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Abstract

Let Fi,...,Fip1 be d+1 families of convex sets in R¢. The Colorful
Helly Theorem (see [3]) asserts that if ﬂf;l F; #  for all choices of
Fy € Fi,...,Fy41 € Fgq1 then there exists an 1 < i < d+ 1 such that
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Our main result is both a topological and a matroidal extension
of the colorful Helly theorem. A simplicial complex X is d-Leray if
H;(Y;Q) = 0 for all induced subcomplexes Y C X and i > d.
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Theorem: Let X be a d-Leray complex on the vertex set V. Suppose
M is a matroidal complex on the same vertex set V' with rank function
p. If M C X then there exists a simplex 7 € X such that p(V —7) < d.

1 Introduction

Let F be a finite family of convex sets in R¢. Helly’s theorem (see e.g.
[6]) asserts that if Npeg F' # 0 for all G C F such that |G| < d + 1, then
Nper F # 0. Dual to Helly’s theorem is Carathéodory’s theorem: If A is a
set of points in R? and x € convA then there exists a subset A’ C A such
that 2 € convA’ and |A'| < d+ 1. In [3] Imre Bardny described remarkable
extensions of these classical theorems.

Theorem 1.1 (Colorful Helly, Lovéasz) Let Fi,...,Fqi1 be d+ 1 finite
families of convex sets in R, If ﬂfill F; # 0 for all choices of Fi €
Fioooos Fypr € Fayr then Nper, F # 0 for some 1 <i <d+ 1.
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Theorem 1.2 (Colorful Carathéodory, Bardny) Let Ay, As,... Agiq be
finite sets of points in RY. If x € NFlconv(A;) then there exist ay €

1=

Aq,... 6441 € Agy1 such that x € conv{ai,as,...,a441}-

These results reduce to the theorems of Helly and Carathéodory when all
families F;’s and respectively all sets A;’s coincide. As in the classical case,
Theorems 1.1 and 1.2 are related by linear programming duality (see [4]).
Barany’s Theorem 1.2 has several important applications in discrete geome-
try. For example, it plays key roles in Sarkaria’s proof of Tverberg’s Theorem
[9, 4] and in the proof of existence of weak e-nets for the family of convex
sets in R? [2]. The deeper nature of the colorful versions of Carathéodory’s
and Helly’s theorems is demonstrated by the fact that while there is a simple
polynomial time algorithm that finds the points aq,as9,...a411 guaranteed
by Carathéodory’s theorem, no such algorithm is known in the more general
setting of Bardny’s theorem.

In this paper we discuss some geometric and topological extensions of
the colorful Helly Theorem. Helly himself realized (see [6]) that in his the-
orem, convex sets can be replaced by topological cells if you impose the
additional requirement that all non-empty intersections of these cells are
again topological cells. (This requirement is automatically satisfied in the
original geometric version since the intersection of convex sets is also con-
vex). Helly’s topological version of his theorem also follows from the later
nerve theorems of Leray and others (see below). Our main result implies a
similar topological version for the colorful Helly theorem.

Let F be a finite family of sets. The nerve N(F) of F is the simplicial
complex whose vertex set is F and whose simplices are all G C F such that
Nreg F # 0. A simplicial complex X is d-representable if it is isomorphic to
a nerve of a finite family of convex sets in R?. The class of d-representable
complexes is denoted by K.

Let M be a matroid on the vertex set V with rank function p. We
identify M with its matroidal complex, namely the simplicial complex on V
whose simplices are the independent sets of the matroid. For a simplicial
complex X on V and a subset S C V, let X[S] = {0 € X : 0 C S} denote
the induced subcomplex on S. Matroidal complexes are characterized by
the property that every induced subcomplex M|[S] is pure, i.e. all maximal
faces of M[S] have the same dimension. The matroid rank function p satisfies
p(S) = dim M[S]+1 for all S C V, in particular rk(M) = p(V) = dim M +1.
In section 2 we prove



Theorem 1.3 Let X be a d-representable complex on V and let M be a
matroidal complex on V' such that M C X. Then there exists a simplex
7 € X such that p(7) = k(M) and p(V — 1) < d.

The proof is geometric and relies on a certain collapsibility property of d-
representable complexes due to Wegner [11].

Theorem 1.3 implies by duality a matroidal version of Barany’s result.
Let {v1,...,v,} be a multiset of points in R?, and let M be a matroid on
[m] = {1,...,m} with rank function p.

