in the interval [2; 5℄. In partiular, every 6-polytope or its dual has a 3-fae with a3-valent vertex.Theorem 4.7 Every 7-polytope has a triangle as a 2-quotient of a 1-fae in a 4-fae, i. e.,it has a 4-fae with an edge that is ontained in three 3-faes.Moreover we prove that there always exist small 3-quotients in ertain interesting loa-tions. For example we show that every d-polytope (7 � d � 9) has a small 3-fae or its dualhas a small 3-fae with less than xd verties. The added inequalities for FLAGTOOL aref0� xd � 0 in the bottom interval [�1; 3℄ and in the top interval [d� 4; d℄. The quantitiesxd, the use of the g-numbers and the number n of nonnegative onvolutions (inequalities)produed by FLAGTOOL are as follows:d xd use of gi n7 17 g2 628 55 g2 1169 21 g2 194Next we show that from a ertain dimension there exist small 3-quotients in the intervals[0; 4℄ and [1; 5℄. Several tests with FLAGTOOL by adding the inequality f0 � xd � 0 inthe interval [0; 4℄ lead to the following lower bounds xd for whih the infeasibility of the ninequalities obtained by onvolutions of the g-numbers and the added inequality holds.d xd use of gi n5 12 g2 146 12 g2 287 10 g2 578 10 g2 1049 10 g2 172For the interval [1; 5℄ the result is as follows.d xd use of gi n6 12 g2 287 8 g2 568 8 g2 1039 8 g2 16816



4.6 Low dimensional quotients with small g2In the previous setions low dimensional quotients with small g1 were onsidered. We willnow onsider quotients with small g2.Theorem 4.8 Every d-polytope (d � 7) has a 4-quotient Q suh that g2(Q) = 0.5 Other possible appliations and extensions5.1 Non-linear inequalities and linear onsequenesThe nonlinear relations among g-numbers whih are known to hold for simpliial polytopesare onjetured for general polytopes. Other nonlinear inequalities were reently proved.Convolutions still apply, what an be derived from these inequalities? Do they imply linearinequalities for the ag numbers?For simpliial d-polytopes (and more generally, for subomplexes of their boundaryomplexes) one an derive quite sharp upper bounds for fi in terms of fi�1. (These boundsalled the generalized upper bound inequalities are attianed for yli polytopes). See[Kal91℄. For i � [d=2℄ + 1 these bounds are linear. Are these bounds ontinue to applyfor the non-simpliial ase? This is onjetured to be true in [Kal91℄. This onjeturewould imply a positive answer to Barany's question (Setion 3.3) as well as the follow-ing remarkable extension of Bj�orner's partial unimodality results for simpliial polytopes[Bj94℄:Conjeture 5.1 The fae numbers fi of d-polytopes are non-dereasing for i � [(d+3)℄=4and noninreasing for i � [3(d� 1)=4℄.The result of Braden and MaPherson whih we are going now to disuss may berelevant or even the key for proving suh a onjeture.There are various relations involving ag numbers of a polytope P and those of aspei� fae F and the quotient P=F . Braden and MaPherson [BrMP℄ proved for rationalpolytopes that gP (x) � gF (x)� gP=F (x):(Here the inequality means that all oeÆients of the polynomial on the left hand sideare at least as large as those in the right hand side.) FLAGTOOL does not involve suhrelations. Can they be added to the piture? For simpliial omplexes relations betweenfae numbers of a omplex and its links are fundamental in proving nonlinear relations[MM70, BjK91℄. The Braden-MaPherson inequalities already have various interestingappliations [Kal88, Bay98, BiEh℄. Bayer found sharp form of the upper bound theoremfor general polytopes and Billera and Ehrenborg used the Braden-MaPhersob result andtheir own monotoniity theorem for the d-index to derive various nonlinear inequalities.It seems that there is muh yet to be explored.17



