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Abstract

We prove that there is a finite list of 3-polytopes so that every rational d-polytope, d >
9, contains a 3-dimensional face in the list. A similar result where "faces” are replaced by
”quotients” is proved already for (general) 5-polytopes. We also prove that every d-polytope,

d > 9, contains a 3-dimensional quotient which is a simplex.

1 Introduction

Theorem 1 There is a finite list of 3-dimensional polytopes such that every rational 9-polytope

contains a 3-dimensional face in the list.

Here, a rational polytope is a polytope whose vertices have rational coordinates. Duals of

neighborly 4-polytopes show that the dimension 9 cannot be reduced to 4.

Theorem 2 FEvery 9-dimensional polytope has the 3-dimensional simplex as a quotient.
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The 24-cell shows that, here too, the dimension 9 cannot be reduced to 4.

The analogous situation for 2-dimensional faces and quotients is classic. It follows easily from
Euler’s theorem that every 3-polytope (and hence every higher-dimensional polytope) has a 2-
dimensional face which is a triangle, quadrangle or a pentagon. In fact, this result (in a dual
form) can be traced back to the writings of Descartes on polyhedra, see [4]. It also follows easily
from Euler’s theorem that every 3-polytope or its dual contains a triangular face and thus every
d-polytope, d > 3 contains a triangle as a quotient.

Theorems 1 and 2 are special cases of some far-reaching conjectures, see [11]: Define for every
k > 1 four functions d; = dy(k) , do = da(k), ds = d3(k) and ds = d4(k) to be the smallest integers

so that

e There is a finite list of k-polytopes so that every d-polytope, d > d;(k), has a k-dimensional

quotient in the list.

e There is a finite list of k-polytopes so that every d-polytope, d > ds(k), contains a k-face in

the list.
e Every d-polytope, d > d3(k), has a simplex as a k-dimensional quotient.

e Every d-polytope, d > d4(k), contains a k-face which is combinatorially isomorphic to a

simplex or cube.

It is conjectured that all these four functions are finite. This will be easiest to prove for d;
and hardest for dy. Clearly, d;(k) < d3(k) < d4(k + 1) and d;(k) < da(k) < dy4(k). The following
Theorem gives that di(3) < 5. We do not know if the correct value for di(3) is 4 or 5. We can

prove also that dy(4) < 7.
Theorem 3 Every 5-polytope contains a 3-dimensional quotient with at most 8 vertices.

The proofs of Theorems 1,2 and 3 as a consequence of (rather deep) known inequalities for
flag numbers of polytopes were achieved by a computerized program FLAGTOOL, see [12, 14]. A
comprehensive description of FLAGTOOL and theorems proved by FLAGTOOL has appeared in
[14].



This work is closely related to various ideas and results by Branko Griinbaum. The proof
uses the lower bound theorem for polytopes and some of its far-reaching generalizations. Some of
these generalizations are based on the rigidity theory for polytopes, a topic of "lost mathematics”
Griinbaum helped to revive [7]. The type of reasoning (convolutions) used here also has roots in
some early papers of Grinbaum. But more than that, we feel these proofs touch on some funda-
mental issues concerning mathematical interest, elegance in mathematics and the use of computers

raised by Griinbaum in various places see [6, 8].

2 Face numbers, flag numbers, g-numbers and convolutions

For a d-polytope P the number of k-faces is denoted by fx(P). (We will also use the notation f{
unless the value of d will be clear from the context.) The vector (fo(P), f1(P),. .. fa—1(P)) is called
the f-vector of P. For a subset S = {i1,...,ix} C {0,1,...,d — 1} the flag number fg(P) is the
number of chains Fy C Fy C --- C Fj, of faces of P such that dimF; = i;. (Again, we will use also
the notation fg.) A remarkable theorem of Bayer and Billera asserts that the affine dimension of
the space of flag numbers of d-polytopes is ¢4 — 1, where ¢4 is the d-th Fibonacci number. Bayer
and Billera showed that every flag number fg can be expressed as a linear combination of special
flag numbers f&, where T C {0,1,...,d — 2} and T contains no two consecutive integers. Their
argument relies only on Euler’s formula (for arbitrary dimension) and it therefore applies not only
for polytopes but for arbitrary Eulerian posets, see [17].

