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The 24-ell shows that, here too, the dimension 9 annot be redued to 4.The analogous situation for 2-dimensional faes and quotients is lassi. It follows easily fromEuler's theorem that every 3-polytope (and hene every higher-dimensional polytope) has a 2-dimensional fae whih is a triangle, quadrangle or a pentagon. In fat, this result (in a dualform) an be traed bak to the writings of Desartes on polyhedra, see [4℄. It also follows easilyfrom Euler's theorem that every 3-polytope or its dual ontains a triangular fae and thus everyd-polytope, d � 3 ontains a triangle as a quotient.Theorems 1 and 2 are speial ases of some far-reahing onjetures, see [11℄: De�ne for everyk > 1 four funtions d1 = d1(k) , d2 = d2(k), d3 = d3(k) and d4 = d4(k) to be the smallest integersso that� There is a �nite list of k-polytopes so that every d-polytope, d � d1(k), has a k-dimensionalquotient in the list.� There is a �nite list of k-polytopes so that every d-polytope, d � d2(k), ontains a k-fae inthe list.� Every d-polytope, d � d3(k), has a simplex as a k-dimensional quotient.� Every d-polytope, d � d4(k), ontains a k-fae whih is ombinatorially isomorphi to asimplex or ube.It is onjetured that all these four funtions are �nite. This will be easiest to prove for d1and hardest for d4. Clearly, d1(k) � d3(k) � d4(k + 1) and d1(k) � d2(k) � d4(k). The followingTheorem gives that d1(3) � 5. We do not know if the orret value for d1(3) is 4 or 5. We anprove also that d1(4) � 7.Theorem 3 Every 5-polytope ontains a 3-dimensional quotient with at most 8 verties.The proofs of Theorems 1,2 and 3 as a onsequene of (rather deep) known inequalities forag numbers of polytopes were ahieved by a omputerized program FLAGTOOL, see [12, 14℄. Aomprehensive desription of FLAGTOOL and theorems proved by FLAGTOOL has appeared in[14℄. 2



This work is losely related to various ideas and results by Branko Gr�unbaum. The proofuses the lower bound theorem for polytopes and some of its far-reahing generalizations. Some ofthese generalizations are based on the rigidity theory for polytopes, a topi of "lost mathematis"Gr�unbaum helped to revive [7℄. The type of reasoning (onvolutions) used here also has roots insome early papers of Gr�unbaum. But more than that, we feel these proofs touh on some funda-mental issues onerning mathematial interest, elegane in mathematis and the use of omputersraised by Gr�unbaum in various plaes see [6, 8℄.2 Fae numbers, ag numbers, g-numbers and onvolutionsFor a d-polytope P the number of k-faes is denoted by fk(P ). (We will also use the notation fdkunless the value of d will be lear from the ontext.) The vetor (f0(P ); f1(P ); : : : fd�1(P )) is alledthe f -vetor of P . For a subset S = fi1; : : : ; ikg � f0; 1; : : : ; d � 1g the ag number fS(P ) is thenumber of hains F1 � F2 � � � � � Fk of faes of P suh that dimFj = ij . (Again, we will use alsothe notation fdS.) A remarkable theorem of Bayer and Billera asserts that the aÆne dimension ofthe spae of ag numbers of d-polytopes is d � 1, where d is the d-th Fibonai number. Bayerand Billera showed that every