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We will also desribe the relation of algebrai shifting to frame-work rigidity, the onnetion with the original notion of \ombina-torial shifting" whih goes bak to Erd�os, Ko and Rado and somepossible appliations to extremal ombinatoris.
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1 Introdution and Bakground1.1 IntrodutionAlgebrai shifting is a orrespondene whih assoiates to a simpliial om-plex K another simpliial omplex �(K) of a speial type. It was introduedin Kalai [55, 58℄ (see also Bj�orner and Kalai [16, 17℄). There are two mainvariants of algebrai shifting. The original one was based on exterior algebrawhile a variation based on symmetri algebra was onsidered in [61℄. Theonstrutions are algebrai and losely related to \Gr�obner bases" and speif-ially to \generi initial ideals" in ommutative algebra [38℄. �(K) belongsto a speial lass of simpliial omplexes alled \shifted omplexes" (loselyrelated to \Borel-�xed ideals").We assoiate to a simpliial omplex K the exterior fae algebra V(K),and with it the exterior shifting of K denoted by �ext(K). The symmetrishifting of K denoted by �symm(K) is based on the Stanley-Reisner ringR(K). When the type of shifting is lear from the ontext or when we aredisussing properties that apply to both versions, we omit the supersriptsext and symm.Algebrai shifting preserves various ombinatorial and topologial prop-erties of K while others disappear. Thus, for example �(K) has the sameBetti numbers as those of K while the ring ohomology of �(K) is alwaystrivial as �(K) is always a wedge of spheres. If K has the Cohen-Maaulayproperty then so does �(K) and if every two r-faes of K have nonemptyintersetion then the same is true for �ext(K).The main appliation of algebrai shifting is the study of fae numbersof various lasses of simpliial omplexes. However, in this paper I primarilydisuss algebrai shifting for its own sake. I will also present various openproblems.The basi problem is as follows:Problem 1. Find interesting relations between topologial and ombinatorialproperties of the omplex K, ommutative-algebrai properties of the alge-bras R(K) and V(K) and ombinatorial properties of the shifted omplexes�symm(K) and �ext(K). Extrat ombinatorial onsequenes.In the �rst part of the paper (Setions 2-3) we will disuss some basiproperties of algebrai shifting and will onentrate on its relation to simpli-ial homology. We will also briey mention the onnetion between frame-work rigidity and (symmetri) shifting of graphs. The seond part (Setions5



4-5) desribes onnetions to �ner homologial properties of simpliial om-plexes and their links. The Cohen-Maaulay property will play a entralrole. The third part (Setions 6-7) is devoted to ombinatorial propertiesand appliations and to some extensions and variations.1.2 Comments on the early literatureIn Eisenbud's book [38℄ the reader will �nd a historial desription and ref-erenes onerning initial ideals, Gr�obner basis and generi initial ideals and,in partiular, referenes to works of Hartshorne (1966), Grauert (1972) andGalligo (1994). Let me mention in partiular the seminal works by Bayer andStillman from 1987 (see, for example, [11℄). Green [48℄ is a reent inuentialpaper onerning generi initial ideals.Fae rings and the appliation of ommutative algebra to ombinatoriswere pioneered by Stanley [71℄ in 1975. For a disussion of onnetions be-tween ommutative algebra and ombinatoris see Stanley [76℄, Hibi [52℄ andBurns and Herzog [24℄. I should also mention the important early papers byHohester [53℄, in 1972, in whih ombinatoris was applied in ommutativealgebra, and by Reisner [70℄.Appliations of exterior and polynomial algebras in extremal ombina-toris whih were introdued by Lov�asz [65℄ in 1977, are also losely relatedto the mathematis of this paper.Of ourse, algebrai shifting is related to the lassial notion of \ombi-natorial shifting" due to Erd�os, Ko and Rado [41℄ and later in full generalityby Kleitman (see the survey artile by Frankl [44℄). The ombinatoris ofKruskal-Katona and Maaulay's theorems are also relevant (see [40℄).1.3 Simpliial omplexesAn (abstrat) simpliial omplex K is a olletion of �nite sets with theproperty that S 2 K and R � S implies that R 2 K.Let K be a �nite simpliial omplex. A set S 2 K where jSj = k + 1 isalled a k-fae of K. 0-faes of K are alled verties. Denote by fk(K) thenumber of k-faes in K. The vetor f(K) = (f�1(K); f0(K); f1(K); : : : ) isalled the f -vetor of K.Simpliial omplexes are basi ombinatorial objets and also arise ingeometry and topology. A geometri realization K of a simpliial omplex K6



is a olletion of Eulidean simplies suh that for every r-fae of K there isan assoiated r-dimensional simplex S, so that for every S; T 2 KS \ T = S \ T :Given a geometri realizationK of K de�ne jKj = [fS : S 2 Kg. As a topo-logial spae jKj does not depend (up to a homeomorphism) on the spei�geometri realization K. A simpliial omplex K is alled a triangulationof a topologial spae X if jKj is homeomorphi to X. Various topologialinvariants of X were de�ned and studied via triangulations of X.Let K be a simpliial omplex and S be a fae of K. The link of S in K,denoted by lk(S;K) is de�ned bylk(S;K) = fTnS : T 2 K; S � Tg:The link of the empty set is K itself. Links of non-empty faes of K will bealled proper links.For an exellent desription of simpliial omplexes and simpliial homol-ogy the reader is referred to Munkers' book [68℄.1.4 Shifted omplexesA olletion A of k-sets of positive integers (or any ordered set) is shiftedif whenever S 2 A and R is obtained from S by replaing an element witha smaller element, then R belongs to A. For example: If f2; 5; 11g 2 Athen f1; 5; 9g must also be in A. We will write S <p T if S 6= T andS an be obtained from T by suessively replaing elements with smallerelements. In other words, if S = fs1; s2; : : : ; skg< (the subsript < indiatesthat s1 < s2 < � � � < sk) and T = ft1; tt; : : : ; tkg< then S �p T if si � ti forevery i, 1 � i � k.A simpliial omplex K whose verties are positive integers is shifted ifthe set of r-faes of K is shifted for every r. Algebrai shifting assigns ashifted simpliial omplex �(K) to every simpliial omplex K. �(K) hasthe same f -vetor as K.
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2 The de�nition of algebrai shifting, basiproperties and basi problems2.1 Exterior shiftingFrom herein k will be a �xed �eld of oeÆients. The lexiographi orderingon �nite k-subsets of N is de�ned by S <L T if and only if min(S�T ) 2 S.(S�T is the symmetri di�erene between S and T .) In other words, ifS = fs1; s2; : : : ; skg< and T = ft1; tt; : : : ; tkg< then S <L T if for some j,1 � j � k, we have: si = ti for i < j and sj < tj. Thus,f1; 2g <L f1; 3g <L f1; 4g <L � � � <L f2; 3g <L f2; 4g <L � � � <L f3; 4g <L � � �Let K be a olletion of k-subsets of [n℄ = f1; 2; :::; ng. In this setion wewill de�ne the algebrai shifting operation K ! �(K) and disuss some ofits basi properties. For a general set system K denote by Kk the olletionof k-sets in K, and de�ne �(K) = [�(Ki).Let X = (xij)1�i�n;1�j�n be an n by n matrix. Let X^k be the k-thompound matrix of X, i.e, the �nk� by �nk� matrix of k by k minors of X.Assume that the rows and olumns of X^k are ordered lexiographially.Given a olletion K of k-subsets of [n℄ with jKj = m, let M(K) be them by �nk� submatrix of X^k whose rows orrespond to the k-sets in K. Nowhoose a basis of olumns for the olumn-spae of M(K) in the greedy way:by simply taking those olumns whih are not spanned by previous olumnsin the lexiographi ordering. De�ne �X(K) as the family of sets whih arethe indies of the hosen olumns. �(K) = �X(K) for a generi matrix X,i.e., when (xij)1�i;j�n are n2 variables.Remark: We an replae the lexiographi order <L in this de�nitionwith any \term order", namely a linear extension of the partial order <p.We will rarely onsider other term orders.We now desribe two other ways to de�ne algebrai shifting. Let E be ann-dimensional vetor spae over k with a standard basis e= (e1; e2; :::; en).Let Vk E be the k-th exterior produt over E and let VE be the entireexterior algebra over E. Let f = (f1; f2; � � � fn) be a basis of E, given byfi =P xijej. Let (fS : S � [n℄) be the orresponding basis of VE.An equivalent way to de�ne shifting is as follows: For a subspae I ofVk(E) onsider the quotient spae A = Vk(E)=I. For m 2 Vk(E) let em be8



its image in A. De�ne�X(I) = fS : efS =2 spanf efR : R <L Sgg: (2.1)Starting with a familyK onsider I = spanfeS : S =2 Kg and then �X(I)oinides with �X(K) as de�ned above.For a simpliial omplex K denoteI(K) = spanfeS : S =2 Kgand ^(K) =^E=I(K) (2.2)as above. V(K) is alled the exterior algebra of K. It is a graded quotientsalgebra of VE whih is the exterior analog of the Stanley-Reisner ring.In order to obtain �(K) one must hoose X to be a generi matrix. Forthis replae k with the �eld of rational funtions with n2 variables k(xij; 1 �i; j � n) and let fi =P xijej.Finally, let M be a subspae of Vk(K). For eah m 2 M express m =PS �SfS, let i(m) = minfS : �S 6= 0g and de�ne �X(M) = fi(m) : m 2Mg. For a olletion K of k-subsets of n let M(K) = spanfeS : S 2Kg and then �X(K) as de�ned in the previous paragraphs oinides with�X(M(K)). (Reall that a Gr�obner basis for M is a set of elements mj inM suh that i(mj) gives every set in �(M) preisely one.)The equivalene of the de�nitions an easily be shown. Note that fS =PXSTeT , where XST is the k by k minor of X with rows and olumnsorresponding to the elements of S and T respetively. Thus, the seondde�nition is a diret translation of the �rst to the language of exterior algebra.To see the equivalene of the �rst and third de�nitions note that a olumn iin a matrix M is linearly dependent on the previous olumns if and only ifthere is no linear ombination of the rows in M whose �rst nonzero elementis in the i-th plae.2.2 Symmetri shiftingLet K be a simpliial omplex and let R(K) be its Stanley-Reisner ring (faering). R(K) = R[x1; x2; : : : ; xn℄=I; (2.3)9