Certain linear combinations of face numbers of simplicial polytopes called h-numbers and g-
numbers play a crucial role in the combinatorial theory of simplicial polytopes, see [13, 15]. In-
tersection homology theory has led to deep and mysterious extensions of h- and g-numbers from
simplicial polytopes to general polytopes. The definition (which can be found also in [16]) goes as
follows. For a polytope P denote by Pj the set of k-faces of P.

Define by induction two polynomials

d [d/2]
hp(z) = Z hgxdfk, gp(z) = Z ggxdfk,
k=0 k=0



by the rules: (a) g¢ = h{ —h¢_,, (b) If P is the empty polytope or a O-polytope P, hp = gp = 1,

and
d

hp(z) =Y (x = 1) {gr(z) : 2 € Py}

k=0

(If the value of d is clear from the context the superscripts of hi are omitted.)

Thus ¢¢(P) = fo(P) —d — 1 and

93(P) = 1(P) + S {fo(F) ~ 3 F € Py} — dfo(P) + (d; 1>.

The value of g¢ for general d-polytopes has a rigidity theoretic meaning [9] and is nonnegative for
every polytope. This extends the famous lower bound theorem of Barnette [1]. The nonnegativity
of gg is still open for more general objects like polyhedral (d — 1)-spheres and manifolds. It follows
from intersection homology theory for toric varieties that the gfcl are nonnegative for every rational d-
polytope. This is still open in the non-rational case. For a d-polytope P we denote gi(P) = gi(P*),
where P is the dual polytope to P.

Let m? m® be linear combinations of flag numbers of d— and e—polytopes respectively. For
a polytope P of dimension d 4 e + 1 define the convolution of m? and m¢ by m¢ x m¢(P) =
S{m(F)-m¢(P/F) : F a d-face of P}.

The following lemma [10] is immediate
Lemma 4 (1) m®+ m¢(P) is a linear combination of flag numbers of (d + e + 1)-polytopes.

(2) If m4(P) = 0 for every d-polytope P or m¢(Q) = 0 for every e-polytope Q then m®+m®(R) =
0 for every (d + e + 1)-polytope R.

(3) If m%(P) > 0 for every d-polytope P and m®(Q) > 0 for every e-polytope Q then m< x

mE(R) > 0 for every (d + e + 1)-polytope R.

3 FLAGTOOL

FLAGTOOL [14, 12] is a computer program that

e computes all (known) linear relations between the flag numbers of general d-polytopes for

small dimensions, 3 < d < 10,



e extracts and automatically proves new results from those relations.

Since every flag number can be expressed as an affine combination of special flag numbers, all
inequalities generated by the program will be expressed in terms of special flag numbers. See Figure
1 for the general scheme of supporting theorem proving with FLAGTOOL.

Theorem 1 is a consequence of the following stronger statement.
Theorem 5 Every rational d-polytope (d > 9) has a 3-face with less than 78 vertices or 78 facets.

Proof: Assume that every 3-face of an arbitrary 9-polytope has 78 or more vertices or facets. This
assumption can be expressed by the inequalities f§ —78 > 0 and fJ — 78 > 0. The following system
of 53 linear 9-forms obtained by convolutions of the g-numbers and of these two added inequalities
(in the bottom interval [—1,3]) has no nonnegative feasible solution and therefore Theorem 1 is

proved.
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Figure 1: Automated theorem proving by FLAGTOOL



3]

[4]

[5]

[6]

[9]

90 * 9% * 90 * g1 * 90

gi * g7 * g7 * g0

90 * g5 * gi * go

90 * g1 * g1 * g¢

90 * g x g1 * g0

g0 * g5 * 9o

(fo—78) x g3 * go

(fo —78) * gi * g§

(fo—78) x g1 * go

6 fo2a6 — 18 fo25 + 6f135 + 36 f15 — 18 f146 — 3fo257 + fiss7
+6 f157

—54 fas — 9fas7 — B4 fas + 27 fose + b4 fas — 18 foss + 36 fa5
+9f246 — 3fo3s7 + 6f3s7 + 18 fo2s + 3 fo2s7 — 9f136