ag number fdS an be expressed as a linear ombination of speialag numbers fdT , where T � f0; 1; : : : ; d � 2g and T ontains no two onseutive integers. Theirargument relies only on Euler's formula (for arbitrary dimension) and it therefore applies not onlyfor polytopes but for arbitrary Eulerian posets, see [17℄.Certain linear ombinations of fae numbers of simpliial polytopes alled h-numbers and g-numbers play a ruial role in the ombinatorial theory of simpliial polytopes, see [13, 15℄. In-tersetion homology theory has led to deep and mysterious extensions of h- and g-numbers fromsimpliial polytopes to general polytopes. The de�nition (whih an be found also in [16℄) goes asfollows. For a polytope P denote by Pk the set of k-faes of P .De�ne by indution two polynomialshP (x) = dXk=0hdkxd�k; gP (x) = [d=2℄Xk=0 gdkxd�k;3



by the rules: (a) gdk = hdk � hdk�1, (b) If P is the empty polytope or a 0-polytope P , hP = gP = 1,and hP (x) = dXk=0(x� 1)d�kXfgF (x) : x 2 Pkg:(If the value of d is lear from the ontext the supersripts of hdk are omitted.)Thus gd1(P ) = f0(P )� d� 1 andgd2(P ) = f1(P ) +Xff0(F )� 3 : F 2 P2g � df0(P ) +  d+ 12 !:The value of gd2 for general d-polytopes has a rigidity theoreti meaning [9℄ and is nonnegative forevery polytope. This extends the famous lower bound theorem of Barnette [1℄. The nonnegativityof gd2 is still open for more general objets like polyhedral (d� 1)-spheres and manifolds. It followsfrom intersetion homology theory for tori varieties that the gdk are nonnegative for every rational d-polytope. This is still open in the non-rational ase. For a d-polytope P we denote �gdk(P ) = gdk(P �),where P is the dual polytope to P .Let md;me be linear ombinations of ag numbers of d� and e�polytopes respetively. Fora polytope P of dimension d + e + 1 de�ne the onvolution of md and me by md � me(P ) =Pfmd(F ) �me(P=F ) : F a d-fae of Pg.The following lemma [10℄ is immediateLemma 4 (1) md �me(P ) is a linear ombination of ag numbers of (d+ e+ 1)-polytopes.(2) If md(P ) = 0 for every d-polytope P or me(Q) = 0 for every e-polytope Q then md�me(R) =0 for every (d+ e+ 1)-polytope R.(3) If md(P ) � 0 for every d-polytope P and me(Q) � 0 for every e-polytope Q then md �me(R) � 0 for every (d+ e+ 1)-polytope R.3 FLAGTOOLFLAGTOOL [14, 12℄ is a omputer program that� omputes all (known) linear relations between the ag numbers of general d-polytopes forsmall dimensions, 3 � d � 10, 4



� extrats and automatially proves new results from those relations.Sine every ag number an be expressed as an aÆne ombination of speial ag numbers, allinequalities generated by the program will be expressed in terms of speial ag numbers. See Figure1 for the general sheme of supporting theorem proving with FLAGTOOL.Theorem 1 is a onsequene of the following stronger statement.Theorem 5 Every rational d-polytope (d � 9) has a 3-fae with less than 78 verties or 78 faets.Proof: Assume that every 3-fae of an arbitrary 9-polytope has 78 or more verties or faets. Thisassumption an be expressed by the inequalities f30 �78 � 0 and f32 �78 � 0. The following systemof 53 linear 9-forms obtained by onvolutions of the g-numbers and of these two added inequalities(in the bottom interval [�1; 3℄) has no nonnegative feasible solution and therefore Theorem 1 isproved.