5.2 Speial lasses of polytopesSimpliial and ubial polytopesThe fae numbers of simpliial polytopes are ompletely haraterized. (Although �ndinginteresting ombinatorial onsequenes from this haraterization is still a hallenge, seee. g. [Bj94℄.) Perhaps it is the right time to introdue and study more deliate numerialinvariants for them. (For some ideas see [Gr70℄.) E. g., for simpliial 4-polytopes we anonsider the number of pairs of faets whih has an edge in ommon. (Or, similarly, wean study the f -vetor of the deleted join of the polytope.)The knowledge of ubial polytopes is muh less omplete (see [Ad96, BBC97, JZ℄).For both simpliial and ubial polytopes ag numbers are determined by fae numbersand the aÆne spae spanned by fae numbers is of dimension [d=2℄.In the ubial ase there are analogs of the gi's introdued by Adin [Ad96℄ who onje-tured them to be non-negative. It would be interesting to �nd ombinatorial onsequenesfrom the nonnegativity of the gi for the links (and possibly also Adin's onjeture) e. g.,�nding an analog of Nikulin's theorem [Nik86, Theorem C℄ or showing that dual-to-ubiald- polytopes always have a e-dimensional fae whih is a simplex (where e tends to in�nitywith d).Quasi simpliial polytopesQuasi simpliial polytopes are polytopes all whose faes are simpliial. For these polytopesthe fae numbers determine all ag numbers [Kal88℄ and the aÆne spae of fae numbersis d � 1. It seems that �nding the linear inequalities for fae-numbers for suh polytopeswhih an be derived from the nonnegativity of the gi's an be done automatially formuh higher dimensions (d � 100 seems realisti).As pointed out by Anders Bj�orner suh a study an ontribute to the lassi�ationof hyperboli reetion groups, see [Nik86, Kho86℄. The results obtained so far heav-ily use Nikulin's theorem [Nik86, Thm. C℄ as well as its extension by Khovanskii to thequasi-simpliial ase. For this appliation we need to onsider only the restrited lass ofpolytopes whose faets are Cartesian produts of simplies.k-simpliial (d� k)-simple d-polytopesReall that a polytope P is alled k-simpliial if all its k-faes are simplies. P is k-simple ifP � is k-simpliial. If P is a k-simpliial, r-simple d-polytope (k; r;� d) and k+ r > d thenP is a simplex. Finding k-simpliial (d � k)-simple d-polytopes (for k; d � k > 1), apartfrom the simplex itself, is of great interest. No suh example is known lfor k; d � k � 4.The onvex hulls of middle points of the edges of the simplex (the 2-hypersimplex) are2-simpliial (d � 2)-simple polytopes. The onvex hull of the even verties of the d-ubeare 3-simpliial (d�3)-simple. (These examples and others were worked out by Perles who18



may have had also a single example for k = d � k = 4 that was forgotten.) It would beinteresting to understand the linear relations among ag vetors of suh polytopes.Faet-forming polytopesA d-polytope P is a faet forming polytope if there is a (d + 1)-polytope all whose faetsare isomorphi to P . By eliminating variables we an, in priniple, determine the averagebehavior of ag numbers of faets of a d-polytope (and more generally the behavior ofthe averages of ag numbers for e-dimensional faes of d-polytope). Clearly every suhinequality will apply to faet-forming polytopes. It turns out that for d = 4; 5 no newinequalities are obtained. More sophistiated appliations of the inequalities in Q5 anbe used to show that ertain 4-polytopes are not faet-forming, see [Kal90℄. It would beinteresting to extend these results to higher dimension.Baryentri subdivisionsAnother interesting diretion is to try to determine all linear relations between fae num-bers of baryentri subdivisions of d-polytopes. Reall that the number fk(BP ) of thebaryentri subdivision BP of P is simply the sum of fS(P ) for all sets S of ardinalityk + 1. Again, this is a question about the projetion of Q0d to some small dimensionalsubspae. This diretion was not worked out yet.ZonotopesUnderstanding ag numbers of zonotopes is of great interest. There are several famousopen problems and some advanes seem to be related to the kind of arguments used here.Billera, Ehrenborg and Readdy [BER97℄ showed that the aÆne spae spanned by agnumber of d-dimensional zonotopes is the entire spae spanned by ag numbers of d-polytopes. (In other words, they proved the existene of a basis of polytopes all whosemembers are zonotopes. They did not onstrut expliitly suh a basis.)Other posetsThere is muh ativity onerning the ombinatoris and the linear relation of ag numbersof various lasses of ranked posets [BayH, BilH, BilH0℄. The generalized Dehn-Sommervilleinequalities apply to all Eulerian posets while the inequality g1 � 0 aplly to all relativelyomplemented latties. Thus, both these properties apply to general Eulerian latties andFLAGTOOL an thus be useful to their study. (We do not know, for example, if theonjetures of Setion 4.1 may apply to arbitrary Eulerian latties.)
19