where I is the ideal spanned by monomials xi1 �xi2 � � �xir where fi1; i2; : : : ; irg =2K. Here R will be the �eld of oeÆients k.Consider now y1; y2 : : : ; yn whih are n generi linear ombinations ofx1; x2 : : : xn. All monomials in the yi's span the ring R(K) and we will nowonstrut the basis GIN(K) of monomials in the new variables in a greedyway w.r.t. the lexiographi order. Thus a monomial m belongs to GIN(K)if and only if its image em in R(K) is not a linear ombination of (images of)monomials whih are lexiographially smaller.Reall that The lexiographi order m1 <L m2 is de�ned as follows: Ifthe variable with the smallest index whih appears with a di�erent exponentin the two monomials appears with a larger exponent in m1. Thus,y21 <L y1y2 <L y1y3 <L � � � <L y1yn <L y22 <L : : : :GIN(K) is the diret analog to the shifting operation desribed for theexterior algebra. However the ombinatorial information in GIN(K) is re-dundant as a result of the following property: If m is a monomial in GIN(K)of degree i � d then the monomials y1m; y2m; : : : yim belong to GIN(K).The symmetri shifting of K denoted by �symm(K) is a simpliial omplexobtained from GIN(K) as follows:For every monomialm of degree r in GIN(K) whih does not involve thevariables y1; : : : yr�1 , write m = yi1 � yi2 � � � yir , where i1 � i2 � � � � � ir, andassoiate the set S(m) = fi1 � r + 1; i2 � r + 2 : : : ; irg to the monomial m.�symm(K) = [fS(m) : m 2 GIN(K)g: (2.4)Note thatGIN(K) and �symm(K) arry preisely the same ombinatorialinformation. GIN(K) is essentially equivalent to the notion of generi initialideal (exept that it is a olletion of monomials rather than an ideal). Insome ases, (e.g. when K is Cohen-Maaulay or a manifold) it is easierto explain the ombinatorial properties of �symm(K) in terms of GIN(K).However, the translation is straightforward.2.3 Exterior shifting and symmetri shiftingProblem 2. 1. What is the relation between the exterior fae algebra and theStanley-Reisner ring?2. What is the relation between exterior shifting and symmetri shifting?10



Most of the general theorems we an prove for one of these operations areeither true or onjetured to be true for the other operation. (Even in aseswhere we an prove the results for both types of shifting the proofs may bevery di�erent.) The reent paper by Eisenbud, Popesu and Yuzvinsky [39℄is relevant to these questions.A ase in whih the outomes of the two operations di�er is K3;3 - theomplete bipartite graph with two olor lasses of size three. The symmetrishifting �symm(K3;3) ontains all edges lexiographially smaller than f2; 6gwhile �ext(K3;3) ontains all edges lexiographially smaller than f2; 5g and,in addition, the edge f3; 4g.There is a further explanation of this example: The presene of f2; 3gin �(G) is equivalent to the property that the graph ontains a yle or, inalgebrai terms, to the existene of a linear ombinationm of the edges whoseboundary vanishes. The boundary operation in question is di�ers for exteriorand symmetri shifting. In the ase of exterior shifting, the boundary of theedge fi; jg (that orresponds to ei^ej) is �jei��iej. In the ase of symmetrishifting, the boundary of the edge fi; jg is (�i� �j)ei + (�j � �i)ej. In bothases (�1; �2; : : : �n) is a generi vetor of oeÆients.In the ase of a single boundary operation these two boundaries are equiv-alent to the usual boundary.The presene of f3; 4g is equivalent to the existene of a linear ombi-nation of edges whih simultaneously vanishes for two independent generiboundary operations. This di�ers in the exterior and symmetri ase. (Inthe symmetri ase this is equivalent to the existene of a non-zero stress fora generi embedding of the graph in R3 .)Let K1 and K2 be simpliial omplexes on the vertex set [n℄. We saythat K2 is lexiographially smaller than or equal to K1, denoted by K2 �LK1, if for every r > 0 the lexiographially �rst r-fae in the symmetridi�erene between K1 and K2 belongs to K2. Note that for K = K3;3,�symm(K) is lexiographially smaller than �ext(K) as the �rst edge (w.r.t.the lexiographi order) in their symmetri di�erene is f2; 6g 2 �symm(K).Problem 3. Is it always the ase that �symm(K) �L �ext(K)?We will now mention three properties of exterior shifting whih may alsoapply for symmetri shifting.Problem 4. Is �symm(K;k) shifted when the harateristi p of the �eld k ofoeÆients is not zero? 11



For exterior shifting, if K itself is shifted then �ext< (K) is shifted withrespet to every term order.Problem 5. Let K be a shifted omplex. Is �symm< (K) shifted with respetto every term order?We will show (in Setion 6) that if A � �[n℄k � is interseting, namely everytwo sets in A have nonempty intersetion, then �ext(A) is interseting aswell.Problem 6. Let K be an interseting family of k-sets. Is �symm(K) alsointerseting?Goresky and MaPherson proposed (in a private ommuniation) thatKoszul duality may shed light on the relation between exterior and symmetrifae rings and the assoiated shifting operations.2.4 An exampleConsider the boundary omplex K of an otahedron. If we number theverties of the otahedron by f1; 2; � � � ; 6g the 2-faes are given by 123, 126,135, 234, 156, 246, 345 and 456. (Here, 123 stands for f1; 2; 3g.)K is pure and therefore its 1-skeleton onsists of all the edges inluded inthese triangles. These are all the possible �62� edges exept for 14, 25 and 36.What is �(K)? We will reveal the identity of �(K) step-by-step and wewill use several properties of algebrai shifting (written with a speial font)whih we are going to disuss in various plaes of this paper.� The algebrai shifting of K also onsists of 8 triangles. The �rsttwo triangles in the partial order are 123 and 124 whih must be in-luded. Next we have 125 and 134 whih are not omparable. 125is smaller (w.r.t. <p) than all the other triangles but four 123, 124,134 and 234. Sine we must have 8 triangles altogether 125 must beinluded. (Note that so far we have only used the fats that�(K) is shifted and has the same number of triangles as K.)� The triangle 134 is smaller than all the other triangles exept those ofthe form 12x. The �rst six of these inlude 127 whih annot be in�(K) sine �(K) is a simpliial omplex. So 134 2 �(K) as well. Asimilar argument applies to 135. If 135 62 �(K) then �(K) must beinluded in the simpliial omplex spanned by the triangles of the form12



12x together with 134 and 234. Again there are not enough triangles ofthis type. (Here we used that �(K) is a simpliial omplex.)� We will see below (Setion 3) that �(K) has the same Betti numbersas K. and that �2(�(K)) is the number of triangles in �(K)whih do not ontain '1'. Sine �2(K) = 1 and 234 is the �rsttriangle not ontaining 1 it must be inluded in �(K), and all othertriangles in �(K) must ontain 1. From this we an onlude that theshifted omplex also ontains 126. We would not have enough trianglesif this were not the ase. (Alternatively, we an use the fat that sineK is Cohen Maaulay, �(K) is pure (see Setion 4) and thereforeinludes a triangle ontaining '6' sine 126 is the �rst suh triangle itmust be inluded in the shifted omplex.)� It is left to deide whether 136 or 145 is inluded in �(K).We will see below that sine K is Cohen Maaulay �(K) is aswell and that this means that �(K) is a pure simpliial omplex.It is therefore left to deide whih of the edges 45 or 36 belongs to �(K).The answer is 36. It follows that the triangle 136 is inluded in �(K).What we need is the following fat: If G is a planar graph then�(G) does not ontain 45 (equivalently, �(G) does not ontaina omplete graph on 5 verties.)We do not have good oneptual explanation for this last propertyneither an we prove higher dimension analogs (see Setion 5.2 ). Itis equivalent to the fat that when you shift a maximal planar graphG, 36 is inluded in the shifted graph. For symmetri shifting it isequivalent to the fat that maximal planar graphs are generially rigidwhen embedded in spae (see Setion 2.7). (This follows, from theCauhy-Dehn-Alexandrov rigidity theorem for polyhedra.)To sum, �(K) (for both exterior and symmetri shifting) onsist of thepure simpliial omplex whose maximal faes are: 123, 124, 125, 126, 134,135, 136 and 234.2.5 Basi properties of algebrai shiftingWe will now list some basi properties of the operation K ! �(K).13



Theorem 2.1. Let A be a family of r-subsets of [n℄.1. jAj = j�(A)j.2. �(A) is shifted (see [16, 60℄).3. If A0 is ombinatorially isomorphi to A then �(A) = �(A0) (see[16, 60℄).4. If A is a shifted family then �(A) = A [60℄.5. For every nonsingular matrix X; �X(�(A)) = �(A) (this follows from4). It is possible that �(�X(A)) 6= �(A).6. �(A) depends only on the harateristis of k.The following Theorem relates shifting to several operations on familiesof sets.For a family A of k-sets the shadow of A, �(A), is a family of (k� 1)-setsde�ned by �(A) = fR : jRj = k � 1; R � S 2 Ag:De�ne a one over A as a family of (k+1)-sets of the form fS[fwg : S 2 Ag,where w =2 S for any S 2 A.Theorem 2.2. Let A be a family of k-subsets of [n℄.6. �(�(A)) � �(�(A)) [55℄.7. If L � A then �(L) � �(A).8. �(Cone(A)) = Cone(�(A)):Properties 1,4,6,7 and 8 hold for �X(K) for every non-singular matrixX. Properties 2 and 3 rely on the generiity of X.For ertain appliations it is enough to assume that X is in a generalposition whih means that all minors of the form X[r℄;R are not singular forevery r and R, with jRj = r.Property 5 is intriguing, and it leads to the following question:Problem 7. 1. What an be said about a family of shifted omplexes whihomprise the set of �X(K) for some �xed simpliial omplex K (when Xvaries)?2. For whih simpliial omplexes K is it the ase that if �X(K) is shiftedthen �X(K) = �(K)?2.6 How to shift?Problem 8. Is there a deterministi polynomial algorithm or at least a LasVegas polynomial algorithm for determining �(K)?14



