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Abstract

We define a generalization of intersection homology based on considering a set of

perversities rather than a single perversity and explore some of its properties. The

question whether these invariants are independent from the stratification is left open.

Some steps in this direction are made following the proof by King of the topological

incariance of singular intersection homology groups.
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1 Introduction

Intersection homology groups IH p̄
∗
(X) for stratified spaces X were discovered by Goresky

and MacPherson in [3, 4]. These groups depend on certain sequences of numbers p̄ =

(p̄(0), p̄(1), . . . ) which are called perversities. These sequences satisfy the following simple

properties: p̄(0) = p̄(1) = p̄(2) = 0 and p̄(i) ≤ p̄(i+ 1) ≤ p̄(i) + 1. Roughly speaking, these

perversities describe how simplices are allowed to intersect the singular part of X. Goresky

and MacPherson proved two remarkable basic results for these invariants for the case that X

is a pseudomanifold. The first is that intersection homology groups are topological invariants

and, in particular, do not depend on the stratification of X. From this it follows that for

the case that X is a compact n-manifold, IH p̄
i (X) coincide with the usual homology Hi(X)

for every perversity and every stratification. The second is that intersection homology of

n-dimensional pseudomanifolds satisfies a certain form of duality

IH p̄
i (X) = IH p̂

n−i(X),

where and p̂ is the dual perversity of the perversity p̄, defined by p̂(i)+ p̄(i) = i−2 for every

i.
∗Vanderbilt University
†Hebrew University and Yale University
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When X is a complex algebraic variety, X can be stratified with only even dimensional

strata and it follows that for the middle perversity p̄ defined by p̄(i) = [(i− 1)/2],

IH p̄
i (X) = IH p̄

n−i(X).

While general intersection homology groups are remarkable invariants of general singular

spaces and pseudomanifolds, it is fair to say that the case of middle perversity intersection

homology of algebraic varieties accounts for most applications. Those range from algebraic

geometry and representation theory to the combinatorial theory of convex polytopes.

In this paper we explore an extension of intersection homology groups IHJ
∗
(X) when

a single perversity is replaced by a whole set J of perversities. The purpose of this study

is to obtain further interesting homology-like invariants for singular spaces. As intersec-

tion homology (in middle perversity) leads to remarkable combinatorial invariants of convex

polytopes, hoping to find (eventually) additional combinatorial invariants for polytopes was

another motivation.

Our analysis of these invariants follows a paper by Henry King [5]. King considered

singular intersection homology theory and presented a direct proof (avoiding Deligne’s sheaf)

that singular intersection homology is a topological invariant of X. In the setting of singular

simplices, topological invariance is equivalent to showing that the invariants do not depend

on the stratification. King’s proof of the topological invariance is based on several properties

of intersection homology. It requires extensions of several basic properties of homology and,

in addition, an understanding of intersection homology of cones over spaces and of products

of spaces with manifolds. King’s Theorem 9 gives an inductive proof of topological invariance

and the steps in his argument can be regarded as a “road map” for such a proof in more

general cases. King’s Theorem 10 asserts that invariants of singular spaces with certain

natural properties are equivalent if they have the same behavior with respect to forming a

cone over a space. The behavior of intersection homology with respect to forming a cone is

very simple and thus King’s result can be regarded as an invitation for further invariants

For a stratified space X let cX be an open cone over X (with the natural stratification).

A main result of this paper is a “cone formula”, namely, a formula for IHJ
∗
(cX). We also

establish some basic properties such as Mayer-Vietoris and Kunneth theorems. Our cone

formula is rather complicated and we cannot use it so far to prove that our invariants do

not depend on the stratification. Proving (or disproving) topological invariance remains the

main open problem. Another problem would be to understand if some form of duality holds

in this greater generality.

2 Definition and most basic properties

All spaces are locally-conelike stratified spaces X with skeleta

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅.