5.3 Extensions of FLAGTOOLHigh dimensionsIt may be useful to try to extend FLAGTOOL to higher dimensions. Sine the number ofvariables and inequalities grows rapidly and the resulting LP problems are not sparse weannot expet too muh but extending the program up to 20 dimensions may be feasible.As we already mentioned, for restrited lasses of polytopes (quasisimpliial, for example)we may hope for a similar program appliable in muh larger dimensions.Further automationFLAGTOOL is used to automate ertain ombinatorial arguments whih were done \byhand" in a few papers and with some omputer support in another [Ba74, Bay87, Kal90℄.Let G be a spei� system of linear inequalities for ag numbers of k-polytopes. Mostof the theorems proved using FLAGTOOL are of the following form:Every d-polytope ontain a k-dimensional quotient (possibly in a presribed loation)whih satisfy the inequalities in G.The urrent modus operandi (see Figure 1) was that we tested various onjetures ofthis kind using FLAGTOOL, but here also further automation seems possible.Problem 5.2 Find automatially (all the) theorems of this form that are derived from theknown linear inequalities.Note that this problem is not idential to �nding all ag-number inequalities whihholds on average for k-dimensional quotients in presribed loations.Using other types of reasoningThere are arguments whih are similar to those we use but use additional ingredients. Forexample: studying the behavior of ertain fae number relations along a shelling proessof the polytope. See for example [Ba80, BlBl90℄. Can these arguments be automated (andthus systematially extended) too?Blind and Blind [BlBl90℄ proved that every d-polytope with no triangular 2-faes mustontain at least as many k-faes as the d-dimensional ube. This is a type of theorem thatould have been derived using FLAGTOOL but it does not follow from the known agnumber inequalities. The proof of Blind and Blind ontains further ingredients.Challenge 5.3 Automate (and extend) the theorem of Blind and Blind.Challenge 5.4 Automate (and extend) the proofs of [BBMM90℄.Seymour's arguments [Sey82℄ in onnetion with the points-lines-planes onjeture havesome similar avor to the arguments used here.Challenge 5.5 Automate (and extend) Seymour's theorems.20



6 ConlusionFLAGTOOL an serve as a useful tool for proving theorems onerning the ombinatorialstruture of polytopes of dimension d � 10 and for testing and making onjetures forarbitrary polytopes. At present the proofs obtained from FLAGTOOL do not seem to givemuh insight (to humans) about the theorems and, in partiular, do not supply a reipefor extensions to higher dimensions.7 AppendixFLAGTOOL is a omputer program implementing the ideas desribed in this paper; seealso [Mei94℄. The ode may be obtained from the seond author on request.7.1 Desription of the available toolsAfter starting FLAGTOOL, a menu whose topis orrespond to the available tools appearson the sreen. After exeuting a tool the program returns to the menu. Most of the toolsare simple I/O-programs, i. e. they transfer data from or to a �le or sreen. Other toolslike (5), (8), (13) and (18) require nontrivial data strutures and algorithms. Here is aomplete enumeration of the available tools.(1) DIMENSIONThis simple tool is used to hange the urrent working dimension d and provides thenew basi input for d. FLAGTOOL aepts values from dimension 3 up to dimension10 (this an easily be raised to higher dimensions).(2) GMAXThis hanges the use of the g-numbers. The maximum possible value depends on theurrent working dimension. If this value is less than three, i. e. only g0, g1 and g2 areused in onvolutions, results hold for all polytopes, not only for rational polytopes(see setion 1.6).(3) ADDThis tool is used for adding a new inequality for proper faes or quotients of d-polytopes to the system (maybe the negation of a onjetured inequality) and forspeifying the dimension of this inequality and the intervals in whih this inequalityappears.(4) DELETEDelete is used for removing added inequalities (with ADD) and spei�ed intervals.(5) MAKEThis tool omputes a system A of linear inequalities by onvolution of the g-inequa-lities and the added inequalities in spei�ed intervals. Every inequality is expressed21