A randomized algorithm is alled Monte Carlo when it depends on someinternal randomization and produes the right answer with a probabilitylarger then 1 � � but may give a wrong answer otherwise. (By repeatingthe algorithm the probability of failure an be redued to whatever level isdesired.) A Las Vegas algorithm is a superior type of randomized algorithmsine it never produes a wrong answer. It produes the right answer withprobability > 1� � but may fail to give any answer with probability < �.There is a simple Monte Carlo algorithm for �nding �(K): Choose theentries of the matrix M at random from a large �eld with the orret har-ateristis. If a non-shifted omplex is obtained then this is not the orretanswer. But it is possible (with low probability) that you will obtain aninorret shifted omplex.2.7 Shifting of graphs and framework rigidityConsider a graph G =< V;E > with n verties and e edges. An embeddingof G into Rd is a map � : V ! Rd . Assume that V = [n℄ and put xi = �(i).An embedding � is rigid if any perturbation of the embedded vertieswhih preserves all distanes between adjaent verties is indued by a rigidmotion of Rd . The embedding is in�nitesimally rigid if every assignmentof veloity vetors vi 2 Rd to the verties, whih satis�es < vi � vj; xi �xj >= 0 whenever i; j are adjaent verties, must satisfy the same relationfor every two verties. The graph G is generially d-rigid if it is rigid foralmost all embeddings in Rd or equivalently if it is in�nitesimally rigid forall embeddings into Rd .G is generially d-rigid if and only if fd; ng 2 �symm(G). No determin-isti (or even Las Vegas) polynomial algorithm for determining if a graphis generially d-rigid is known for d > 2. fd; ng 2 �ext(G) is a related butdi�erent property of graphs alled \hyperonnetivity", [56℄.It is worth mentioning that shifted graphs are alled threshold graphsand they have been studied extensively [66℄.2.8 Finer and oarser invariantsStart with a simpliial omplex K and its exterior fae algebra VK. (Thefollowing applies to the symmetri ase as well.) For a generi n by n matrixwe an onsider the following invariants of K.1. The ring V(K). 15



2. The symmetri matroid M(K) determined by ^(K).3. The ranks of shifted families of sets in the matroid M(K).4. �(K).5. The f -vetor of K (or equivalently the Hilbert series of V(K)).We will elaborate on the new items 2 and 3.The symmetri matroid M(K) is a matroid de�ned on subsets of [n℄ sothat the rank of a olletion of subsets S1; S2; : : : Su is the dimension of thevetor spae spanned by efS1 ; efS2; : : : efSu in V(K). This matroid is invariantunder permutations of [n℄. It seems to yield very �ne yet quite intratableinformation on K.If we restrit our attention to the ranks of shifted families of sets inthis matroid we loose some information but are still able to determine theoutome of shifting with respet to any term order. This seems to be moretratable and yet to arry muh information on K and its fae algebra.2.9 Shifting subspaes and deompositions of G(Vk V;m)The de�nition of algebrai shifting an be applied to an arbitrary subspaeof Vk V . Given an m-dimensional subspae M of Vk(V ), onsider the familyof subsets �X(M). There are two ases of partiular interest: in one X isthe identity matrix while in the other X is a generi matrix. For a vetorspae W let G(V;m) denote the spae of m-dimensional subspaes of W .De�ne two deompositionsD and E ofG(Vk V;m) as follows: For a familyF of k�subsets of [n℄ suh that jFj = m, let UF be the set of m-dimensionalsubspaes M of Vk V that satisfy �I(M) = F . Let D be the deompositionof G(Vk V;m) into the sets UF . The parts of D are indexed by k-uniformhypergraphs with m-edges. For k = 1, D is simply the standard Shubertdeomposition of G(V;m). More generally, D is the Shubert deompositionof G(Vk V;m) with respet to the standard basis feS : S 2 �[n℄k �g ordered bythe lexiographi ordering on �[n℄k �.Similarly, for a shifted family F � �[n℄k �,jFj = m, let WF be the setof m-dimensional subspaes M of Vk V suh that �X(M) = F . E is thedeomposition of G(Vk V;m) into the sets WF . In this ase, the parts of Eare indexed by shifted k-uniform hypergraphs with m edges.Note that GL(V ) ats on eah of the parts of the deomposition E . Fork = 1, E onsists of only one part, i.e. the entire G(V;m). (It orresponds to[m℄ the only shifted family of singeltones of sizem.) If a generi matrixX an16



be found with entries in the �eld k itself (e.g. for the �elds of real or omplexnumbers), then E an be regarded as the deomposition of G(Vk V;m) givenby the orbits of the ells in D under the ation of GL(V ).2.10 How many deomposable elements are there?Suppose now that V is a vetor spae over a �eld with q elements and U is anm-dimensional subspae of Vk V . Let f(U) be the number of deomposableelements in U or, in other words, the number of k-dimensional subspaes Wof V suh that fW 2 U . (Here, fW is the exterior produt of vetors in abasis of W .)Problem 9. 1. Show that f(U) does not derease under shifting.2. Show that given m, f(U) is a maximum when U is spanned by aninitial set of m basis vetors with respet to the reverse lexiographi order.3 Algebrai shifting and homology3.1 Simpliial homology and ohomologyLet K be a simpliial omplex and let Hk(K) and Hk(K) be respetively thek-th (redued) homology group and the k-th (redued) ohomology group ofK with oeÆients in the �eld k. Hk(K) and Hk(K) are k-vetor spaes ofthe same dimension. This dimension is alled the k-th Betti number of Kand is denoted by �k(K). The ohomology of K has the following simpleexpression in terms of the exterior fae algebra V(K). Let f = e1 + e2 +� � �+ en. De�ne Zk(K) = fx 2 k̂ (K) : f ^ x = 0g; (3.1)Bk(K) = f ^ k�1̂(K) (3.2)and Hk(K) = Zk(K)=Bk(K): (3.3)In other words, Hk(K) is the k-th ohomology of the hain omplexC�(K) = (V(K); Æ), where the oboundary Æ is given by Æ(m) = f ^m.
17



3.2 The homotopy type of shifted omplexesShifted simpliial omplexes are homotopially quite simple. They are alwayshomotopially equivalent to a wedge of spheres (possibly of di�erent dimen-sions). It follows that the homology has no torsion and that the ohomologyring is trivial. These properties hold for a larger lass of simpliial omplexesthat we will now de�ne.A simpliial omplex L is a near one (with apex '1') if for every S 2 Land i > 1; i 2 S, (Snfig[f1g) 2 L. Near ones are homotopially equivalentto wedge of spheres. For a simpliial omplex L on the vertex set [n℄, de�nebi�1(L) =: jfS 2 L : jSj = i; S [ f1g =2 Lgj: (3.4)Lemma 3.1 ([16℄). Let L be a near one. Then:(1) bi(L) = �i(L).(2) L is homotopially equivalent to the wedge of spheres: bi(L) i-dimensionalspheres, i � 0.3.3 Shifting preserves the Betti numberA fundamental property of algebrai shifting [16℄ is:Theorem 3.2. �k(K) = �k(�(K)); for every k � 0: (3.5)The proof of Theorem 3.2 given in Bj�orner and Kalai [16℄ onsists of aombinatorial way to read �k(K) from �(K):�i(K) = bi(�(K)): (3.6)The assertion of Theorem 3.2 an also be proven for symmetri shifting.The relation �i(K) = bi(�(K)) holds whenever all entries of f1 are non-zero. �(K) is a near one if f1 is generi.3.4 Weighted oboundariesWe will mention just one omponent of the proof of Theorem 3.2. Let f =a1e1 + � � �anen be an arbitrary vetor in E and onsider the hain omplexC�f (K) = (V(K); Æf ) where the oboundary Æf is given by Æf(m) = f ^ m.18