We recall that this means that each X i − X i−1 is a topological i-dimensional manifold

(Hausdorff, metrizable, and separable), and for each x ∈ X i − X i−1, 0 ≤ i ≤ n − 1, there
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is a neighborhood of x stratified homeomorphic to Ri × cY , where Y is a compact filtered

space and Ri × cY is given the filtration induced by that of Y (see [5]). Here cY is the open

cone on Y . Throughout, cX will denote the open cone if X is a space, and cξ will denote

the closed cone if ξ is a chain.

Let J = {p̄1, · · · , p̄m} be a collection of traditional perversities, i.e. for each j, p̄j(2) = 0

and p̄j(k) ≤ p̄j(k + 1) ≤ p̄j(k) + 1.

Recall ([5]) that a singular simplex σ ∈ Ci(X;G), σ : ∆i → X, is said to be p̄ allowable if

for each k, σ−1(Xn−k) is a subset of the i−k+p̄(k) skeleton of the model simplex ∆i. IC p̄
∗
(X)

is the complex of chains ξ such that each simplex of ξ and ∂ξ (with non-zero coefficient) is

allowable.

Let ICJ
i (X;G) be the subgroup of Ci(X;G) consisting of i-chains ξ such that ξ =

∑

j ξp̄j

and ∂ξ =
∑

j ζp̄j
, where ξp̄j

and ζp̄j
are G-linear combinations of p̄j allowable simplices. In

other words, each simplex of ξ and ∂ξ must be allowable with respect to some perversity in

J . Note that ζp̄j
is not necessarily equal to ∂ξp̄j

. Let IHJ
∗
(X;G) be the homology groups of

ICJ
∗
(X;G). We will generally omit the coefficient group G to simplify notation.

Note that if J contains only a single perversity p̄, then IHJ
∗

= IH p̄
∗
. If U is an open

subset of X, then we define IHJ
∗
(X,U) in the usual way.

Lemma 2.1 (Subdivision). Suppose ξ is a cycle in ICJ
i (X,U). Then ξ is homologous to

any subdivision ξ′ of ξ.

Proof. The proof is essentially the same as that given in [1] for the case in which J contains

a single perversity - if σ is p̄j allowable for some p̄j , then each simplex in any subdivision of σ

is also p̄j allowable, so ξ′ is allowable. Furthermore, an allowable homology between ξ and ξ′

is constructed by suitably subdividing ∆× [0, 1] for each simplex σ : ∆ → X so that one end,

say ∆ × 0, remains unsubdivided, and the other end, ∆ × 1, is subdivided as per ξ′. These

subdivisions can be chosen so that the chain determined by the composition of σ with the

projection of the subdivided ∆× I to ∆ is p̄j allowable. Employing this process compatibly

for each σ and with the relevant coefficients provides the desired homology. More precise

details can be found in [1]. The main point here is that we can maintain the decomposition

of ξ into pieces allowable with respect to different perversities.

3 The cone formula

In this section we find the formula for the multiperverse intersection homology of a cone.

This formula plays a fundamental role in single perversity intersection homology theory.

Let J(i, k) = {p̄j ∈ J | 0 ≤ i − (k + 1) + p̄j(k + 1)}. These are the perversities p̄ such

that IC p̄
i (cX), where X is a k-dimensional compact locally-conelike space, includes chains

whose supports intersect the cone point x.

Lemma 3.1. Suppose ξ is a cycle in ICJ
i (cX), where X is an n-dimensional compact locally-

conelike space. Let x denote the cone point of cX. Then ξ is homologous (in ICJ
∗
(cX)) to a

chain of the form cψ + γ ∈ ICJ
i (cX), where

3



1. |γ| ∩ x = ∅,

2. ψ = −∂γ, |ψ| ∩ x = ∅, ψ ∈ IC
J(i,n)
i−1 (cX − x), and cψ is the (closed) cone on ψ.

In particular, ξ is homologous to a cycle whose simplices intersect x at most at vertices.