Corollary 1.4 Suppose v € conv{v; : i € S} for all S C [m] such that
p(S) = tk(M) and p(Jm] — S) < d. Then there exists an independent set
T € M such that v € conv{v; : i € T}.
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Suppose Uflill V; is a partition of V into d 4+ 1 sets. Let M denote the
corresponding partition matroid: o € M iff |oNV;| < 1forall1 <i<d+1.
Applying Theorem 1.3 with this M we obtain the following stronger version
of Lovész Theorem.

Corollary 1.5 Let X be a d-representable complex on'V such that {vl};jill €
X for all choices of v1 € Vi,...,v441 € Vgi1. Then there exist an 1 <1 <
d+1 and v; € Vj for all j # i such that V; U {vj:j #i} € X

O

For a simplicial complex X, let H;(X) denote the j-th homology group
of X with rational coefficients and let 5;(X) = dim H;(X) be its j-th Betti
number. The reduced rational homology and Betti numbers are denoted by
H;(X) and 6} (X). The link of a simplex o € X is defined by

k(X,0)={reX : TNo=0 , TUceX } .

X is d-Leray if H;(Y) = 0 for all induced subcomplexes Y C X and i > d.
Equivalently X is d-Leray if H;(Ik(X,0)) = 0 for all 0 € X and i > d.
The class of d-Leray complexes is denoted by £%. Let F be a family of
topological (or homological) cells in R? with the property that every non-
empty intersection of members in F is again a topological (or homological)
cell. The nerve theorem (see e.g. Theorem 3.2 below) implies that N(F)
is d-Leray. In particular, K¢ C £¢ Examples (see [11]) show that the
containment is strict for all d > 1.
Our main result is an extension of Theorem 1.1 to d-Leray complexes.



Theorem 1.6 Let X be a d-Leray complex on 'V and let M be a matroidal
complex on V' such that M C X. Then there exists a simplex T € X such
that p(V — 1) < d.

The proof of Theorem 1.6 applies a homological criterion (see [1, 7]) for the
existence of colorful simplices in colored complexes. For completeness, we
include a short proof of this result in section 3. The proof of Theorem 1.6
is given in section 4.

2 Colorful Helly for d-Collapsible Complexes

Let o be a face of dimension at most d— 1 of a simplicial complex X which is
contained in a unique maximal face 7 of X, and let [o,7] ={n : 0 Cn C 7}
The operation X — Y = X — [0, 7] is called an elementary d-collapse. X is
d-collapsible if there exists a sequence of elementary d-collapses

X=X, —-Xy— = X, ={0} .

The class of d-collapsible complexes is denoted by C%. A fundamental result
of Wegner [11] asserts that the nerve of every finite family of convex sets
in R? is d-collapsible, thus K¢ C C?. (Wegner’s proof is based on sliding
a hyperplane from infinity towards the family and studying the first time
this hyperplane passes the intersection of some d members of the family.)
Since an elementary d-collapse does not effect the homology in dimensions
at least d it follows that C¢ C £%. Examples (see [11]) show that the first
inclusion is strict for d > 1 while the second is strict for d > 2. We prove
the following extension of Theorem 1.3.

Theorem 2.1 Let X be a d-collapsible complex on V' and let M be a ma-
troidal complex on V. If M C X then there exists a simplex 7 € X such
that p(1) =rk(M) and p(V — 1) < d.

Proof: Let X = X; - Xy — --- = X,;, = {0} be a d-collapsing of X,
where X; — X;11 = X; — [0y, 7] is an elementary d-collapse. Let 1 <k <m
be the maximal index such that X, D M. If £ = m then M is void and
the theorem holds trivially. Suppose k£ < m. We show that the theorem
holds with 7 = 7. By maximality of k£ there exists an o, C S C 73 such
that S € M, thus o € M. Let T be any basis of M that contains oy.
Since M C Xy, it follows that T' C 74, hence p(7) = rk(M). If v & 73 then
o U{v} & M. Therefore V — 7, C Span o) and p(V — 71) < |og| < d.

O



3 Colorful Simplices via Homology

For a simplicial complex X on a vertex set V let
n(X) = min{j : B;(X) #0} + 1.

Let Y be a simplicial complex on a vertex set V' such that VNV’ = (). The
join X xY is a simplicial complex with vertices V U V' and simplices o U T
where o0 € X , 7 € Y. The Kiinneth formula

H(X+Y)= @ Hi(X)e® HY)
i+j=k—1

implies that n(X xY) = n(X) + n(Y).

Let Z be a simplicial complex on the vertex set W and let [J;"; W; be a
partition of W. A simplex 7 € Z is colorful if |[TNW;| =1 for all 1 <i < m.
The following Hall’s type condition for the existence of colorful simplices
appears in [1] and in [7].