If all the ai's are non-zero then the dimensions of the ohomology groupsof C�(K) and C�f (K) are the same. This an be seen by the hain mapD : C�(K)! C�f (K), de�ned by the relation D(eeS) =Qfai : i 2 SgeeS. Theproof of theorem 3.2 uses weighted ohomology aording to the �rst basiselement f1 of the generi basis used in the de�nition of algebrai shifting.The fat that symmetri shifting preserves the Betti numbers of a omplexK is related to the following way for expressing them: Let Ri(K) the partof the Stanley-Reisner ring spanned by monomials of degree i. ConsiderbRi(K) = Ri(K)=span < y1; : : : ; yi�1 > and de�ne Æ : bRi(K) ! bRi+1(K)by Æ(m) = yi+1m. Note that Æ(Æ(m)) = 0. This is an unusual oboundaryoperation whih expresses the usual Betti numbers.3.5 Some problems3.5.1 Non-generi shiftingLet K be a triangulation of a topologial spae X. Suppose that K has nverties and onsider �M (K) where M is an n by n matrix. When M is theidentity matrix, then �M (K) = K; when M is generi, �M (K) is a wedgeof spheres with the same Betti numbers as K and in addition the links of allfaes are a wedge of spheres. What happens in between these two extremeases? What an be said about the homotopy type and topologial propertiesof the \intermediate" simpliial omplexes �M(K)?Problem 10. � (1) What an be said about the omplexes �M (K) whereM varies over all n by n matries.� (2) What an be said about the topologial spaes of the form j�M(K)jwhere K varies over all triangulations of a spae X and M varies overall matries?� (3) What an be said about the homotopy type of topologial spaesof the form �M (K) where K varies over all triangulations of a givenhomotopi type and M varies over all matries?� (4) Given a group G, what an be said about the groups �(�M(K))where K varies over all simpliial omplexes with �(K) = G and Mvaries over all matries?Note that the four parts of this problem orrespond to some (pre-)orderrelations de�ned on simpliial omplexes, (triangulable) topologial spaes,19



homotopy lasses of topologial spaes and �nitely generated groups. Forexample, for two topologial spaes X and Y we will say that X � Y if forsome triangulation of X and some matrix M , �M(X) is homeomorphi toY . The smallest elements in these orders are respetively: shifted simpliialomplexes, sequentially Cohen-Maaulay spaes (see Setion 4.5), wedges ofspheres and free groups. What an be said about these order relations?3.5.2 Relative homologyArt Duval [31℄ proved that exterior algebrai shifting "inreases relative ho-mology", that is �i(�(K);�(L)) � �i(K;L): (3.7)whereK and L are simpliial omplexes and � is the redued relative Bettinumber. Reently, Tim R�omer found a simple proof and various extensionsfor this result.Problem 11 (Bj�orner). For whih K, L, and i is (3.7) an equality?Duval [32℄ also studied algebrai shifting and spetral sequenes.3.5.3 ProdutsFor two simpliial omplexes K and L, let K � L denote their join. Assume(possibly after renaming the verties) that V (K) and V (L) are disjoint andde�ne K � L = fS [R : S 2 K and R 2 Lg:Problem 12. Show that �(K � L) = �(�(K) ��(L)).It is true that �X(K � L) = �(K) � �(L): For a matrix X whih haszeros for entries (u; v) where u 2 V (K) and v 2 V (L) and generi entriesotherwise. Hene �(�X(K � L)) = �(�(K) ��(L)).3.5.4 Mayer-VietorisProblem 13. Given two omplexes K and L �nd the possible relations be-tween �(K);�(L), �(K [ L) and �(K \ L).If C and D are simpliial omplexes on disjoint sets of verties, thenit seems true and possibly not diÆult to demonstrate that �(C [ D) =�(C) t�(D). 20



The (unusual) operation KtL is de�ned indutively as follows: If K andL are 0-dimensional, then K t L is their disjoint union andK t L = 1 � (lk(1; K) t lk(1; L)) [ ast(1; K) t ast(1; L):Here, for a fae S of a simpliial omplex K, the anti-star ast(S;K) =: fR 2K : R \ S = ;g:3.5.5 Further relations to algebrai topologyThe Dolt-Thom onstrution of a topologial spae X is a new topologialspae Y = DT (X) whih satis�es �i(Y ) = Hi(X) for i = 1; 2; : : : . If Kis a simpliial omplex desribing X, DT (X) an be desribed as the union[M�M(X) over all matries.Problem 14. Find onnetions between algebrai shifting and other onstru-tions in algebrai topology suh as omplexes of di�erential forms de�nedon a simpliial omplex, minimal models (due to Sullivan and others), theDolt-Thom onstrution, et. Can algebrai shifting be de�ned for singularhomology or de-Rahm homology rather than simpliial homology?Problem 15. Is there a useful notion of algebrai shifting of maps betweensimpliial omplexes? Is algebrai shifting a funtor of any kind?Problem 16. Can algebrai shifting be axiomatized?3.5.6 Duality and omplementationLet K be a simpliial omplex and let Kdual be its Alexander dual (alsoknown as the bloker of K). Thus,Kdual = fS � V (K) : (V (K)nS) =2 Kg:It is not hard to show that�(Kdual) = (�(K))dual:For a family A � �[n℄k � let A be the omplement of the family, namelyA = �[n℄k �nA. �(A) does not in general determine �(A).Problem 17. Given �(A), what an be said about �(A)?21



Note that �(K) determines the algebrai shifting of A with respet tothe reverse lexiographi order. More generally, let < be a total ordering of�[n℄k � whih extends the partial order and let <0 be the reverse order to <obtained by 1) reversing the order relation and 2) reversing the role of i andn� i. Then by shifting the omplement of A with respet to <0 and replaingi by n� i the omplement of shifting A with respet to < is obtained.3.5.7 Baryentri and other subdivisionsThe next problem is related to the disussion in Setions 4 and 5.Problem 18. 1. Let K be a subdivision of another omplex L. What is therelation between �(K) and �(L)?In partiular, it would be useful to �nd a shifting theoreti interpretationfor Stanley's loal h-vetor theory [75℄.2. What an be said about �(b(K)) where b(K) is the baryentri sub-division of K?4 Around Cohen-Maaulay4.1 Shifting preserves the Cohen-Maaulay propertyWe have seen that algebrai shifting seems to \forget" all the homotopi-al information onerning a spae K exept the Betti numbers themselves.However, other important topologial properties are preserved under shifting.Problem 19. Understand how various topologial properties of a simpliialomplex are manifested in terms of the shifted omplex. In partiular, whihtopologial properties are preserved under shifting?One suh property is the Cohen-Maaulay property whih originated inommutative algebra. A pure d-dimensional simpliial omplex K is Cohen-Maaulay if for every fae S of K (inluding the empty fae), Hi(lk(S;K)) =0 when i < dim lk(S;K).Theorem 4.1. If K is Cohen-Maaulay then so is �(K).The Cohen Maaulay property has a simple desription in terms ofGIN(K).Let K be a (d� 1)-dimensional simpliial omplex and onsider the set B ofmonomials m in the variables yd+1; yd+2 : : : in GIN(K). B is a �nite shifted22



ordered ideal of monomials in the variables yd+1; yd+2; : : : , and GIN(K) isdetermined from B by the rule:GIN(K) = fm �m0 : m 2 B; m0 is an arbitrary monomial in y1; : : : ydg(4.1)Relation 4.1 haraterizes Cohen-Maaulay simpliial omplexes, it fol-lows easily from the ring-theoreti de�nition for Cohen-Maaulayness [76℄.4.2 The theorems of Bayer, Charalambous & Popesuand Aramova & HerzogOne an ask whih data on the Betti numbers of omplexes and their links(or indued subomplexes) is preserved under shifting. (Note that unlikeCohen-Maaulayness, whih is a topologial property these onditions are notusually topologially invariant.) The reent results by Bayer, Charalambous& Popesu and by Aramova & Herzog go a long way in this diretion.Theorem 4.2. Let K be a simpliial omplex. Assume that�k(lk(T;K)) = 0;whenever jT j = t < j and i � k � i + (j � jT j). Then also�k(lk(T;�(K)) = 0;whenever jT j = t < j and i � k � i + (j � jT j), and the quantityXjSj=j �i(lk(S;K))is preserved under shifting.This theorem follows from a theorem of Bayer, Charalambous and Popesu(BCP) for symmetri shifting. To derive it from BCP's theorem one has torely also on a theorem by Aramova, Herzog and Hibi [7℄ whih asserts thatthe generi initial ideal and the symmetri shifted ideal have the same gradedBetti numbers. Theorem 4.2 was proved by Aramova and Herzog (AH) forexterior shifting. (Aramova and Herzog also presented another proof for thesymmetri ase.) 23



Remark: The original formulations and (the only known) proofs arering-theoreti and will not be disussed in this paper. The relations betweenertain ring-theoreti properties between the lassial fae rings and theirexterior analogs is one of the interesting aspets of these results. To movefrom the original formulation to the one presented here one must rely onAlexander duality and Hohester's theorem [76℄, p. 60.A omplex K is d-Leray if the Betti numbers of K and all its links vanishat and above dimension d. Theorem 4.2 implies many of the earlier applia-tions of shifting:� Shifting preserves Betti numbers.� Shifting preserves the Cohen-Maaulay property.� Shifting preserve the d-Leray property.� The property that K and all links of verties of K are ayli is pre-served under shifting. (It follows that �(K) is a double one.)Remark: It is not hard to see (although it has been overlooked for along time) that the lass of d-Leray omplexes (for some d) with omplete(d � 1)-dimensional skeletons is preisely the Alexander dual of the lassof Cohen-Maaulay omplexes. This observation implies that the fat thatshifting preserves the Leray property easily follows from the fat that shift-ing preserves the Cohen-Maaulay property. Moreover, it shows that theharaterization of fae numbers of d-Leray omplexes follows from the or-responding haraterization for Cohen-Maaulay omplexes.4.3 Iterated ohomology groupsIterated ohomology groups are de�ned by suessively applying r generiweighted oboundary operators. There are several variations and the readeris referred to Duval and Rose [27℄ whih introdues one suh variation anddesribes appliations for non-pure shellability.Let K be a simpliial omplex with n verties and let V(K) be its faealgebra as de�ned in the previous setion. Let f=(f1; f2; � � � ; fn) be a �xedbasis, with oeÆient matrix X, in general position in E. De�ne f[r℄ =f1 ^ f2^; � � � ;^fr and Fr = spanff1; f2; � � � ; frg. De�ne the r-th iteratedohomology group of K, Hk[r℄(K), as follows:24