Proof. We begin by subdividing ξ and then breaking it up into pieces, one of which will be γ

and one of which we will modify to be cψ. Let U be an open neighborhood of the cone point

x ∈ cX that is disjoint from all simplices of ξ whose supports do not intersect x. Let V be

cX − x ∼= X ×R. Let ξ′ be a subdivision of ξ that is {U, V } small, so that ξ′ is homologous

to ξ and ξ′ = η + γ, η and γ are allowable, |η| ⊂ U , and |γ| ⊂ V . Such subdivisions can be

accomplished as per Proposition 2.9 of [1]. That proposition deals only with single perversity

intersection homology, but the arguments work equally well (with obvious modifications) in

our more general setting. Furthermore, by our choice of U , all simplices in η will be simplices

in a subdivision of those simplices of ξ that intersect x. Since these simplices of ξ must all

be J(i, n) allowable, so too will all i-simplices of η be J(i, n) allowable, as follows from the

multiperversity generalization of the subdivision allowability arguments of Lemma 2.6 of [1].

Furthermore, we claim that ∂η = −∂γ is J(i, n) allowable. This is a consequence of the

actual chain map constructed in [1, Proposition 2.9] for breaking up chains into small pieces.

The upshot is that one of the following scenarios holds for each i− 1 simplex µ in η:

1. µ has no l face, 0 ≤ l ≤ i − 1, that is in the l skeleton of any simplex of ξ (in the

sequel, we will refer to this condition as being “deeply embedded”). In this case, µ

inherits the allowability of whichever simplex of ξ it is contained in, and in this case

such a simplex must be J(i, n) allowable. (Note: for statements such as these about

subsets and inclusions, we are really referring to the simplicial models upon which the

singular simplices are built - see [1] for more careful statements).

2. µ is a simplex in a subdivision of ∂ξ. But since ξ is a cycle, this is not possible.

We next claim that ξ′ is homologous to c(∂η) + γ. We check the details:

c(∂η)+γ is allowable: γ is already allowable and since ∂(c(∂η)+γ) = ∂η+∂γ = ∂(η+γ) =

∂ξ′ = 0, to check allowability, we only need check the allowability of each simplex cσ for

σ ∈ ∂η. But each such σ is in IC
J(i,n)
i−1 (cX−x). So each σ is p̄ allowable for some p̄ ∈ J(i, n).

But this implies that cσ is allowable by the arguments in, e.g. King [5]. Geometrically,

for k < n + 1, (cσ)−1((cX)n+1−k) intersects skeleton of ∆i of one dimension greater than

the skeleton containing σ−1(cX − x). However, cσ is one dimension greater than σ, so the

changes offset in the allowability formula. cσ−1(x) is a single vertex, and this is also allowable

for each p̄ ∈ J(i, n). Thus c(∂η) + γ is allowable.

To obtain the homology, we next observe that cη is itself allowable. To see this, we

again consider cσ for each simplex σ in η. Once again, for k 6= n + 1, the dimension of

the minimal skeleton of ∆i+1 containing (cσ)−1(cX)n+1−k is at most one larger than the

analogous dimension for σ, which is offset by the increase in dimension from σ to cσ in

the allowability formula. For (cσ−1)(x), the same argument applies if |σ| ∩ x 6= ∅, while if
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|σ| ∩ x = ∅, (cσ)−1(x) will be a single vertex of ∆, which once again is allowable for each

p̄ ∈ J(i, n).

Now let H = cη + γ × [0, 1], where γ × [0, 1] is induced by a subdivision of the trivial

homotopy (which is also readily verified to preserve allowability as in [2]). Then ∂H =

η − c(∂η) + γ − γ = (η + γ) − (c(∂η) + γ), demonstrating the desired homology.

Let IC
J(n)
∗ (X) be the subcomplex of ICJ

∗
(X) such that

IC
J(n)
i (X) = {ξ ∈ ICJ

i (X) | ξ ∈ IC
J(i+1,n)
i (X), ∂ξ ∈ IC

J(i,n)
i−1 (X)}.

Note that the boundary map on this complex is well-defined as the restriction of the boundary

map of ICJ
∗
(X), and so we can define the homology groups IH

J(n)
∗ (X). Let

ICJ/n
∗

(X) = ICJ
∗
(X)/ICJ(n)

∗
(X),

and let let IH
J/n
∗ (X) be the corresponding homology groups.