—18 fo2s + 6 f135 — 3fo246 + fi3s7

—60fos — 10fos7 — 60 fi6 — 30 foze + 60fos + 48 f15 + 8 fis7
—12f135 — 2f1357 + 18f035 + 3fo3s7 + 12 foas — 6 f146

—6 fo2s — foas7 + 18 f136 + 12 fo2e

—6f146 + 6foss + 6f1a7 — 6foar + 30 foz + 9foss — 15 fozs
+15fos7 4+ 30f14 — 30 foa + fo2a6 — fo2a7 — 20f13 — 5 fo24
—6fi35 + 10 f136 — 10f137

30fo3 + 15 foss — 15 foze + 9fos7r + 30f14 — 30fosa — 20 f13
—5f024 — 10f135 + 10f136 — 6 f137

3faa6 — 3f146 + 3foas — foar + frar — foar +20f3 + 4f35
—10fa6 + 4f37 — 10f24 + 10 f14 — 1004

3fo2a6 — fo2ar + 20 fo3 + 4 foss — 10 foz6 + 4fos7 — 10 fo24
—234 foa6 + 228 f146 — 228 foae + 78 foar — 76 f1a7 + 76 foar
1560 f3 — 312 fa5 + 780 fa5 — 312 fa7 + 780 f24 — 760 f14
760 fos

—10f13 + 10 fos — 3f135 + 3foss + 5f136 — 5fose — 5 fiar
+5 foar + 76 foae — 78 f1a6 + T8 foa6 — 76 foar + 78 f147
—T78foar + 760 f3 + 228 f35 — 38036 + 380 f37 — 380 f24
+390 f14 — 390 fou

—10f13 + 10fos — 5f135 + 5foss + 5fiz6 — b foze — 3f137
+3fos7 + 760 f3 + 380 f35 — 38036 + 228 f37 — 380 f24
+390 f14 — 390 fou



[10]

[11]
[12]

[13]
[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(fo —78) % g3 * go

90 * 91 * g0
90 * 1" * 9o

71" * g5

72" * g0

73" * g0

g0 * g7 * 9o * g1 * 9o
96 * g1 * g1 * g
96 * 91 * 96
gt * g7 * 96
93 * g1 * 94
96 * g1 * g5
gi * g1 * g5
gl * gt * g5
g7 * g5 * g5
90 * 95 * 96

72" * 90

gi * g7 * 90 * g1

20f13 — 20 fo3 + 4 fi135 — 4foss — 10f136 + 10fo36 + 4 f1a7
—4 foar — 228246 + 234 f1a6 — 234 foas + 76 f2ar

—T78 frar + 78 foar — 1520 f3 — 304 fas + 760 fag — 304 far
4760 f24 — 78014 + 780 foa

2f13 — 2f14 + 2f15 — 2f16 + 2f17 + 6 fo2 — 8 fo3 + 8foa
—8fos + 8fos — 8for —12f1

8fo2 — 8fos + 8foa — 8fos + 8fos — 6for — 16 f1
—18+9fo —9f1 +9f> —9fs +9f1 —9fs +9fs — 7fr
72 — 360 + 361 — 36f2 + 365 — 364 — 365 + 305
+3fa6 — 3f36 + 3f26 — 3f16 + 3fo6 — far + far

—for + fir — for +22f7

—168 + 84 fo — 84f1 + 84f> + 84f4 + 84fs + 7for — Tf1r
+7for —42f7 — foar + frar — faar + 3foae — 3f146
+3f246 — 64f3 — 3fsr — 10foa + 10f14 — 10 foa

