
A Topologial Colorful Helly TheoremGil Kalai� Roy MeshulamyAugust 18, 2003AbstratLet F1; : : : ;Fd+1 be d+1 families of onvex sets in Rd . The ColorfulHelly Theorem (see [3℄) asserts that if Td+1i=1 Fi 6= ; for all hoies ofF1 2 F1; : : : ; Fd+1 2 Fd+1 then there exists an 1 � i � d+1 suh thatTF2Fi F 6= ;.Our main result is both a topologial and a matroidal extensionof the olorful Helly theorem. A simpliial omplex X is d-Leray ifHi(Y ;Q) = 0 for all indued subomplexes Y � X and i � d.Theorem: Let X be a d-Leray omplex on the vertex set V . SupposeM is a matroidal omplex on the same vertex set V with rank funtion�. If M � X then there exists a simplex � 2 X suh that �(V ��) � d.1 IntrodutionLet F be a �nite family of onvex sets in Rd . Helly's theorem (see e.g.[6℄) asserts that if TF2G F 6= ; for all G � F suh that jGj � d + 1, thenTF2F F 6= ;. Dual to Helly's theorem is Carath�eodory's theorem: If A is aset of points in Rd and x 2 onvA then there exists a subset A0 � A suhthat x 2 onvA0 and jA0j � d+ 1. In [3℄ Imre B�ar�any desribed remarkableextensions of these lassial theorems.Theorem 1.1 (Colorful Helly, Lov�asz) Let F1; : : : ;Fd+1 be d+ 1 �nitefamilies of onvex sets in Rd . If Td+1i=1 Fi 6= ; for all hoies of F1 2F1; : : : ; Fd+1 2 Fd+1 then TF2Fi F 6= ; for some 1 � i � d+ 1.�Institute of Mathematis, Hebrew University, Jerusalem 91904, Israel. e-mail:kalai�math.huji.a.ilyDepartment of Mathematis, Tehnion, Haifa 32000, Israel. e-mail:meshulam�math.tehnion.a.il 1



Theorem 1.2 (Colorful Carath�eodory, B�ar�any) Let A1; A2; : : : Ad+1 be�nite sets of points in Rd . If x 2 \d+1i=1 onv(Ai) then there exist a1 2A1; : : : ; ad+1 2 Ad+1 suh that x 2 onvfa1; a2; : : : ; ad+1g.These results redue to the theorems of Helly and Carath�eodory when allfamilies Fi's and respetively all sets Ai's oinide. As in the lassial ase,Theorems 1.1 and 1.2 are related by linear programming duality (see [4℄).B�ar�any's Theorem 1.2 has several important appliations in disrete geome-try. For example, it plays key roles in Sarkaria's proof of Tverberg's Theorem[9, 4℄ and in the proof of existene of weak �-nets for the family of onvexsets in Rd [2℄. The deeper nature of the olorful versions of Carath�eodory'sand Helly's theorems is demonstrated by the fat that while there is a simplepolynomial time algorithm that �nds the points a1; a2; : : : ad+1 guaranteedby Carath�eodory's theorem, no suh algorithm is known in the more generalsetting of B�ar�any's theorem.In this paper we disuss some geometri and topologial extensions ofthe olorful Helly Theorem. Helly himself realized (see [6℄) that in his the-orem, onvex sets an be replaed by topologial ells if you impose theadditional requirement that all non-empty intersetions of these ells areagain topologial ells. (This requirement is automatially satis�ed in theoriginal geometri version sine the intersetion of onvex sets is also on-vex). Helly's topologial version of his theorem also follows from the laternerve theorems of Leray and others (see below). Our main result implies asimilar topologial version for the olorful Helly theorem.Let F be a �nite family of sets. The nerve N(F) of F is the simpliialomplex whose vertex set is F and whose simplies are all G � F suh thatTF2G F 6= ;. A simpliial omplex X is d-representable if it is isomorphi toa nerve of a �nite family of onvex sets in Rd . The lass of d-representableomplexes is denoted by Kd.Let M be a matroid on the vertex set V with rank funtion �. Weidentify M with its matroidal omplex, namely the simpliial omplex on Vwhose simplies are the independent sets of the matroid. For a simpliialomplex X on V and a subset S � V , let X[S℄ = f� 2 X : � � Sg denotethe indued subomplex on S. Matroidal omplexes are haraterized bythe property that every indued subomplex M [S℄ is pure, i.e. all maximalfaes ofM [S℄ have the same dimension. The matroid rank funtion � satis�es�(S) = dimM [S℄+1 for all S � V , in partiular rk(M) = �(V ) = dimM+1.In setion 2 we prove 2