in terms of speial ag numbers. See setion 4.4 of [Mei94℄ for data strutures andalgorithms.(6) INADDThis adds a new inequality in the present working dimension to a urrent system Aof linear inequalities, whih was reated by the MAKE-tool by onvolutions of theg-numbers and added inequalities in spei�ed intervals and hanged by tool (6), (7),(8) or (9).(7) INDELThis serves for deleting an inequality from a urrent system A of linear inequalities.(8) ELIMThis tool eliminates a speial ag number from the urrent system A of linear in-equalities.(9) DSELIMThis eliminates a speial ag number from the urrent system A of linear inequalitiesusing only Generalized Dehn Sommerville Equations.(10) MPSThis tool reates an mps-�le (LP input format) whih orresponds either to theurrent system of linear inequalities (an objetive funtion in terms of speial agnumbers an be spei�ed) or to the dual problem.(11) SAVEA urrent system of linear inequalities is saved on a �le.(12) FETCHThis reads a system of linear inequalities from a �le reated by the SAVE-tool.(13) DISPLAYThis tool is used for displaying the urrent input or more information about agnumbers. The following options are available.(a) STATUSDisplay the urrent input of FLAGTOOL (working dimension, use of the g-numbers and added inequalities).(b) SYSTEMDisplay the urrent system A of inequalities.() G-NUMDisplay the g-numbers and their duals up to the present working dimension.() DEHNDisplay the expression of the ag numbers by the speial ag numbers as asolution of the Generalized Dehn Sommerville Equations.22



(14) READThis reads input for FLAGTOOL from a �le.(15) WRITEThis writes the urrent FLAGTOOL input to a �le.(16) SOLVEThis tool is available only if FLAGTOOL is linked with the linear programmingsolver CPLEXTM 1. It omputes the objetive funtion value, if it is spei�ed, orsimply tests the infeasibility of an mps-�le reated by FLAGTOOL.(17) REDThis tool removes redundant inequalities from a given system A of linear inequalitiesprodued, for example, by the ELIM-tool. Only if FLAGTOOL is linked with theLP-solver CPLEXTM RED-tool is available.(18) CDThis tool omputes the oeÆients in the d index (see setion 1.10) for the presentworking dimension in terms of speial ag numbers.(19) DUALFor a urrent system of linear inequalities the system of the orresponding dualinequalities is omputed.(19) HELPThis provides the user with online information about the program, the tools and theinterpretation of the output.7.2 Working with FLAGTOOLA short demonstration into how FLAGTOOL works is given by explaining a typialFLAGTOOL-session that proves Kalai's result about the existene of small 2-faes in d-polytopes (d � 5).FLAGTOOL starts with the following menu. Note, that the following onventions areused to distinguish omputer output from user input. All output produed by the omputerwill appear in typewriter-like font. Text entered by the user will appear in itali font.Welome to FLAGTOOL!Here is a list of available ommands.Type 'help' followed by a ommand name for moreinformation on ommands, for example 'helpadd'.1CPLEXTM is a registered trademark of CPLEX OPTIMIZATION INC.23