+5fa7 +4fos — 4f15 + 4fos — 54 fs

—15fa6 + 9f36 — 19f26 + 19f16 — 19 fos

4 fi1357 — 6 fossr + 18 foar + 3fo2ar — 18 f1a7

—6f157 + 3 fo2s7 — fiasr — 3fozar + 9 f1a7

2fs7 — fos7 + fis7 — fost + fast — 3far

—3foar + 3fiar — 3foar — 10f57 + 5 fos7 — b fis7

+5 fos7 — 3fas7 + 15 far

3fo2s7 — foas7 + 20fs57 — 10 fos7 + 4 fis7 — 10 fas7 + 4 fa57
—30far + 12 foar — 3fo247 + 9foa7 — 3f1a7

2fsr — foar + fiar — 5far

—6fs7 + 3fosr — fisr + 15 far — 5 foor

— fo2a7 + fo2s7 + 3faar — 3fasr — fizr + 3fozr — 6far
+15 far — 5 foor

—6f357 + 3fosst — fissr + 24 far — 12 fozr + 4f137 — 30 far
+9f257 — 3f2a7 + 10foa7 — 3fo257 + fo2a7

2f1a7 — 8fi57 + 2f1357 — 8f137 + 30f17 — 35for — 5foar
+ fo2s7 — 3fosst + 10fos7 — 4 foar + 13 fosr

Tfor — Tfir + Tfar — Tfar + fasr — fas7 + fis7 — fos7
—Afs7 +4fsr + 14f7

—54 fog — 27 fose + 54 f36 + 18 f257 — 9fa46 + 6 fo3s7
—12f357 + 18f026 + 9f136 — 60257 + 3fo246 — 2f1357



[28] g0 * g3 * g * g7 = —60fo6 + 30fo36 + 60f16 + 20 fos7 — 16 f157 + 4 f1357
46 f1a6 — 12 foa6 — 6 fo357 — 12fo26 — 18 f136 + 2fo257

[29] 96 * 91 * 9o * g7 = 3foas7 — 6f157 — 3fo2a6 — fi3s7 + 9f146

[30] g1t * g0 * g7 = —3foa6 + 3f14a6 — 3f246 — 3f3s7 + b fos7 — b fis7
+5 fos7 — 10fs7 + 15 f46

31]  gixgl0*gi*xgi = 18fae — 54fs6 + 27fo36 — 18fosr + 36f37 — 18 foar — 3fossr
+6f357 — 6 fo2as — 9f136 + 6 f137 + 6fo247 + fi3s7

32]  g0xgi*xgi*gi = 18foas — 18f146 + 18fos7 + 3foss7 + 18 f1ar — 18 foar
+3 fo2ae + 18 f136 — 12 f137 — 3 fo2a7r — 2 fi357 — 27 fo3s

[33] 96 * g1 * g6 = foae — fi4a6 + foa6 — 3f36

34 (f2—78)xg5*xgi = 3fose — 3fise + 2fi37 — 2fos7 + fiss7 — foss7 — 152faz
—T76f357 + 76 faar — T8 fra7 + 78 foar + 228 f36

[35] 90 * 93 * 93 = foaae — 4fo26 +10f16 — 3f1a6 + fise

(36] 96 * g3 * g7 = —3fo246 + 12 foze + 3fo2ar — foasr + 20f17 + 4 f137 — 10 f1a7
+4f157 — 10 fo2r — 30f16 + 9f146 — 3f136

[37] 96 * g1 = 2f7r — for + fir — far + far — far + fs7 — 3fs

[38] 71° * g7 = —=14f; + Tfor — Tfir + Tfar — Tfar + Tfar — 3fos + 3fi6
—3f26 + 3f36 — 3fa6 — bfs7 +21fe

[39] 90 * g5 * 9o = 2fi35 — 8fi5 + 10fos — 3fo35 + fo2s

[40] 90 * g7 * 90 * g5 = —60fos + 60f14 + 24 f035 — 6 foss7z + 18 foar — 18 f14a7 — 6 foue
46 f146 — 10fo24 — 16 f135 + 4 f1357 + 3fo2ar — fo2ue

[41]  (fo—78)%g0*g5 = —8fi35 + 8foss + 2f1357 — 2fo3s7 — 780 fos + 780 f14

—760f24 4+ 608f35 — 152 f357 + 234 foar — 234 f147
+228faa7 — 78 foas + 78 f146 — 76 faae