Theorem 1.3 Let X be a d-representable omplex on V and let M be amatroidal omplex on V suh that M � X. Then there exists a simplex� 2 X suh that �(�) = rk(M) and �(V � �) � d.The proof is geometri and relies on a ertain ollapsibility property of d-representable omplexes due to Wegner [11℄.Theorem 1.3 implies by duality a matroidal version of B�ar�any's result.Let fv1; : : : ; vmg be a multiset of points in Rd , and let M be a matroid on[m℄ = f1; : : : ;mg with rank funtion �.Corollary 1.4 Suppose v 2 onvfvi : i 2 Sg for all S � [m℄ suh that�(S) = rk(M) and �([m℄ � S) � d. Then there exists an independent setT 2M suh that v 2 onvfvi : i 2 Tg. 2Suppose Sd+1i=1 Vi is a partition of V into d + 1 sets. Let M denote theorresponding partition matroid: � 2M i� j�\Vij � 1 for all 1 � i � d+1.Applying Theorem 1.3 with this M we obtain the following stronger versionof Lov�asz Theorem.Corollary 1.5 Let X be a d-representable omplex on V suh that fvigd+1i=1 2X for all hoies of v1 2 V1; : : : ; vd+1 2 Vd+1. Then there exist an 1 � i �d+ 1 and vj 2 Vj for all j 6= i suh that Vi S fvj : j 6= ig 2 X : 2For a simpliial omplex X, let Hj(X) denote the j-th homology groupof X with rational oeÆients and let �j(X) = dimHj(X) be its j-th Bettinumber. The redued rational homology and Betti numbers are denoted by~Hj(X) and ~�j(X). The link of a simplex � 2 X is de�ned bylk(X;�) = f� 2 X : � \ � = ; ; � [ � 2 X g :X is d-Leray if ~Hi(Y ) = 0 for all indued subomplexes Y � X and i � d.Equivalently X is d-Leray if ~Hi(lk(X;�)) = 0 for all � 2 X and i � d.The lass of d-Leray omplexes is denoted by Ld. Let F be a family oftopologial (or homologial) ells in Rd with the property that every non-empty intersetion of members in F is again a topologial (or homologial)ell. The nerve theorem (see e.g. Theorem 3.2 below) implies that N(F)is d-Leray. In partiular, Kd � Ld. Examples (see [11℄) show that theontainment is strit for all d � 1.Our main result is an extension of Theorem 1.1 to d-Leray omplexes.3



Theorem 1.6 Let X be a d-Leray omplex on V and let M be a matroidalomplex on V suh that M � X. Then there exists a simplex � 2 X suhthat �(V � �) � d.The proof of Theorem 1.6 applies a homologial riterion (see [1, 7℄) for theexistene of olorful simplies in olored omplexes. For ompleteness, weinlude a short proof of this result in setion 3. The proof of Theorem 1.6is given in setion 4.2 Colorful Helly for d-Collapsible ComplexesLet � be a fae of dimension at most d�1 of a simpliial omplex X whih isontained in a uniquemaximal fae � of X, and let [�; � ℄ = f� : � � � � �g.The operation X ! Y = X � [�; � ℄ is alled an elementary d-ollapse. X isd-ollapsible if there exists a sequene of elementary d-ollapsesX = X1 ! X2 ! � � � ! Xm = f;g :The lass of d-ollapsible omplexes is denoted by Cd. A fundamental resultof Wegner [11℄ asserts that the nerve of every �nite family of onvex setsin Rd is d-ollapsible, thus Kd � Cd. (Wegner's proof is based on slidinga hyperplane from in�nity towards the family and studying the �rst timethis hyperplane passes the intersetion of some d members of the family.)Sine an elementary d-ollapse does not e�et the homology in dimensionsat least d it follows that Cd � Ld. Examples (see [11℄) show that the �rstinlusion is strit for d � 1 while the seond is strit for d � 2. We provethe following extension of Theorem 1.3.Theorem 2.1 Let X be a d-ollapsible omplex on V and let M be a ma-troidal omplex on V . If M � X then there exists a simplex � 2 X suhthat �(�) = rk(M) and �(V � �) � d.Proof: Let X = X1 ! X2 ! � � � ! Xm = f;g be a d-ollapsing of X,where Xi ! Xi+1 = Xi� [�i; �i℄ is an elementary d-ollapse. Let 1 � k � mbe the maximal index suh that Xk � M . If k = m then M is void andthe theorem holds trivially. Suppose k < m. We show that the theoremholds with � = �k. By maximality of k there exists an �k � S � �k suhthat S 2 M , thus �k 2 M . Let T be any basis of M that ontains �k.Sine M � Xk it follows that T � �k, hene �(�k) = rk(M). If v 62 �k then�k [ fvg 62M . Therefore V � �k � Span �k and �(V � �k) � j�kj � d. 24