Hk[r℄(K) = Zk[r℄(K)=Bk[r℄(K); (4.2)where Zk[r℄ = fm 2 k̂ (K) : f1 ^ f2 ^ � � � ^ fr(m) = 0g; (4.3)and Bk[r℄ = spanfFr ^ k�1̂(K)g: (4.4)Problem 20. Find relations between iterated homology groups and more stan-dard notions of algebrai topology and/or ommutative algebra and, in par-tiular, loal ohomology.Problem 21. Can the theorems of Bayer, Charalambous & Popesu andAramova & Herzog be further extended by replaing Betti numbers withthe dimensions of ertain iterated homology groups?Theorem 4.3.dimHk[r℄(K) = jfS 2 �(K) : S \ [r℄ = ;; S [ [r℄ =2 �(K)gj: (4.5)Proof: De�ne Ark = fS � [n℄ : jSj = k + 1; [r℄ \ S 6= ;g. First note thatBk[r℄(K) = eFr ^ Vk�1(K) = spanf efS : S 2 Arkg. Sine Ark is initial w.r.t.the lexiographi ordering <L, it follows that f efS : S 2 �(K) \ Arkg is abasis of Bk[r℄(K) = spanf efS : S 2 Arkg.Now, let S1; :::; Su be the sets in �k(K)nArk ordered lexiographially andlet Ut = span(Bk[r℄(K) [ ffS1 � � � fStg):Let It = ef[r℄^Ut. Thus, I0 = f0g and It+1 = span(It [ ef[r℄^ efSt+1). It followsthat It+1 = It i� [r℄ [ St+1 =2 Vk+r(K). Therefore,dimZk[r℄(K)� dimBk[r℄(K) = jfS 2 �k(K) : S \ [r℄ = ;; S [ [r℄ =2 �(K)gj:Corollary 4.4. If �(K) is shifted thenHk[r℄(K) = Hk[r℄(�(K)): (4.6)Proof: This follows from the fat that �(D) = D for a shifted family D.25



4.4 Collapsing and ShellingLet K be a (d�1)-dimensional simpliial omplex. A fae S in K is free if itis inluded in a unique maximal fae M . If jSj = k and jM j = m we say thatS is of type (k;m). A (k; l)-ollapse step is the deletion from K of a free faeof type (k; l) and all faes ontaining it. K is ollapsible if it an be reduedto the void omplex by a sequene of (i; i�1)-ollapse steps. A (k; d)-ollapsestep is alled a shelling step of type k. K is shellable if it an be reduedto the void omplex by suessive appliations of shelling steps. Collapsibleomplexes are ayli while shellable omplexes are Cohen-Maaulay. It wasproved by Bruggeser and Mani that the boundary omplex of every simpliialpolytope is shellable.Theorem 4.5. Let K;K 0 be simpliial omplexes suh that K 0 is obtainedfrom K by a ollapse step of type (i; d) for some i. Then the inlusionmap indues an isomorphism between Ha[b℄(K) and Ha[b℄(K 0) for every a; b;a+ b < d.(The proof is similar to the proof of Theorem 5.4 in [55℄.)Theorem 4.6. If K 0 is obtained from K by a ollapse step of type (k; r) then�(K 0) is obtained from �(K) by a ollapse step of the same type.Corollary 4.7. Let K be a shellable (d� 1)-dimensional simpliial omplex.Then Hk�1[d� k℄(K) = 0 for every k � 0.The e�et of ollapsing and shelling on iterated homology groups wasruial for some of my earlier proofs whih used algebrai shifting. To showthat Cohen-Maaulay is preserved under exterior shifting I needed to showvanishing of the same iterated ohomology groups that appear in the Corol-lary 4.7 but in a di�erent way: �rst, show that they are preserved undersubdivisions, then prove a nerve theorem using a Mayer-Vietoris long exatsequene and �nally use the nerve theorem on good overs of the subdividedomplex.4.5 Sequential Cohen-MaaulaynessBj�orner and Wahs [19, 20℄ de�ned shellability for non-pure omplexes andStanley [76℄, p. 87 desribed the ommutative algebra ontent of this notionand de�ned the notion of sequentially Cohen-Maaulay rings and omplexes.26



All shifted simpliial omplexes are (non-pure) shellable and hene sequen-tially Cohen-Maaulay. Duval and Rose [27℄ showed that ertain ombina-torial invariants of (non-pure) shellable simpliial omplexes are preservedunder shifting and have simple interpretation in terms of ertain iterated ho-mology groups. Duval [29℄ studied algebrai shifting for sequentially Cohen-Maaulay omplexes and showed how ertain homologial invariants of theirfae-rings are preserved under shifting.4.6 Combinatorial deompositionWhile ollapsible simpliial omplexes are ayli, the onverse is far frombeing true. Is there a natural ombinatorial property suh as ollapsibilitythat all ayli omplexes satisfy? Note that ollapsing K yields a mathingbetween k-faes (the free faes) and k + 1-faes (the maximal faes). It isnot diÆult to show that suh a mapping exists for arbitrary ayli (or evenQ -ayli) omplex. Following is a very general onjeture in this spirit.Let D be a shifted simpliial omplex. An elementary ollapse step D!D0 = Dn[F;G℄ is shifting preserving if D0 is shifted. A shifting preservingollapse of D is a ollapsing of D to the void omplex via shifting preservingelementary ollapse steps.Conjeture 22. 1. Let K be a simpliial omplex suh that �(K) = D.Let D = [F1; G1℄ [ [F2; G2℄ [ � � � [ [Ft; Gt℄ be the representation of D as aunion of intervals given by a shifting preserving ollapse of D. Then thereis a deomposition of K into disjoint intervals of the form K = [A1; B1℄ [[A2; B2℄ [ � � � [ [At; Bt℄ suh that dimAi = dimFi and dimBi = dimGi.2. Moreover, it is possible to �nd suh a deomposition suh that [[Ai; Bi)is a simpliial omplex and, more generally, suh that the union of [Ai; Bi℄ n Topj([Ai; Bi℄)is a simpliial omplex for every j. Here for an interval I of faes, Topj(I) isthe sets in the highest j-levels.This onjeture extends earlier theorems by the author, by Stanley andby Duval, (see [28℄) and various earlier onjetures inluding a deompositiononjeture for Cohen-Maaulay omplexes formulated by Garsia and Stanley[76℄, p.85. Duval and Zhang [34℄ used iterated homology groups to �nd a verygeneral deomposition theorem whih is not as strong as the onjetured one.Another notion of deomposability is given by ombinatorial Morse theory[42, 43℄. 27



5 Beyond the Cohen-Maaulay property5.1 Polytopes, spheres and Gorenstein� omplexesThe only shifted omplex whih is a triangulated sphere (or even a manifoldwithout boundary) is the boundary of a simplex. While being a triangulatedsphere is not preserved under shifting, an we still say something aboutshifting of triangulated spheres? We will onsider the more general lass ofGorenstein� omplexes.A pure d-dimensional simpliial omplexK is Gorenstein� if for every faeS of K (inluding the empty fae), Hi(lk(S;K)) = 0 when i < dim lk(S;K)and dimHi(lk(S;K)) = 1 when i = dim lk(S;K). Being a Gorenstein� om-plex manifests a profound duality relation for the fae ring ([76℄).Conjeture 23. Let K be a (d�1)-dimensional Gorenstein� omplex. Let Hkbe the set of monomials in GIN(K) in the variables yd+1; yd+2; : : : . Thenthe map m! yd�2kd+1 �m (5.1)is a bijetion between Hk and Hd�k.Conjeture 23 is known for simpliial polytopes where it follows from thehard-Lefshetz theorem for tori varieties. It implies that the harateriza-tion of f -vetors of simpliial polytopes (the g-theorem) applies to arbitraryGorenstein� omplexes. But it will give more than a omplete desription off -vetors (or Hilbert series) of Gorenstein� omplexes. In addition, it willprobably yield a omplete desription of their generi initial ideals.For a (d � 1)-dimensional Gorenstein� simpliial omplex K let U(K)be the set of all monomials in GIN(K) whih involves only the variablesyd+2; yd+3; : : : . Assuming Conjeture 23, U = U(K) is a shifted ideal ofmonomials of degree at most [d=2℄ in the variables yd+2; yd+3; : : : and theshifted omplex (or GIN(K)) of K is determined by U(K). (Sine K isCohen-Maaulay the set B of monomials in yd+1; yd+2; : : : in GIN(K) de-termines GIN(K) (relation (4.1)). Conjeture 23 implies that U determinesB.)On the other hand for every shifted ideal of monomials U of degree atmost [d=2℄ in the variables yd+2; yd+3; : : : , a simpliial (d � 1)-sphere S(U)(alled a squeezed sphere) was onstruted in [59℄.Problem 24. Show that U(S(U)) = U .28



The fat that squeezed (d� 1)-dimensional spheres are the boundary ofd-balls with the same [d=2℄-skeleton may help to settle this problem.Regarding fae numbers we believe that there is no di�erene betweensimpliial spheres and simpliial polytopes. However, this annot be the asefor the shifted omplex simply beause there are far too many hoies for U .Problem 25. If K is the boundary omplex of a simpliial d-polytope, thenwhat more an be said about �(K) (or equivalently about U(K))? Is it truethat representability as a simpliial polytope is preserved under squeezing?Namely if K is polytopal, is S(U(K)) polytopal as well?Note that although shifting does not preserve the Gorenstein� property,we an derive (assuming that our onjetured piture is true) another shifting-like operation whih assoiates to every Gorenstein� omplex K a new suhomplex K 0 = S(U(K)). This new omplex is always a simpliial sphere andGIN(K) = GIN(K 0). It would be interesting to understand this operationon the ring-theoreti level.5.2 Shifting and EmbeddabilityWe will desribe now a shifted simpliial omplex whih will play a ruialrole in this setion. Let �(d; n) be the pure (d � 1)-dimensional omplexwhose set of verties is [n℄ = f1; 2; : : : ; ng and whose maximal faes are setsS � [n℄; jSj = d whih satisfy k =2 S ) [k + 1; d� k + 2℄ � S. Let �(d) bethe union of �(d; n) for all n. Note that �(d; n) is the restrition of �(d) tothe �rst n verties.De�ne GIN(d) to be the inverse image of �(d) under the operation thattransform GIN to �symm. GIN(d) is the shifted order ideal of monomials iny1; y2; : : : whih does not ontain the monomials yd�2i+1d+1 yid+2; i = 0; 1; : : : .Theorem 5.1. [61℄ If K is the boundary omplex of a simpliial polytopethen �symm(K) � �(d) or equivalently GIN(K) � GIN(d).Let C(d; n) be the boundary omplex of the yli d-dimensional polytopewith n verties.Proposition 5.2. �(d; n) = �symm(C(d; n)) (5.2)This result probably holds also for exterior shifting. The relation�(K) � �(d) (5.3)29