[42] 96 * gi * g5 = 10fo24 — 3fo247 + fo2a6 + 24 f15 + 4f135 — 12f025 — 6 f157
— fi3s7 + 3 fo2s7 — 3f146 + 9f1a7 — 30f14

[43] 90 * g2 = —8fs +4fos —4fis +4fos —4fas + 2fs7 — fos7 + fisr
—fas7 + fasr + fae — 3far + 10f4

[44] 71t * g5 = foa — fia+ foa —5fa

[45]  (fo=78)%g0 = —foa+ fis—T6f3

[46] gt * g5 = —90fs + 45fos + 24f35 — 12 foss — 6 fas7 + 3fozs7 + 24 f37

—12 foar — 6f36 + 3fose — 15 f13 + 4f135 — fias7 + 4fiar
—f136 + 13fo25 — 4 fo26 + 10 fo2r — 3 fo2s7 + fo2ar — 5f024
—35fo2 — 39f25 + 12fa6 — 30f27 + 9f257 — 3foar + 15f24 + 105 f2



47 goxg9i = foo—8fs

[

(48] 90 *J1 = fiz — fua+ f1s — fie + fir — for — 61

[49] 93 *gr> = —foo + foz — foa + fos — fos + for +2f1 — 9fo

[50] go*g5 = —16f1+2fis+ foo — 3fos + 36f0

[61] ¢9%92° = 8fo2 — 8fos + 8foa — 8fos — 16f1 + 2f17 + fosr — foar
~+ fosr — fo2r — Tfor + 5fos + 36 fo

[52]  go*gi = —112f1 +30fi3 — 8fi35 — 10f1a + 2f147 — 8f157 + 2f1357
—8fi37 +30f17 + 2fi36
—10f16 + 34 f15 + 21 foa — 45 fos + 15fos — 3fo3e + fo2s
—35for — 5fo27 + fo2s7 — 3foss7 + 10 fos7 — 4 foar
+13fo37 — 51fo3 + 12 fo35 — 4 fo25 + 21 fo2 + 126 fo

(53] g7 = =10+ fo

The proof was obtained as follows. FLAGTOOL creates 227 linear inequalities which contain
the 53 inequalities above. The infeasibility of the entire list of inequalities and the creation of
the smaller list of 53 inequalities which are already infeasible was first carried on using phase I
of the LP-solver CPLEX. Since it was (at least theoretically) possible that the infeasibility found
by CPLEX is an artifact of numerical problems we proved the infeasibility using the symbolic
mathematical program MAPLE V.

Note that we need the nonnegativity of the forms g¢ and it turns out that using only the
nonnegativity of gfl, 1 < 2 is not sufficient to prove infeasibility. Thus, Theorem 1 is still unproved
for general (non-rational) polytopes.

It seems impossible to prove the infeasibility “by hand”. The details of this proof (which for a
computer generated proof is quite short) do not seem to contribute much to our (human) insight
for understanding why the theorem is true.

Proof of Theorem 2: We added the inequalities f§ —5 > 0 and f§ —5 > 3 (for all intervals of rank
4) and all inequalities generated by convolutions. The theorem follows from the infeasibility of a
system of 50 linear inequalities which is contained in the 243 inequalities produced by FLAGTOOL.
This time, we use only the nonnegativity of g¢ for i < 2. The infeasibility was again proved by

using MAPLE V. We will skip the details.

10



Remark: It is possible that the statements of Theorem 1 and 2 remain true for arbitrary
Eulerian lattices ([2, 17]) for some sufficiently large dimension. The same comment applies to all
the conjectures mentioned in Section 1. For Eulerian lattices it is no longer true that the g;i are
nonnegative for i > 2 but the nonnegativity of the ¢g¢ may suffice.

Proof of Theorem 3: We added the inequalities f§ —9 > 0 and f3 — 9 > 3 to the other
inequalities for 5-polytopes and used convolution to obtain a system of 14 inequalities which turned
out to be infeasible. This time, we used only the nonnegativity of g¢ and hence the proof applies

to arbitrary Eulerian lattices.
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