Proposition 3.2 (Cone Formula). Let X be an n-dimensional compact locally-conelike

space. Then IHJ
i (cX) ∼= IH

J/n
i (X × R) ∼= IH

J/n
i (X).

Proof. The second isomorphism is simply stratum-preserving homotopy equivalence or the

Künneth theorem for products with manifolds (see Proposition 4.1, below, which is inde-

pendent of the current proposition). So we focus on the first isomorphism. Throughout, we

identify X × R with cX − x, where x is the cone point.

We define a homomorphism f : IH
J/n
i (X × R) → IHJ

i (cX) as follows. Let ξ be a

relative cycle representing an element of IH
J/n
i (X×R). So ξ is J allowable and ∂ξ is J(i, n)

allowable (since ∂2ξ = 0, the condition that ∂(∂ξ) be J(i − 1, n) allowable is satisfied for

free). Then let f(ξ) be ξ − c(∂ξ) in ICJ
i (cX). This chain is J allowable precisely because

∂ξ is J(i, n) allowable, and it is an absolute cycle. We must show that f is well defined

as a map on homology. So let ξ1 be another chain representing the same cycle as ξ in

IH
J/n
i (X ×R). So there exists a J-allowable i+ 1 chain Ξ such that ∂Ξ = ξ− ξ1 + φ, where

φ is J(i+1, n) allowable and ∂φ is J(i, n) allowable. Note that ∂φ = ∂ξ1 − ∂ξ. Then Ξ− cφ

is J-allowable (again because φ is J(i + 1, n) allowable and ∂φ is J(i, n) allowable, so that

coning on φ gives allowable chains). But now ∂(Ξ− cφ) = ∂Ξ− ∂(cφ) = ∂Ξ− (φ− c(∂φ)) =

ξ − ξ1 + φ− (φ− c(∂ξ1 − ∂ξ)) = ξ − c∂ξ − (ξ1 − c∂ξ1) = f(ξ) − f(ξ1). So f is well-defined.

By Lemma 3.1, f is a surjective homomorphism. To check that it is injective, suppose

that f(ξ) = ξ − c∂ξ is the image of a chain representing a cycle in IH
J/n
i (X × R) and that

f(ξ) = 0 in IHJ
i (cX). Then there is a J-allowable i + 1 chain Ξ such that ∂Ξ = ξ − c∂ξ.

We will split Ξ into pieces. Let V = cX − x, and let U be an open neighborhood of the

cone point x of cX such that any simplex σ in Ξ with x /∈ |σ| satisfies |σ| ∩ U = ∅. In

particular, |ξ|∩U = ∅. Now, as in the proof of Lemma 3.1, we may employ a multiperversity

generalization of Proposition 2.9 of [1] to break Ξ into Ξ = ΞU + ΞV , where |ΞU | ⊂ U ,

|ΞV | ⊂ V , and each of these chains is allowable. Again, the argument of [1] carries over

because, by construction, each simplex of ΞU and ΞV is a simplex in a subdivision of Ξ,

and each such simplex inherits the allowability of its parent simplex, and similarly each i
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simplex of ∂ΞU or ∂ΞV is either deeply enough embedded in a simplex of Ξ that it inherits

its allowability or it is a subdivision simplex of a simplex already in ∂Ξ and hence inherits

allowability from that.

Now we consider ΞV and ∂ΞV . Since ∂(ΞU + ΞV ) is just a subdivision of ∂Ξ = ξ − c∂ξ

and since |ξ| ∩ U = ∅, a subdivision of ξ forms part of the boundary of ΞV . In fact,

∂ΞV = ξ′ +ω+φ, where ξ′ is a subdivision of ξ, ω is a subchain of a subdivision of −c∂ξ and