(dim)ension set or hange the working dimension(gm)ax set or hange the use of the $g$-numbers(ad)d add an inequality for proper faes or quotients(de)lete delete one or more added inequalities(ma)ke ompute a system of inequalities by onvolution(ina)dd add an inequality to a urrent system(ind)el delete inequalities from a urrent system(el)im eliminate a flag from a urrent system(ds)elim eliminate a flag by using Dehn Sommerville(mp)s reate an mps-file(sa)ve write a urrent system to a file(fe)th get a urrent system from a file(dis)play display the input, the urrent system ormore information about flag numbers(re)ad read input from a file(wr)ite write input to a file(so)lve solve an mps-file with CPLEX(red)undant remove redundany from a urrent system(d)index ompute the oeffiients in the d index(du)al ompute the dual system of inequalities(om)mands list the FLAGTOOL ommands(qu)it leave FLAGTOOLCommands may be exeuted by entering the ommand name (orat least the letters in the braket) and FLAGTOOL willprompt you for additional required information.First we have to set the working dimension and the use of the g-numbers. Note thatg2 is needed for the proof, i. e. FLAGTOOL annot prove Kalai's theorem only with g1.FLAGTOOL> dimPresent value for the working dimension: 3New value for the working dimension: 5Okay, new value for the working dimension: 5FLAGTOOL> gmPresent value for the use of the g-numbers: 1New value for the use of the g-numbers: 2New value for the use of the g-numbers: 2In order to prove that every 5-polytope has a 2-fae with less than 5 verties we haveto add the inequality f 20 � 5 � 0 to the bottom interval [�1; 2℄ ('add' ommand), onvolvethis inequality with the numbers gki and gik (0 � k � 5; 0 � i � bk=2) ('make' ommand),24



reate an mps-�le ('mps' ommand) and solve the orresponding linear program ('solve'ommand).FLAGTOOL> addThere are 0 added inequalities.Enter the dimension of the new inequality: 2Enter the new inequality: f0-5Enter the interval(s) in whih it appears: [-1,2℄Inequality added!FLAGTOOL> makeNote, that you have added inequalities for properfaes or quotients!Flagtool omputes a system of inequalities, please wait ...Current system A with 15 inequalities reated!FLAGTOOL> mpsEnter '1' (dual) or '0' (primal): 0Enter '1' (min) or '0' (max): 1Enter the objetive funtion: 0Enter a name for the new mps-file : kalai5.mpsFile kalai5.mps reated!FLAGTOOL> solveEnter the name for the mps-file : kalai5.mpsproblem is infeasible!Before the session ends we have a look at the urrent system of linear inequalities byusing the `(dis)play' ommand.FLAGTOOL> disDisplay options :(sta)tus display the urrent input(sys)tem display the urrrent system of inequalitiesand their meanings(g_n)um display the g-numbers up to the presentworking dimension(deh)n display the Dehn Sommerville Equationsfor the speified working-dimension25



Display what: sysWorking dimension: 51 -6f1-f13+3f02 = (G_0_1)*(G_1_2)*(G_0_0)2 -10+5f0+5f2-5f3-f02+f03-3f1 = (G_1_4)*(G_0_0)3 -10+5f0-5f1+5f2-3f3 = (G^_1_4)*(G_0_0)4 20-10f0-10f2-f03+4f3+4f1+3f02 = (G_2_4)*(G_0_0)5 2f13-3f03 = (G_0_0)*(G_1_2)*(G_0_1)6 2f3-f03+f13-3f2 = (G_0_2)*(G_1_2)7 f02-3f2 = (G_1_2)*(G_0_2)8 -6f3+3f03-f13-3f02+9f2 = (G_1_2)*(G_1_2)9 f02-5f2 = (-5+f0)*(G_0_2)10 -10f3+5f03-3f13-3f02+15f2 = (-5+f0)*(G_1_2)11 2f1-5f0 = (G_0_0)*(G_1_4)12 -f02+f03+2f1-5f0 = (G_0_0)*(G^_1_4)13 -8f1+2f13+f02-3f03+10f0 = (G_0_0)*(G_2_4)14 -6+f0 = (G_1_5)15 -f0+f1-f2+f3-4 = (G^_1_5)FLAGTOOL> quitThe infeasibility of the system of 15 inequalities and thus the orretness of the theoreman be proved by hand. Consider the six nonnegative 5-forms 1, 5, 9, 10, 13 and 15. Thefollowing nonnegative ombination of these six inequalities results in an inequality whihis stritly less than zero and therefore the infeasibility is proved.(�6f1 � f13 + 3f02)+ 4 � (2f13 � 3f03)+ 8 � (f02 � 5f2)+ 3 � (�10f3 + 5f03 � 3f13 � 3f02 + 15f2)+ (�8f1 + 2f13 � 3f03 + f02 + 10f0)+ 10 � (�f0 + f1 � f2 + f3 � 4)= �20f0 � 5f1 � 4f2 � 40 < 07.3 Known ag number inequalities for d-polytopes, d � 6We desribe now (nonredundant) d-forms (linear ombinations of ag numbers of d-poly-topes) whih are known to be nonnegative, for d = 3; 4; 5; 6.
26