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BASIC INPUTrr g-numbersGeneralizedDehn Sommer-ville Equations
USER INPUTrrr DimensionNegation ofonjeturedinequalityinterval(s)Convolutionof Input- �?System A of li-near inequalities?Conversion of Ato speial ags?LP-solver -� A infeasibleA feasible NEW THEOREMNO STATEMENT �Prove the theorem\by hand" or by asymboli algebra programFigure 1: Automated theorem proving by FLAGTOOL

6



[1℄ g10 � g21 � g00 � g21 � g00 = 6f0246 � 18f025 + 6f135 + 36f15 � 18f146 � 3f0257 + f1357+6f157[2℄ g21 � g21 � g21 � g00 = �54f25 � 9f257 � 54f36 + 27f036 + 54f26 � 18f035 + 36f35+9f246 � 3f0357 + 6f357 + 18f025 + 3f0257 � 9f136�18f026 + 6f135 � 3f0246 + f1357[3℄ g00 � g42 � g21 � g00 = �60f05 � 10f057 � 60f16 � 30f036 + 60f06 + 48f15 + 8f157�12f135 � 2f1357 + 18f035 + 3f0357 + 12f046 � 6f146�6f025 � f0257 + 18f136 + 12f026[4℄ g00 � g21 � g41 � g00 = �6f146 + 6f046 + 6f147 � 6f047 + 30f03 + 9f035 � 15f036+15f037 + 30f14 � 30f04 + f0246 � f0247 � 20f13 � 5f024�6f135 + 10f136 � 10f137[5℄ g00 � g21 � g14 � g00 = 30f03 + 15f035 � 15f036 + 9f037 + 30f14 � 30f04 � 20f13�5f024 � 10f135 + 10f136 � 6f137[6℄ g30 � g42 � g00 = 3f246 � 3f146 + 3f046 � f247 + f147 � f047 + 20f3 + 4f35�10f36 + 4f37 � 10f24 + 10f14 � 10f04[7℄ (f0 � 78) � g42 � g00 = 3f0246 � f0247 + 20f03 + 4f035 � 10f036 + 4f037 � 10f024�234f246 + 228f146 � 228f046 + 78f247 � 76f147 + 76f047�1560f3 � 312f35 + 780f36 � 312f37 + 780f24 � 760f14+760f04[8℄ (f2 � 78) � g41 � g00 = �10f13 + 10f03 � 3f135 + 3f035 + 5f136 � 5f036 � 5f137+5f037 + 76f246 � 78f146 + 78f046 � 76f247 + 78f147�78f047 + 760f3 + 228f35 � 380f36 + 380f37 � 380f24+390f14 � 390f04[9℄ (f2 � 78) � g14 � g00 = �10f13 + 10f03 � 5f135 + 5f035 + 5f136 � 5f036 � 3f137+3f037 + 760f3 + 380f35 � 380f36 + 228f37 � 380f24+390f14 � 390f04
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[10℄ (f2 � 78) � g42 � g00 = 20f13 � 20f03 + 4f135 � 4f035 � 10f136 + 10f036 + 4f137�4f037 � 228f246 + 234f146 � 234f046 + 76f247�78f147 + 78f047 � 1520f3 � 304f35 + 760f36 � 304f37+760f24 � 780f14 + 780f04[11℄ g00 � g71 � g00 = 2f13 � 2f14 + 2f15 � 2f16 + 2f17 + 6f02 � 8f03 + 8f04�8f05 + 8f06 � 8f07 � 12f1[12℄ g00 � g17 � g00 = 8f02 � 8f03 + 8f04 � 8f05 + 8f06 � 6f07 � 16f1[13℄ g18 � g00 = �18 + 9f0 � 9f1 + 9f2 � 9f3 + 9f4 � 9f5 + 9f6 � 7f7[14℄ g28 � g00 = 72� 36f0 + 36f1 � 36f2 + 36f3 � 36f4 � 36f6 + 30f5+3f46 � 3f36 + 3f26 � 3f16 + 3f06 � f47 + f37�f27 + f17 � f07 + 22f7[15℄ g38 � g00 = �168 + 84f0 � 84f1 + 84f2 + 84f4 + 84f6 + 7f27 � 7f17+7f07 � 42f7 � f047 + f147 � f247 + 3f046 � 3f146+3f246 � 64f3 � 3f37 � 10f24 + 10f14 � 10f04+5f47 + 4f25 � 4f15 + 4f05 � 54f5�15f46 + 9f36 � 19f26 + 19f16 � 19f06[16℄ g00 � g21 � g00 � g21 � g10 = 4f1357 � 6f0357 + 18f047 + 3f0247 � 18f147[17℄ g10 � g21 � g21 � g10 = �6f157 + 3f0257 � f1357 � 3f0247 + 9f147[18℄ g40 � g21 � g10 = 2f57 � f057 + f157 � f257 + f357 � 3f47[19℄ g14 � g21 � g10 = �3f047 + 3f147 � 3f247 � 10f57 + 5f057 � 5f157+5f257 � 3f357 + 15f47[20℄ g42 � g21 � g10 = 