φ is a new bit of boundary that results from cutting ΞU and ΞV apart. But now since each i

simplex in ω lies in a subdivision of a simplex of c∂ξ, which was J(i, n) allowable, ω is J(i, n)

allowable. Similarly since |φ| must lie in U ∩V ⊂ U , each i-simplex of φ is in a subdivision of

a simplex σ of Ξ whose support contains x. But each such simplex of Ξ must be J(i+ 1, n)

allowable and so φ is J(i+1, n) allowable (again, φ must be one of these “deeply embedded”

subdivision simplices or else it would be part of the subdivision of ∂Ξ = ξ − c∂ξ). Thus

ξ′ = ∂ΞV −ω− φ. As we’ve seen, ω is J(i, n) allowable (and hence also J(i+ 1, n) allowable

since J(i, n) ⊂ J(i + 1, n)), and φ is J(i + 1, n) allowable, and ∂(ω + φ) = −∂ξ′, which is

J(i, n) allowable as a subdivision of ∂ξ, which was J(i, n) allowable to begin with. And so

ξ′ represents 0 in IH
J/n
i (X × R). But ξ′ is a subdivision of ξ and so by the Lemma 2.1, ξ

and ξ′ are homologous. Thus f is injective, and we are done.

Corollary 3.3. IHJ
i (cY, Y × R) ∼= IH

J(n)
i−1 (Y ).

Proof. Consider the diagram

- IHJ
i (Y ) - IH

J/n
i (Y )

∂∗ - IH
J(n)
i−1 (Y ) - IHJ

i−1(Y ) -

- IHJ
i (Y )

=

?
inc∗- IHJ

i (cY )

f∗

?
- IHJ

i (cY, Y × R)

c

?
∂∗- IHJ

i−1(Y )
?

- .

The first line is the exact sequence induced by the short exact sequence

0 - IC
J(n)
i (Y ) - ICJ

i (Y ) - IH
J/n
i (Y ) - 0.

The second line is the exact sequence induced by the short exact sequence

0 - ICJ
i (Y × R) - ICJ

i (cY ) - ICJ
i (cY, Y × R) - 0.

Once we show that the diagram commutes, the corollary will follow from Proposition 3.2

and the five lemma.

The map f∗ in the diagram is that of Proposition 3.2, while the map labeled c takes the

cone on chains.

The commutativity of the right square is straightforward, while that of the left and

central squares follows from the definition of f∗ and some obvious diagram chasing..
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4 Some more basic properties

Proposition 4.1 (Stratified homotopy invariance). IHJ
∗
, IH

J(n)
∗ , and IH

J/n
∗ are in-

variant under stratum-preserving homotopy equivalences. In addition, any two chains that

differ only by a stratum-preserving homotopy are homologous in any of these theories.

Proof. The proofs follow just as for the single perversity case; see [2]. The main point is that

given a p̄-allowable simplex in a filtered space, σ : ∆i → X, each simplex in the chain induced

by a subdivision of ∆i × [0, 1] and a stratum-preserving homotopy H : ∆i × [0, 1] → X from

σ is also p̄-allowable.

Corollary 4.2 (Künneth theorem for products with Rk). IHJ
∗
(X × Rk) ∼= IHJ

∗
(X),

IH
J(n)
∗ (X × Rk) ∼= IH

J(n)
∗ (X), and IH

J/n
∗ (X × Rk) ∼= IH

J/n
∗ (X).

Proposition 4.3. IHJ
∗

admits Mayer-Vietoris sequences relating open sets U , V , U ∩ V ,

and U ∪ V . IHJ
∗

also admit excision IHJ
∗
(X,U) ∼= IHJ

∗
(X − K,U − K), for K closed in

the open set U .

Proof. Once again, the proof is a straightforward generalization of that for single perversities;

see [1]. The idea is to follow the proofs for ordinary singular homology as given in, e.g., [6].

The main technical point is the ability to break a chain into small pieces subordinate to some

cover using subdivision. The main difficulty in intersection homology comes in ensuring that

these pieces are allowable. There is no problem with the simplices in a chain, themselves, as

subdivision preserves allowability. The difficulty is in making sure that the new boundaries

created when pieces of the chain are broken apart are allowable. It is shown in [1] how to

do this in such a way that the newly created boundary i − 1 simplices inherit the same

allowability as the i-simplices out of which they are carved. In the current case, the J-

allowability of the original simplices thus ensures the J-allowability of the new pieces and

their new boundaries after performing the construction of [1].