Dimension 3 1 g21 � g00 = �6 + 3f0 � f12 g00 � g21 = 2f1 � 3f0Dimension 4 1 g00 � g21 � g00 = �6f0 � f02 + 6f12 g21 � g10 = f02 � 3f23 g10 � g21 = f02 � 3f14 g41 = �5 + f05 g14 = f0 � f1 + f2 � 56 g42 = 10� 4f0 + f02 � 3f2 + f1Dimension 5 1 g10 � g21 � g00 = �6f1 � f13 + 3f022 g41 � g00 = �10 + 5f0 + 5f2 � 5f3 � f02 + f03 � 3f13 g14 � g00 = �10 + 5f0 � 5f1 + 5f2 � 3f34 g42 � g00 = 20� 10f0 � 10f2 � f03 + 4f3 + 4f1 + 3f025 g00 � g21 � g10 = 2f13 � 3f036 g20 � g21 = 2f3 � f03 + f13 � 3f27 g21 � g20 = f02 � 3f28 g21 � g21 = �6f3 + 3f03 � f13 � 3f02 + 9f29 g00 � g41 = 2f1 � 5f010 g00 � g14 = �f02 + f03 + 2f1 � 5f011 g00 � g42 = �8f1 + 2f13 + f02 � 3f03 + 10f012 g51 = �6 + f013 g15 = �f0 + f1 � f2 + f3 � 4Dimension 61 g20 � g21 � g00 = �6f2 � f24 + 3f13 � 3f03 + 6f32 g21 � g21 � g00 = �6f02 � f024 + 18f2 + 3f24 � 3f13 + 9f03 � 18f33 g00 � g41 � g00 = �2f13 + 2f14 � 10f0 � 3f02 + 5f03 � 5f04 + 10f14 g00 � g14 � g00 = �10f0 � 5f02 + 5f03 � 3f04 + 10f127



5 g00 � g42 � g00 = 6f13 � 2f14 + 20f0 + 4f02 � 10f03 + 4f04 � 20f16 g51 � g00 = �6f2 + 6f3 � 6f4 � 4f0 + f02 � f03 + f04 + 4f17 g15 � g00 = �6f0 + 6f1 � 6f2 + 6f3 � 4f48 g10 � g21 � g10 = f024 � 3f149 g41 � g10 = f04 � 5f410 g14 � g10 = f04 � f14 + f24 � 5f411 g42 � g10 = f14 � 3f24 + f024 � 4f04 + 10f412 g21 � g00 � g21 = 2f024 + 18f3 � 9f03 + 3f13 � 6f2413 g00 � g21 � g20 = 2f13 � 3f0314 g00 � g21 � g21 = �6f13 � 6f04 � f024 + 6f14 + 9f0315 g30 � g21 = f04 � f14 + f24 � 3f316 g21 � g30 = f02 � 3f217 g10 � g41 = f02 � 5f118 g10 � g14 = �f13 + f14 + f02 � 5f119 g10 � g42 = �4f02 + f024 + f13 � 3f14 + 10f120 g00 � g51 = 2f1 � 6f021 g00 � g15 = f02 � f03 + f04 � 2f1 � 4f022 g61 = �7 + f023 g16 = f0 � f1 + f2 � f3 + f4 � 724 g62 = 21� 6f0 + f02 � 3f2 + f125 g26 = f24 � f14 + f04 � 6f0 + 6f1 � 6f2 + 21 + 3f3 � 5f426 g63 = �35 + 15f0 � 4f02 � 5f1 + f14 � 3f24 + f024 � 4f04 + 10f4+f03 � 4f3 + 13f2 (nonnegativity is known only for rational polytopes)27 Added = f2 � 35 (see Setion 1:9)28 Added = f3 � 35
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