3f0257 � f0357 + 20f57 � 10f057 + 4f157 � 10f257 + 4f357�30f47 + 12f047 � 3f0247 + 9f247 � 3f147[21℄ g20 � g41 � g10 = 2f37 � f037 + f137 � 5f27[22℄ g21 � g41 � g10 = �6f37 + 3f037 � f137 + 15f27 � 5f027[23℄ g21 � g14 � g10 = �f0247 + f0257 + 3f247 � 3f257 � f137 + 3f037 � 6f37+15f27 � 5f027[24℄ g21 � g42 � g10 = �6f357 + 3f0357 � f1357 + 24f37 � 12f037 + 4f137 � 30f27+9f257 � 3f247 + 10f027 � 3f0257 + f0247[25℄ g00 � g63 � g10 = 2f147 � 8f157 + 2f1357 � 8f137 + 30f17 � 35f07 � 5f027+f0257 � 3f0357 + 10f057 � 4f047 + 13f037[26℄ g27 � g10 = 7f07 � 7f17 + 7f27 � 7f37 + f357 � f257 + f157 � f057�4f57 + 4f47 + 14f7[27℄ g21 � g21 � g00 � g21 = �54f26 � 27f036 + 54f36 + 18f257 � 9f246 + 6f0357�12f357 + 18f026 + 9f136 � 6f0257 + 3f0246 � 2f13578



[28℄ g00 � g42 � g00 � g21 = �60f06 + 30f036 + 60f16 + 20f057 � 16f157 + 4f1357+6f146 � 12f046 � 6f0357 � 12f026 � 18f136 + 2f0257[29℄ g10 � g21 � g10 � g21 = 3f0257 � 6f157 � 3f0246 � f1357 + 9f146[30℄ g14 � g10 � g21 = �3f046 + 3f146 � 3f246 � 3f357 + 5f257 � 5f157+5f057 � 10f57 + 15f46[31℄ g21 � g00 � g21 � g21 = 18f246 � 54f36 + 27f036 � 18f037 + 36f37 � 18f247 � 3f0357+6f357 � 6f0246 � 9f136 + 6f137 + 6f0247 + f1357[32℄ g00 � g21 � g21 � g21 = 18f046 � 18f146 + 18f037 + 3f0357 + 18f147 � 18f047+3f0246 + 18f136 � 12f137 � 3f0247 � 2f1357 � 27f036[33℄ g30 � g21 � g20 = f046 � f146 + f246 � 3f36[34℄ (f2 � 78) � g20 � g21 = 3f036 � 3f136 + 2f137 � 2f037 + f1357 � f0357 � 152f37�76f357 + 76f247 � 78f147 + 78f047 + 228f36[35℄ g10 � g42 � g20 = f0246 � 4f026 + 10f16 � 3f146 + f136[36℄ g10 � g42 � g21 = �3f0246 + 12f026 + 3f0247 � f0257 + 20f17 + 4f137 � 10f147+4f157 � 10f027 � 30f16 + 9f146 � 3f136[37℄ g60 � g21 = 2f7 � f07 + f17 � f27 + f37 � f47 + f57 � 3f6[38℄ g16 � g21 = �14f7 + 7f07 � 7f17 + 7f27 � 7f37 + 7f47 � 3f06 + 3f16�3f26 + 3f36 � 3f46 � 5f57 + 21f6[39℄ g00 � g42 � g30 = 2f135 � 8f15 + 10f05 � 3f035 + f025[40℄ g00 � g21 � g00 � g42 = �60f04 + 60f14 + 24f035 � 6f0357 + 18f047 � 18f147 � 6f046+6f146 � 10f024 � 16f135 + 4f1357 + 3f0247 � f0246[41℄ (f2 � 78) � g00 � g42 = �8f135 + 8f035 + 2f1357 � 2f0357 � 780f04 + 780f14�760f24 + 608f35 � 152f357 + 234f047 � 234f147+228f247 � 78f046 + 78f146 � 76f246[42℄ g10 � g21 � g42 = 10f024 � 3f0247 + f0246 + 24f15 + 4f135 � 12f025 � 6f157�f1357 + 3f0257 � 3f146 + 9f147 � 30f14[43℄ g40 � g42 = �8f5 + 4f05 � 4f15 + 4f25 � 4f35 + 2f57 � f057 + f157�f257 + f357 + f46 � 3f47 + 10f4[44℄ g14 � g40 = f04 � f14 + f24 � 5f4[45℄ (f2 � 78) � g50 = �f03 + f13 � 76f3[46℄ g21 � g63 = �90f3 + 45f03 + 24f35 � 12f035 � 6f357 + 3f0357 + 24f37�12f037 � 6f36 + 3f036 � 15f13 + 4f135 � f1357 + 4f137�f136 + 13f025 � 4f026 + 10f027 � 3f0257 + f0247 � 5f024�35f02 � 39f25 + 12f26 � 30f27 + 9f257 � 3f247 + 15f24 + 105f29