3 Colorful Simplies via HomologyFor a simpliial omplex X on a vertex set V let�(X) = minfj : ~�j(X) 6= 0g + 1 :Let Y be a simpliial omplex on a vertex set V 0 suh that V \V 0 = ;. Thejoin X � Y is a simpliial omplex with verties V [ V 0 and simplies � [ �where � 2 X ; � 2 Y . The K�unneth formula~Hk(X � Y ) = Mi+j=k�1 ~Hi(X) 
 ~Hj(Y )implies that �(X � Y ) = �(X) + �(Y ).Let Z be a simpliial omplex on the vertex set W and let Smi=1Wi be apartition of W . A simplex � 2 Z is olorful if j� \Wij = 1 for all 1 � i � m.The following Hall's type ondition for the existene of olorful simpliesappears in [1℄ and in [7℄.Proposition 3.1 If for all I � [m℄�(Z[[i2IWi℄) � jIjthen Z ontains a olorful simplex.For ompleteness we reprodue a short proof from [7℄. Suppose U = fUigmi=1is a family of subomplexes of Z suh that Smi=1 Ui = Z. For � � [m℄ letU� = Ti2� Ui. Identify the nerve of U with the simpliial omplex N onthe vertex set [m℄ whose simplies are all � � [m℄ suh that U� 6= ;. LetN (k) denote the k-dimensional skeleton of N . We shall use the followinghomology variant of Leray's Nerve Theorem (see [5, 7℄).Theorem 3.2 If ~Hj(U�) = 0 for all � 2 N (k) and 0 � j � k � dim�, then(i) ~Hj(Z) �= ~Hj(N) for 0 � j � k.(ii) If ~Hk+1(N) 6= 0 then ~Hk+1(Z) 6= 0. 2Proof of Proposition 3.1: Suppose Z does not ontain a olorful simplex.Let Ui = Z[Sj 6=iWj℄, then U = fUigmi=1 is a over of Z. Let � � [m℄then U� = Z[Sj 62�Wj℄ hene by assumption ~Hj(U�) = 0 for �1 � j �5



m�j�j�2 = m�dim��3. Therefore U meets the onditions of Theorem 3.2with k = m�3. Sine ~Hm�2(Z) = 0 it follows by 3.2(ii) that ~Hm�2(N) = 0.But N is learly the (m� 2)-skeleton of the (m� 1)-simplex on the vertexset [m℄, hene ~Hm�2(N) 6= 0, a ontradition. 2Remark: The �rst result on the existene of olorful simplies in simpliialomplexes is Sperner's lemma. The relevane of Sperner's lemma and (im-pliitly) Proposition 3.1 to mathing theory of hypergarphs was disoveredin a reent remarkable paper by Aharoni and Haxell [1℄. Further appliationsmay be found in [7, 8℄.4 Colorful Helly for Leray ComplexesWe reall the ombinatorial version of the Alexander Duality Theorem (seee.g. [10℄). Let X be a simpliial omplex on the vertex set V . The AlexanderDual of X is the simpliial omplex on V given byD(X) = f� � V : V � � 62 X g :The homology groups of X and D(X) are related by the followingTheorem 4.1 (Alexander Duality)If V 62 X then for all �1 � i � jV j � 2~Hi(D(X)) ' ~HjV j�i�3(X) :Suppose S 62 D(X) then S = V � S 2 X. Applying Alexander Duality toD(X)[S℄ we obtainCorollary 4.2 If V 62 X and S 62 D(X) then for all �1 � i � jSj � 2~Hi(D(X)[S℄) �= ~HjSj�i�3(lk(X;S)) : 2Proof of Theorem 1.6: Suppose for ontradition that for all � 2 X�(V � �) � d+ 1 : (1)Let V = fv1; : : : ; vmg be the vertex set of X and let Y = D(X). LetV 0 = fv01; : : : ; v0mg be a disjoint opy of V and let M 0 be an isomorphi opy6



of M on V 0. Consider the join Z = Y �M 0 with the vertex set W = V [V 0.For 1 � i � m let Wi = fvi; v0ig. We now use Proposition 3.1 to show thatZ ontains a olorful simplex with respet to the partition fWigmi=1.Let I � [m℄ and let S = fvi : i 2 Ig ; S0 = fv0i : i 2 Ig. Then�(Z[[i2IWi℄) = �(Y [fvi : i 2 Ig℄ �M 0[fv0i : i 2 Ig℄) =�(Y [S℄) + �(M 0[S0℄) = �(Y [S℄) + �(M [S℄) : (2)If S 2 Y then Y [S℄ is ontratible and �(Y [S℄) =1. We thus assume thatS 62 Y hene � = V � S 2 X. By Alexander duality (Corollary 4.2)~Hi(Y [S℄) ' ~HjSj�i�3(lk(X;�)) :Sine ~Hj((lk(X;�)) = 0 for all j � d it follows that ~Hi(Y [S℄) = 0 for alli � jSj � d� 3. Thus �(Y [S℄) � jSj � d� 1 : (3)On the other hand it is well known (see e.g. [5℄) that for matroid omplexes�(M [S℄) � �(S) : (4)Combining (2),(3),(4) and (1) it follows that�(Z[[i2IWi℄) = �(Y [S℄) + �(M [S℄) �jSj � d� 1 + �(S) = jSj � d� 1 + �(V � �) � jSj = jIj :Proposition 3.1 now implies that there exists a simplex � 2 Z = Y �M 0suh that j� \Wij = 1 for all 1 � i � m. Therefore A = � \ V 2 Y andB = V �A 2M . But A 2 Y implies B = V �A 62 X, in ontradition withM � X. 2Remark: It would be interesting to deide whether the stronger onlusionof Theorem 1.3 holds in the topologial setting as well.7
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