Note that IH
J(n)
∗ and IH

J/n
∗ generally will not admit Mayer-Vietoris properties and

excision. This can be seen by considering the case where J = {p̄}. In this case IC
J(n)
∗ is

a truncation of IC p̄
∗
, so that IH

J(n)
∗ will equal IH p̄

∗
for large ∗ and 0 below a certain cutoff

dimension. Since IH p̄
∗

itself admits Mayer-Vietoris sequences, IHJ(n) will simply truncate

that Mayer-Vietoris sequence, not preserving exactness in general. This failure can also be

seen as a consequence of the fact that the allowability conditions on boundary simplices of

chains in IC
J(n)
∗ is more stringent than that on the simplices themselves. Thus the above

arguments do not guarantee that the process of [1] yields allowable chains once we break a

chain into pieces.

Proposition 4.4 (Künneth theorem for products with manifolds). If X is a filtered

space, M is an unfiltered k-manifold, and X×M is given the product filtration, then IHJ
∗
(X×

M) = (
⊕

p+q=∗
IHJ

p (X) ⊗ IHJ
q (M)) ⊕ (

⊕

p+q=∗−1 IH
J
p (X) ∗ IHJ

q (M)).

Proof. This property is proven in [5] for single perversity intersection homology by noting

that it is a consequence of the existence of Mayer-Vietoris sequences and the Künneth theo-

rem for products with Rk. Since IHJ
∗

also has these properties, the same proof applies.

7



5 Dimension relations

Lemma 5.1. Let Y be a t-dimensional stratified space, and suppose n ≥ t. Then IH
J(n)
i (cY ) =

0, and IHJ
i (cY ) ∼= IH

J/n
i (cY ).

Proof. The second statement follows from the first using the long exact sequence

IH
J(n)
i (cY ) −−−→ IHJ

i (cY ) −−−→ IH
J/n
i (cY ) −−−→ IH

J(n)
i−1 (cY )

To begin, we assume t = n.

Suppose ξ represents a cycle in IH
J(n)
i (cY ). Then each simplex in ξ is allowable with

respect to a perversity p̄ such that 0 ≤ i+1− (n+1)+ p̄(n+1). We claim that each simplex

in c̄ξ is also allowable with respect to such a perversity, which would demonstrate that each

cycle bounds. The argument is essentially that which occurs for the intersection homology

of a cone with a single perversity once we have passed the critical dimension at which all

intersection homology dies. A thorough treatment of that case can be found in [5] and [1].

We indicate the ideas here:

Suppose σ is a simplex in ξ. If σ−1((cY )n+1−k), k ≤ n, lies in the ℓ skeleton of ∆i,

then (cσ)−1((cY )n+1−k) lies in the ℓ + 1 skeleton of ∆i+1. Allowability of σ implies that

ℓ ≤ i− k + p̄(k) for some p̄ in J(i+ 1, n). This implies that ℓ+ 1 ≤ i+ 1 − k + p̄(k), which

is necessary for allowability for cσ with respect to p̄. This argument also works if k = n+ 1

and |σ| ∩ y 6= ∅. The only other case to check is when k = n + 1 and |σ| ∩ y = ∅. In this

case (cσ)−1(y) is in the 0 skeleton of cσ, but we must have 0 ≤ i + 1 − (n + 1) + p̄(n + 1)

since p̄ ∈ J(i+ 1, n). Thus cσ is allowable. Since this works for each σ in ξ, we see that cξ

is J(i+ 1, n) allowable (and hence J(i+ 2, n) allowable), and ∂(cξ) = ξ, which was given as

J(i+ 1, n) allowable. Thus cξ ∈ IC
J(n)
i+1 (cY ), and IH

J(n)
∗ (cY ) = 0.