[47℄ g10 � g71 = f02 � 8f1[48℄ g10 � g17 = f13 � f14 + f15 � f16 + f17 � f02 � 6f1[49℄ g00 � g18 = �f02 + f03 � f04 + f05 � f06 + f07 + 2f1 � 9f0[50℄ g00 � g82 = �16f1 + 2f13 + f02 � 3f03 + 36f0[51℄ g00 � g28 = 8f02 � 8f03 + 8f04 � 8f05 � 16f1 + 2f17 + f057 � f047+f037 � f027 � 7f07 + 5f06 + 36f0[52℄ g00 � g84 = �112f1 + 30f13 � 8f135 � 10f14 + 2f147 � 8f157 + 2f1357�8f137 + 30f17 + 2f136�10f16 + 34f15 + 21f04 � 45f05 + 15f06 � 3f036 + f026�35f07 � 5f027 + f0257 � 3f0357 + 10f057 � 4f047+13f037 � 51f03 + 12f035 � 4f025 + 21f02 + 126f0[53℄ g91 = �10 + f0The proof was obtained as follows. FLAGTOOL reates 227 linear inequalities whih ontainthe 53 inequalities above. The infeasibility of the entire list of inequalities and the reation ofthe smaller list of 53 inequalities whih are already infeasible was �rst arried on using phase Iof the LP-solver CPLEX. Sine it was (at least theoretially) possible that the infeasibility foundby CPLEX is an artifat of numerial problems we proved the infeasibility using the symbolimathematial program MAPLE V.Note that we need the nonnegativity of the forms gd3 and it turns out that using only thenonnegativity of gdi , i � 2 is not suÆient to prove infeasibility. Thus, Theorem 1 is still unprovedfor general (non-rational) polytopes.It seems impossible to prove the infeasibility \by hand". The details of this proof (whih for aomputer generated proof is quite short) do not seem to ontribute muh to our (human) insightfor understanding why the theorem is true.Proof of Theorem 2: We added the inequalities f30�5 � 0 and f30�5 � 3 (for all intervals of rank4) and all inequalities generated by onvolutions. The theorem follows from the infeasibility of asystem of 50 linear inequalities whih is ontained in the 243 inequalities produed by FLAGTOOL.This time, we use only the nonnegativity of gdi for i � 2. The infeasibility was again proved byusing MAPLE V. We will skip the details. 10



Remark: It is possible that the statements of Theorem 1 and 2 remain true for arbitraryEulerian latties ([2, 17℄) for some suÆiently large dimension. The same omment applies to allthe onjetures mentioned in Setion 1. For Eulerian latties it is no longer true that the gdi arenonnegative for i � 2 but the nonnegativity of the gd1 may suÆe.Proof of Theorem 3: We added the inequalities f30 � 9 � 0 and f30 � 9 � 3 to the otherinequalities for 5-polytopes and used onvolution to obtain a system of 14 inequalities whih turnedout to be infeasible. This time, we used only the nonnegativity of gd1 and hene the proof appliesto arbitrary Eulerian latties.Referenes[1℄ D. Barnette, A proof of the lower bound onjeture for onvex polytopes, Pa. J. Math. 46(1971), 349-354.[2℄ M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relation for polytopes, spheresand Eulerian partially ordered sets, Invent. Math. 79 (1985), 143-157.[3℄ A. Bezdek, K. Bezdek, E. Makai and P. MMullen, Faets with fewest verties, Monatsheftef�ur Math. 109(1990), 89-96.[4℄ R. Desartes, De Solidorum Elementis, in Oeuvres de Desartes Vol. 10, 265-276, publishedby C. Adam and P. Tannery, Paris, 1897-1913.[5℄ B. Gr�unbaum, Convex Polytopes, Intersiene, London 1967.[6℄ B. Gr�unbaum, Polytopes, graphs and omplexes, Bull. Amer. Math. So. 97(1970), 1131-1201.[7℄ B. Gr�unbaum, Letures on lost mathematis, manusript. University of Washington ?? When????[8℄ B. Gr�unbaum, Arrangements and Spreads, Amerian Math. So. 1972.[9℄ G. Kalai, Rigidity and the lower bound theorem I, Invent. Math. 88(1987), 125-151.11
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12