Proposition 3.1 If for all I C [m)]

n(Z[J wil) > 1|
iel

then Z contains a colorful simplez.

For completeness we reproduce a short proof from [7]. Suppose U = {U;}/,
is a family of subcomplexes of Z such that (J;»; U; = Z. For o C [m] let
Us = Nicy Ui- Identify the nerve of & with the simplicial complex N on
the vertex set [m] whose simplices are all o C [m] such that U, # (. Let
N®) denote the k-dimensional skeleton of N. We shall use the following
homology variant of Leray’s Nerve Theorem (see [5, 7]).

Theorem 3.2 If Hj(U,) =0 for allc € N®) and 0 < j < k — dimo, then
(i) Hj(Z) = Hj(N) for 0 < j <k.
(it) If Hi11(N) # 0 then Hy11(Z) # 0.

O
Proof of Proposition 3.1: Suppose Z does not contain a colorful simplex.
Let U; = Z[U; Wjl, then U = {U;}2, is a cover of Z. Let o C [m)]
then U, = Z[U;g, W;] hence by assumption Hij(U,) = 0 for =1 < j <
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m—|o|—2 = m—dimo—3. Therefore U/ meets the conditions of Theorem 3.2
with k = m — 3. Since H,,_(Z) = 0 it follows by 3.2(ii) that H,,_»(N) = 0.
But N is clearly the (m — 2)-skeleton of the (m — 1)-simplex on the vertex
set [m], hence H,, 2(N) # 0, a contradiction.

O

Remark: The first result on the existence of colorful simplices in simplicial
complexes is Sperner’s lemma. The relevance of Sperner’s lemma and (im-
plicitly) Proposition 3.1 to matching theory of hypergarphs was discovered
in a recent remarkable paper by Aharoni and Haxell [1]. Further applications
may be found in [7, §].

4 Colorful Helly for Leray Complexes

We recall the combinatorial version of the Alexander Duality Theorem (see
e.g. [10]). Let X be a simplicial complex on the vertex set V. The Alezander
Dual of X is the simplicial complex on V' given by

DX)={rCcV : V-7r7¢X}.
The homology groups of X and D(X) are related by the following

Theorem 4.1 (Alezander Duality)
If V¢ X then for all =1 <i <|V| -2

Hi(D(X)) ~ Hyy|_;_3(X)

Suppose S ¢ D(X) then S =V — S € X. Applying Alexander Duality to
D(X)[S] we obtain

Corollary 4.2 If V ¢ X and S ¢ D(X) then for all —1 <i < |S| —2

H;(D(X)[S]) = 1{1\5\473(11{(&?))

Proof of Theorem 1.6: Suppose for contradiction that for all 0 € X
p(V—-0o)>d+1. (1)

Let V. = {v1,...,un} be the vertex set of X and let Y = D(X). Let
V' ={v},...,v,} be a disjoint copy of V and let M’ be an isomorphic copy



of M on V'. Consider the join Z =Y % M’ with the vertex set W =V UV’
For 1 <i < m let W; = {v;,v}}. We now use Proposition 3.1 to show that
Z contains a colorful simplex with respect to the partition {W;}" .
Let I C [m]and let S ={v;:i €I}, S'"={v):i€ I}. Then

n(ZIJWil) =n(Y[{vi :i € I}« M'[{v; :i € I}]) =
el
n(Y[S]) +n(M'[S]) = n(V[S]) +n(M[S]) - (2)

If S € Y then Y[S] is contractible and 7n(Y[S]) = co. We thus assume that
S &Y hence 0 =V — S € X. By Alexander duality (Corollary 4.2)

H;(Y[S]) ~ Hys|—i—3(Ik(X,0))

Since H,((Ik(X,0)) = 0 for all j > d it follows that H;(Y[S]) = 0 for all
i <|S| —d— 3. Thus

n(Y[S) =[S -d-1 . (3)

On the other hand it is well known (see e.g. [5]) that for matroid complexes
n(M[S]) = p(S) . (4)
Combining (2),(3),(4) and (1) it follows that

n(Z[J Wil) = n(Y[S)) +n(M[S]) >
1€l
S| —d—1+p(S) =S| —d—1+p(V =) > |S| = 1] .
Proposition 3.1 now implies that there exists a simplex 7 € Z =Y * M’
such that [T NW;| =1 for all 1 < i < m. Therefore A =7NV €Y and

B=V-Ae M. But A€Y implies B=V — A ¢ X, in contradiction with
M C X.

d

Remark: It would be interesting to decide whether the stronger conclusion
of Theorem 1.3 holds in the topological setting as well.
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