is referred to as the shifting-theoreti upper bound relation sine it immedi-ately implies (although it is muh stronger) the upper bound theorem for faenumbers of simpliial spheres and related stronger ombinatorial results. See[61, 63℄.Problem 26. Understand the sope of the shifting-theoreti upper boundrelation.A proof of the shifting-theoreti upper bound relation for simpliial spheresor for Gorenstein� omplexes will lead to a omplete desription of theirshifted omplexes (and hene their f -vetors) beause of the following sim-ple ombinatorial result.Proposition 5.3. The assertion of the shifting-theoreti upper bound theo-rem for a Gorenstein� omplex K is equivalent to the assertion of Conjeture23 for K.The next onjeture links the shifting-theoreti upper bound relation toembeddability.Conjeture 27. Let K be a simpliial omplex with n verties suh that jKjan be embedded in Sd�1. Then �(K) � �(d). Equivalently, �(K) doesnot ontain any of the sets Td�1 : : : T[d=2℄ whereTd�j = fk + 2; k + 3; : : : ; d� k; d� k + 2; : : : ; d+ 2g: (5.4)Equivalently, GIN(K) does not ontain any of the monomialsyd�2i+1d+1 yid+2; i = 0; 1; : : : : (5.5)Conjeture 27 was stated independently by Sarkaria and by me. Sarkariaproposed in order to prove it, to relate the Van-Kempen obstrutions toembeddability [79℄ for a omplex to those for the shifted omplex.Conjeture 28. Let X be a 2r-dimensional simpliial omplex. If �2r+2r , the r-dimensional skeleton of a (2r+2)-dimensional simplex, annot be embeddedin X then it annot be embedded in �(K) for every triangulation K of X.One diÆulty that we fae in trying to relate shifting with embeddabilityis that there is a di�erene between the role of the graphs K5 and K3;3. For agraph G not to ontain a topologial K5 is preserved under shifting but thisis not the ase for K3;3. It appears that we need a oarser obstrution forembeddability (for graphs into R2 and generally for r-dimensional omplexesinto R2r ) whih will be non-trivial for K5 and trivial for K3;3.30



Conjeture 29. Let K be a pure (d� 1)-dimensional simpliial omplex. As-sume that for every fae S 2 K (inluding the empty fae) with dimlk(S;K) =2r, �2r+2r annot be embedded into lk(S;K): (5.6)Then �(K) � �(d).We will ome bak to related problems in Setion 5.6 below. Note thatrelation (5.6) for r = 0 asserts that every fae of K of dimension d � 2 isinluded in at most two maximal faes.5.3 Can we trae intersetion homology?Intersetion homology [46, 47℄ is de�ned for strati�ed pseudomanifolds (wewill only onsider triangulated pseudomanifolds) based on numerial sequene(p2; p3 : : : ) alled perversity.Problem 30. Find an interpretation of intersetion ohomology of a pseudo-manifold K in terms of the fae rings of K and in terms of algebrai shifting.There are several reasons to think that suh a desription is feasible: Thebehavior of intersetion homology under forming of a one and under suspen-sion is simple (see [22℄). The various intersetion homology groups redue tothe usual homology for manifolds and, as we shall see, in this ase the Bettinumbers manifest themselves in many di�erent ways in the shifted omplex.Finally, there is a ertain similarity between iterated homology groups of thetype disussed above and intersetion homology: If instead of restriting theyles and boundaries aording to the manner in whih they interset thelow-dimensional strata, we onsider similar algebrai-restritions (namely, wereplae the geometri strata by some generi subspaes of the exterior faealgebra) then we obtain similar objets to the iterated homology groups.5.4 Buhsbaum's omplexes and manifoldsA simpliial omplex K is Buhsbaum if for every vertex v; link(v;K) isCohen-Maaulay. (For the ommutative algebra de�nition of Buhsbaumrings see [76, 24℄. There are, in fat, several lasses of rings whih for Stanley-Reisner rings oinide with Stanley-Reisner rings arising from Buhsbaumomplexes.) In partiular, all triangulations of manifolds are Buhsbaum.Buhsbaum omplexes form a natural extension of Cohen-Maaulay om-plexes and while the property of being Buhsbaum is not preserved under31



shifting muh an be said about shifting of Buhsbaum omplexes. Theseresults are available urrently for symmetri shifting only (and only for har-ateristi 0).The following important properties of GIN(K) for a Buhsbaum omplexK were proved by Novik [69℄.Theorem 5.4 (Novik). Let K be a Buhsbaum omplex.� For i � d , if m is a monomial in fyi+1; : : : ; yng and my2i =2 GIN(K)then also myi =2 GIN(K). Let Bi be the set of these monomials m.� if m 2 Bi then m is a monomial in fyd+1; : : : ; yng� The number of monomials in Bi of degree r, r < i is �r�1i�1��r�1(K)Remark: Unlike the ase of Cohen-Maaulay omplexes, Theorem 5.4does not haraterize Buhsbaum omplexes. It would be interesting to un-derstand the ring theoreti properties whih orrespond to the properties ofGIN(K) desribed in Theorem 5.4 and espeially the following:Problem 31. 1. Consider fae rings of (d�1)-dimensional simpliial omplexes(or more general quotient rings of the ring of polynomials with n variables).In whih ases do we have the property that for a monomial m whih doesnot involve y1; : : : yi, my2i =2 GIN(K) implies myi =2 GIN(K)?2. What an be said about rings or omplexes where, for every i � d andm as above, myt+1i =2 GIN(K) implies myti =2 GIN(K)? (Note that for t = 0this is equivalent to the Cohen-Maaulay property and for t = 1 this followsfrom the Buhsbaum property.)Problem 32. (Stated vaguely.) Is there a way to identify every appearaneof �i in Bi?Isabella Novik made some progress in this diretion.Problem 33. 1. Prove the assertion derived from Theorem 5.4 for symmetrishifting of Buhsbaum omplexes for exterior shifting.2. Is being a Buhsbaum omplex an be desribed via the exterior faealgebra?
32



5.5 Conjetures onerning simpliial manifoldsWe start with the following problem:Problem 34. Given a triangulation K of a manifold with boundary what arethe relations between �(K) and �(�K)?There are some far-reahing onjetures onerning the algebrai shiftingof triangulations of manifolds with and without boundary. These an befound in [69℄, Conjetures 7.1 and 7.5(i). (The reader is referred to [69℄ formore details.)One of the motivating problem is the following:Problem 35. Understand Poinar�e duality for manifolds in terms of fae-ringsand algebrai shifting.In response, Conjeture 37 below, proposes a beautiful onnetion be-tween Poinar�e duality and the Dehn-Somerville relations via a far-reahingextension of the tori hard-Lefshetz theorem.Let me now desribe these onjetures in some details. The �rst onje-ture sharpen Theorem 5.4.Conjeture 36. Let K be a (d� 1)-dimensional triangulated manifold. Con-sider the set Ak of monomials m of degree k in GIN(K) in the variablesyd+2; yd+3; : : : yn suh that myd+1 =2 GIN(K). ThenjArj = �dk��k�1(K): (5.7)Let Hr denote the monomials of degree r in GIN(K) in the variablesyd+1; yd+2; : : : ; yn whih are not inluded in Ar. Now onsider the ase thatK is a manifold without boundary. It follows from Theorem 5.4 (whih relieson the fat that K is Buhsbaum) ombined with ombinatorial relations onthe Hilbert polynomial derived from the fat that K is a manifold (the Dehn-Sommerville relations) together with Poinar�e-duality that jHrj = jHd�rj.The following is a far reahing extension of Conjeture 23:Conjeture 37. 1. [Shifting-theoreti Poinar�e duality℄ Let K be a (d � 1)-dimensional simpliial manifold without boundary. For k < d=2 the mapm! myd�2kd+1 (5.8)is a bijetion between Hk and Hd�k.2. For an arbitrary (d� 1)-dimensional simpliial manifold K the set ofmonomials m � yd�2kd+1 for m 2 Hk ontains Hd�k.33



In partiular, when d�1 = 2r, Conjetures 36, 37 imply that the numberof monomials in GIN(K) of degree r + 1 in the variables yd+2; yd+3; : : : ispreisely �2r+1r � � �r(K).It follows from Conjeture 37 that if K is a simpliial (d�1)-dimensionalmanifold then the monomials yd�2i+1d+1 yid+2; i = 0; 1; : : : do not belong toGIN(K) with one exeption only: the monomial yr+1d+2 when d� 1 = 2r. Foran even-dimensional simpliial manifold K, if the middle Betti number of Kvanishes then yr+1d+2 =2 GIN(K) and K satis�es the shifting-theoreti upperbound relation.5.6 PseudomanifoldsWe will now onsider larger lasses of pseudomanifolds. A Witt spae is onein whih for every link of a proper fae, the middle perversity intersetionhomology vanishes. Towards the onnetion proposed in Setion 5.3 we makethe following onjeture:Conjeture 38. Let K be a triangulation of a Witt spae of dimension 2r.1.Let Ar+1 be the set of monomials m in GIN(K) of degree r + 1 in thevariables yd+2; yd+3; : : : . ThenjAr+1j = �2r + 1r � � dim IHr(K): (5.9)2. K satis�es the shifting-theoreti Poinar�e duality.3. If dim IHr(K) = 0 then K satis�es the shifting-theoreti upper boundrelation.However, it appears that these relations go beyond Witt spaes.Problem 39. (1) Let K be a (d � 1)-dimensional pseudomanifold with theproperty that for every proper 2r-dimensional link K 0,yr+12r+3 =2 GIN(K 0): (5.10)Then the shifting-theoreti Poinar�e duality is satis�ed!(2) If, in addition, K is odd-dimensional or if ondition (5.10) holdsalso for K itself then K satis�es the shifting-theoreti upper bound relation,namely, GIN(K) � GIN(d).The lass of pseudomanifolds whih satisfy ondition (5.10) for all properlinks appears to be an interesting extension of the lass of manifolds. By our34



onjetures this lass ontains the lass of triangulations of Witt spaes andthe lass of pseudomanifolds whih satisfy relation (5.6) for all proper linksof faes.6 Appliations and Connetions with Com-binatoris6.1 f-vetorsThe main appliation of algebrai shifting is in the study of f -vetors oflasses of simpliial omplexes. For a survey (from 1989) the reader is referredto [17℄. For a more reent survey of the 'state of the art' onerning f -vetorssee [14℄. Most of the results desribed in this paper were aompanied byappliations to f -vetors in the original papers. I will not disuss theseappliations in this paper.6.2 Combinatorial ShiftingIn their seminal paper [41℄ Erd�os, Ko and Rado desribed an operation on�nite set systems whih is now alled shifting. (In this paper we will use thename \ombinatorial shifting" (or: CS) to distinguish this operation fromalgebrai shifting.) The reader is referred to Frankl's survey artile [44℄.For a family A of k-subsets of [n℄ and two integers i; j, 1 � i < j � nde�ne a family Cij(A) = fCij(S) : S 2 Ag as follows: Cij(S) = S if eitheri 2 S or j =2 S. If i =2 S and j 2 S onsider R = S [ fignj. If R 2 A thenCij(S) = S but if R =2 A then Cij(S) = R.Every family A an be transformed into a shifted family �C(A) by sues-sive appliations of the operations A ! Cij(A). �C(A) depends, of ourse,not only on A but also on the order in whih the operations Cij(A) wereapplied.Problem 40. What are the relations between algebrai and ombinatorialshifting?Proposition 6.1. Let A be a family of r-subsets of [n℄. Let B = Cij(A)then for a generi n by n matrix X, the set of olumns in the matrix MX(A)indexed by sets in B is linearly independent.35



However, it is not always possible to realize �(A) by applying ombi-natorial shifting. For example, starting with the 10 triangles of the trian-gulation of the projetive spae with 6 verties, (mod 0) algebrai shiftingyields �(A) = fS 2 [6℄ : 1 2 Sg. However, f2; 3; 4g 2 �(A) for everyombinatorial shifting of A.6.3 Appliability of shiftingThere are (roughly) four types of behaviors in the appliation of shifting tothe study of a ombinatorial (or topologial) property:� The property is preserved under shifting and the situation for shiftedfamilies (omplexes) is simple.Examples are:1. What are the possible f -vetors of simpliial omplexes?2. What is the maximal size of an interseting family of subsets in �[n℄k �?3. What are the possible f -vetors of simpliial omplexes with presribedBetti numbers?For the �rst two examples ombinatorial as well as algebrai shifting anbe used (at present only exterior shifting works for the seond example). Thethird example requires algebrai shifting.� The property is preserved under shifting but the situation for shiftedfamilies (omplexes) is ompliated.For example: What is the maximum size of a family of k-subsets of [n℄suh that there are no t sets in the family whih are pairwise disjoint? Itis not diÆult to show that this property is preserved under shifting (eitheralgebrai or ombinatorial). The situation for shifted families is still an openquestion.� Showing that the property is preserved under shifting is hard but thesituation for shifted families (omplexes) is simple.Following is an example of suh a property: Chvatal onjetured thatwhen kr � (k � 1)n every family A � �[n℄k � with more than �n�1k�1� mustontain r sets whose intersetion is empty while the intersetion of eah r�1of the sets is not empty. (For r = 2 this is the theorem of Erd�os, Ko and36



Rado.) The hard part seems to show that shifting preserves the property.(For r = 2 this was the motivation for ombinatorial shifting.)(Embeddability questions that were onsidered above also fall into thisategory.)� The property is not preserved under shifting although shifting may stillbe useful.Two suh examples from ombinatoris, the Tur�an problem and the Erdos-Rado sunower onjeture will be disussed below. (We onsidered severalexamples earlier, suh as Buhsbaum and Gorenstein omplexes.)6.4 Interseting familiesInterseting families are of great interest in extremal ombinatoris. In thissetion we will show that if K is an interseting uniform set system then�(K) is as well.Let K � �[n℄k � and L � �[n℄l �. De�ne K ^ L = fS [ T : S 2 K; T 2L; S \ T = ;g.Theorem 6.2. �(K) ^�(L) � �(K ^ L).Proof: Let m1 2 M(K), m2 2 M(L) with i(m1) = S, i(m2) = Tand S \ T = ;. Note that M(K ^ L) = M(K) ^ M(L). Now, m1 =fS +Pf�RfR : R <L Sg, m2 = fT +Pf�RfR : R <L Tg and thereforem1 ^ m2 = fS[T +Pf�R�R0fR[R0 : R <L S;R0 <L T;R \ R0 = ;g. Thus,i(m1 ^m2) = S [ T .Corollary 6.3. If K is interseting then �(K) is as well.Remarks: 1. If K has the property that among every t members of Kthere are two with intersetion of ardinality of at least m, then the sameproperty holds for �(K). A similar proof applies.2. Note that the proof did not rely on the term order being used. In thisrespet shifting preserves interseting families in a very strong sense.3. The maximal number of sets in an interseting family of subsets of sizek from [n℄ is �n�1k�1� when n � 2k. This is also the maximal number of k-setswhih do not support a (k � 1)-dimensional yle. Is there any onnetion?We do not know of any for general hypergraphs. For H not to support a37



(k� 1)-dimensional yle is equivalent to the property that all sets in �(H)ontains '1'. This is false in general for interseting families.It appears, however, that ompletely balaned (that is k-olorable) in-terseting k-uniform hypergraphs indeed do not support k-dimensional ho-mology and that this follows from an extension of algebrai shifting to theompletely balaned ase.6.5 Extremal ombinatoris: the sunower onjetureI had high hopes for appliations of algebrai shifting in extremal ombina-toris. So far, there is no real evidene to justify them.A olletion of sets is alled a Delta System or a sunower if every elementthat is ontained in at leasy two of them is ontained in all of them.Problem 41 (Erd�os and Rado Delta System Conjeture). There exists a on-stant Cr depending on r suh that every olletion F of k-sets without aDelta System of size r has at most Ckr members.We will only onsider the important ase r = 3. Consider the simpliialomplex K spanned by family F of k-sets without a Delta System of sizethree. Reall that K is ompletely balaned if we an olor its verties withk olors suh that the verties of every maximal fae represent all the olors.It is easy to see that K ontains a ompletely balaned subomplex whihontains at least (1=e)k k-sets from F . Therefore, there is no loss of generalityfor the Delta System onjeture to assume that K is ompletely balaned.(This fat was pointed out to me by Je� Kahn.)We would have liked to be able to prove the following hain of implia-tions:1 For every fae S 2 K, lk(S;K) does not ontain three disjoint sets.2 For every fae S 2 K, �ext(lk(S;K)) does not ontain three disjointsets3 For every fae S 2 K, all maximal sets in �ext(lk(S;K)) ontain either'1' or '2'.4 The monomials efS, where S ranges over all k-subsets of [2k℄, is a span-ning set for Vd(K). 38



The �rst property is a reformulation of the fat that the family ontainsno Delta System of size three. The impliation of 2 from 1 follows from theresults of the previous setion. While 2 does not imply 3 in general, we expetthis impliation to hold if the omplex K is ompletely balaned. To proveit algebrai shifting for ompletely balaned omplexes should be developed.The move from 3 to 4 has a similar avor to that of the general theoremsof Aramova and Herzog. Their methods may apply. However, 3 should stillbe enfored by additional homologial properties implied by the Delta Systemondition. Property 4 would imply that C3 � 4e (< 12).6.6 The Tur�an problemThe T�uran problem an be formulated as follows: What is the smallestnumber of square free monomials of degree r whih span (i.e. the idealgenerated by them ontains) all square free monomials of degree t? Or in theususal formulation: what is the minimum size of an r-uniform hypergraphwithout an independent set of t verties?The situation for r = 2 is ompletely explained by a theorem of Tur�anand the situation for r > 2 is almost entirely not understood. We will mainlybe interested in the ase r = 3; t = 4.A shifting theoreti approah to the (4,3) ase of Tur�an's problem wasproposed in [57℄. Sine then, re�nements of the onjetures have been for-mulated. A omputer was used to test the onjetures for hypergraphs witha few verties and for some examples of Kostohka and no ounter exampleswere found. But overall, there has been no real progress in this diretion.6.7 The lique omplex of a graphThere is a very interesting \shifting"-type question related to Tur�an's theo-rem for graphs. Consider a graph G with n verties and the omplex of itsomplete subgraphs K(G). (In this ase, the ideals used in the de�nitionof the various fae rings for K(G) are quadrati, i.e., they are generated bydegree two polynomials.) Let  be the size of the maximal omplete subgraphof G.Consider n generi degree-one elements f1; : : : f2 and divide them into parts A1; A2; : : : ; A whose sizes are as equal as possible. Consider the set Uof all monomials efS in V(K(G)) suh that jS \ Ajj � 1 for every j.Conjeture 42. U span V(K(G)). 39



This onjeture is a shifting-theoreti extension of Tur�an's theorem whihasserts that the number of edges in a graph with no lique of size  + 1 isattained by a omplete -partite graph where the sizes of the parts are asequal as possible. This onjeture implies a far-reahing onjeture by Ek-ho� [36℄ and myself on fae numbers of lique omplexes and has appliationsin the study of f -vetors of nerves of boxes [36, 37℄. It also seems related to aonjeture by Charney and Davis [25℄ on lique omplexes that are spheres.See also [76℄, p. 103.6.8 Are there more drasti forms of algebrai shifting?A drasti shifting operation is one whih maps every simpliial omplex to aneven more restrited lass of omplexes than the shifted omplexes while stillpreserving some useful ombinatorial properties. Exterior shifting is neverdrasti as it �xes all shifted omplexes. As already mentioned it is not knownwhether symmetri shifting, with respet to the reverse lexiographi order,�xes all shifted omplexes. In ombinatorial appliations, shifting is oftennot the end of the road and some drasti algebrai shifting operations maybe helpful.The Kruskal-Katona theorem asserts that every simpliial omplex hasthe same f -vetor as a ompressed simpliial omplex, namely a simpliialomplex whose r faes are initial with respet to the reverse lexiographiorder.Problem 43. Find a drasti form of algebrai shifting whih proves the Kruskal-Katona theorem.There are many simple proofs of the Kruskal-Katona theorem but analgebrai proof may have further appliations. The same problem may beasked in the symmetri ase for Maaulay's theorem.The reent remarkable proofs by Alswede and Khhaterian [2, 3℄ of Frankl'sonjeture regarding the Erd�os-Ko-Rado problem an be regarded as the ap-pliation of a drasti form of ombinatorial shifting. I feel that the ombi-natorial ontent of these proofs an be useful in further understanding thestruture of shifted omplexes (or equivalently of generi initial ideals). Itwould be of interest to �nd an algebrai proof whih might be relevant tothe following related, and yet unsolved, problem.Problem 44 (Erd�os). What is the maximal size of a family of k-subsets of [n℄whih do not ontain a mathing of size r?40



(A mathing is a family of pairwise disjoint sets.)6.9 Eigenvalues of laplaians, expansion of the dualgraphs and shiftingThe basi idea behind my paper [61℄ was the following: Use algebrai shiftingto dedue expansion properties of the dual graph of simpliial polytopesand spheres and dedue upper bounds on the diameters of suh graphs. Atpresent, this idea only works for neighborly polytopes. It is possible thatexpansion properties on the dual graph of �(K) imply expansion propertieson the dual graph of K (this is related to shifting Meyer-Vietoris).In a reent paper, Duval and Reiner [33℄ studied the eigenvalues of lapla-ians of shifted omplexes. The lass of shifted simpliial omplexes is oneof only a handful of lasses of omplexes with integral Laplaian spetra.Let s be the Laplaian eigenvalues of a shifted family of k-sets. Consideralso d, the generalized degree sequene (number of k-sets eah vertex is amember of), and let T means to take the partition onjugate (transpose theFerrers diagram of the partition). Duval and Reiner showed that s = dT .(For graphs this result was proved in the sixties by Kelmans and by others.)Duval and Reiner further onjeture that for an arbitrary k-family, s ismajorized by dT . A natural question that arises is the following:Problem 45 (Duval and Reiner). Find the e�et of shifting on eigenvalues oflaplaians.In a di�erent diretion note that if G is a tree with n verties then �(G)is always the same: star whose edges ontain the vertex '1'. Labelled treesan, of ourse, be enumerated and some weighted extensions to d-dimensionalomplexesK on n verties (so that �(K) is the pure simpliial omplex whosed-faes are all sets ontaining '1') are also known [54℄. Is it possible to �ndan appropriate weighted enumeration for the lass of simpliial omplexes Kwith a presribed �(K)?7 ExtensionsIn this setion we will onsider several extensions of algebrai shifting. The�rst three subsetions deal with areas in whih algebrai shifting has not keptup with advanes onerning f -vetors of simpliial omplexes.41



7.1 SymmetryProblem 46. Find an appropriate notion of shifting for simpliial omplexeswith a group ation.The study of fae rings has signi�ant onsequenes for fae numbers ofCohen-Maaulay omplexes with symmetry (see [1℄ and [76℄. p.119). How-ever, we are not aware of any useful notion of algebrai shifting in this ontext.Problem 47. Charaterize f -vetors of simpliial omplexes with a free Zp a-tion. More generally haraterize f vetors of suh omplexes with presribedBetti numbers. Alternatively, onsider general Zp ations and haraterizethe pair of f-vetors obtained by the omplex and by the faes �xed by theation.In this ontext it is worth mentioning an old-standing problem in algebraitopology whih asserts that if we have a free ation of Znp on a manifold Mthen the sum of Betti numbers for that manifold must be at least 2n (thesum of Betti numbers of an n-dimensional torus). Some related results wereproven using ommutative algebra onsiderations.7.2 Balaned and ompletely balaned omplexesAn additional area in whih algebrai shifting has not kept with f -vetortheory is balaned and ompletely balaned omplexes [72℄. It may be feasibleto lose the gap.Problem 48. Extend algebrai shifting to balaned and ompletely balanedfamilies. Charaterize pairs of fae numbers and Betti numbers for suhomplexes.7.3 Shifting more general omplexesIn several ases the ombinatorial onsequenes of algebrai shifting havemuh greater generality than for simpliial omplexes. Bjorner and Kalai [18℄have shown that the haraterization of fae numbers of simpliial omplexeswith presribed Betti numbers applies to polyhedral omplexes and in fateven in muh greater generality. Muh of the piture onerning the upperand lower bound theorems and the g-theorem also extends to large lasses ofomplexes. The ase of ubial omplexes is of partiular interest.42



Problem 49. 1. Extend the de�nitions of fae algebras and algebrai shiftingto polyhedral (and more general) omplexes.2. Find analogs to the de�nitions of fae algebras and algebrai shiftingfor ubial omplexes.7.4 Other ombinatorial objetsTogether with H�el�ene Barelo we onsidered the possibility of applying some-thing similar to algebrai shifting to other ombinatorial objets. The generalframework is as follows: We have a lass P of ombinatorial objets de�nedon an underlying set (whih is usually taken to be the set [n℄ = f1; 2; : : : ; ng).Thus, P an be the set of subsets of [n℄, or the set of permutations on [n℄, orthe set of labelled trees with vertex set [n℄, et. We need an algebra whihis generated as an algebra by n variables x1; x2 : : : ; xn and as a vetor spaehas a basis (depending on the variables x1; x2; : : : ; xn) in one-to-one orre-spondene with the elements of P. Algebrai shifting is based on studyingGrobner basis w.r.t. a new set of variables y1; y2; : : : yn obtained from thexi's by a generi linear transformation.Thus we an use free Lie algebras (or rather their \square-free" part), oralternatively the Orlik-Solomon algebra, to \shift" families of permutations.And we an try to use the ohomology ring of the variety of ags �xed by aunipotent matrix of Jordan deomposition given by P ` n (see Barelo [10℄)to try to shift families of standard tableaux of a given shape.It turned out that extending even the simplest properties of shifting anbe quite diÆult.Problem 50. Algebraially shift families of permutations, tableaux, trees andpartitions and �nd ombinatorial appliations.8 Conluding RemarksThe relations between ommutative algebra, algebrai topology and ombi-natoris have been at the heart of ombinatorial ommutative algebra sinethe �rst works by Rihard Stanley whih established this �eld of researh.Algebrai shifting appears to be a useful tool for relating topologial prop-erties of simpliial omplexes to ommutative algebrai properties of their(various) fae algebras and for extrating ombinatorial onsequenes.43



Sine the basi onnetion with simpliial homology was �rst observedand applied [16℄, Art Duval has found further onnetions with algebraitopology [31, 32℄ and further ombinatorial appliations [28, 34℄. Relating al-gebrai shifting and, more generally, the fae algebras of simpliial omplexeswith advaned topis from algebrai topology is one of the main hallenges.The reent results by Dave Bayer, Hara Charalambous & Sorin Popesuand by Annette Aramova & J�urgen Herzog appears to give the ultimateextension of the fat that Cohen-Maaulayness is preserved under shifting(whih is equivalent to Reisner's theorem in the symmetri ase). Theseresults have reahed the limit of what was antiipated in my survey withAnders Bj�orner onerning f -vetors and homology [17℄. There are furthersigni�ant developments onerning shifting (generi initial ideals) and om-mutative algebra mainly due to Aramova, Herzog, Takayuki Hibi and others[4, 5, 6, 7, 8, 9, 51℄ whih have not been properly presented here.In another diretion, the work by Peter Shenzel, followed by the re-sults of Isabella Novik [69℄ yielded substantial knowledge on shifting (in thesymmetri ase) for Buhsbaum's omplexes inluding simpliial manifolds.There is a very beautiful emerging piture of algebrai shifting (and fae al-gebras) of simpliial manifolds without boundary. For simpliial spheres andGorenstein� omplexes this piture already inludes a far-reahing extensionof (a generi version of) the Hard Lefshetz Theorem for tori varieties assoi-ated with simpliial polytopes. And further, it appears to extend to simpliialmanifolds without boundary giving a deep shifting-theoreti interpretation ofPoinar�e duality and beyond i.e., to spaes in whih ertain obstrutions forembeddability vanish loally and globally and to Witt spaes. Proving thatthis piture is the orret one is the most important open problem in thisarea and perhaps an be onsidered to be one of the main open problemsin algebrai ombinatoris. Progress in this diretion will reveal profoundonnetions between ommutative algebra and topology.Fae algebras and algebrai shifting appears to be also tailor-made forertain problems in extremal ombinatoris.AknowledgementI would like to thank H�el�ene Barelo, Anders Bj�orner, Annette Aramova,Art Duval, J�urgen Herzog, Je� Kahn, Lai Lov�asz, Isabella Novik, KarnarbirSarkaria, Rihard Stanley, Volkmar Welker and Sergey Yuzvinsky for helpfuldisussions. 44
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