Now, suppose that t < n. In each of the allowability arguments above, we must replace

n with t. The first part of the argument goes through except for this cosmetic change. The

only case that needs new verification is the case where |σ| ∩ y = ∅. In this case we need

0 ≤ i + 1 − (t + 1) + p̄(t + 1). But we do know that 0 ≤ i + 1 − (n + 1) + p̄(n + 1), since

p̄ ∈ J(i + 1, n), and so it suffices to have −(t + 1) + p̄(t + 1) ≥ −(n + 1) + p̄(n + 1), or

n+ 1− (t+ 1) ≥ p̄(n+ 1)− p̄(t+ 1). But this is certainly true since p̄(k+ 1) ≤ p̄(k) + 1, by

assumption for all k.

Before moving on to the next lemma, we observe that for A and open subset of X,

IC
J/n
∗ (X,A) can be defined as the quotient of either inclusion IC

J(n)
∗ (X,A) →֒ ICJ

∗
(X,A)

or IC
J/n
∗ (A) →֒ IC

J/n
∗ (X). In fact, we have the following commutative diagram of short

exact sequences:

0 - ICJ(n)
∗

(A) - ICJ(n)
∗

(X) - ICJ(n)
∗

(X,A) - 0

0 - ICJ
∗
(A)
?

- ICJ
∗
(X)
?

- ICJ
∗
(X,A)
?

- 0
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The vertical arrows readily can be checked to be injections, and so the snake lemma gives

us the cokernel short exact sequence which is precisely

0 - ICJ/n
∗

(A) - ICJ/n
∗

(X) - ICJ/n
∗

(X,A) - 0.

Lemma 5.2. Let Y be a t-dimensional stratified space, and suppose n ≥ t. Then IH
J/n
i (cY, Y ) =

0, and IH
J/n
i (cY ) ∼= IH

J/n
i (Y ).

Proof. Consider the exact sequence

- IH
J/n
i (Y ) - IH

J/n
i (cY ) - IH

J/n
i (cY, Y ) -

By Lemma 5.1, IHJ
i (cY ) → IH

J/n
i (cY ) is an isomorphism, and IH

J/n
i (Y ) ∼= IHJ

i (cY ),

by Proposition 3.2. These isomorphisms can be seen to commute (recalling that J(i, n) ⊂
J(i+ 1, n)), and so IHJ/n(Y ) → IHJ/n(cY ) is an isomorphism, proving the claim.

6 Towards topological invariance?

In this section, we outline a proposed proof of the topological invariance of IHJ
∗

for locally

conelike stratified spaces. This proposed proof follows the outline of King’s proof in [5] for

the single perversity case. We are currently unable to complete the proof at one step, but

we will indicate how proving that step completes the whole proof. We will also show that

topological invariance holds in a certain special case.

We begin by recalling the main ideas of King’s proof from [5] of topological invariance of

IH p̄
∗
. The idea is to start with the functor X → X∗ taking a locally conelike stratified space

(called a CS set in [5]) to the CS set that is topologically equivalent to X but that is stratified

with the coarsest intrinsic stratification. This functor yields maps IH p̄
∗
(X) → IH p̄

∗
(X∗),

since the property p̄(k) ≤ p̄(k + 1) implies that if a simplex is allowable in X then it is

also allowable in X∗. This will also be true for IHJ
∗
(X). A CS set x has property H if

IH p̄
∗
(X) → IH p̄

∗
(X∗) is an isomorphism for all perversities p̄.

The proof then inducts on depth, the difference in dimension between the highest and

lowest dimensional non-empty strata of X. Let P (i), Q(i), and R(i) be the following state-

ments:

P(i) All CS sets of depth ≤ i have property H.

Q(i) All CS sets of the formM×cW , M a manifold,W a compact filtered space, depth(W ) ≤
i have property H.

R(i) All CS sets of the form Rk × cW , W a compact filtered space, depth(W ) ≤ i have

property H.

King goes on to show that P (i) implies R(i), R(i) implies Q(i), and P (i) and Q(i)

together imply P (i+ 1). This implies the topological invariance of IH p̄
∗

by induction, since

P (1) is clearly true.

9



It is also clear that this framework would imply topological invariance of IHJ
∗

if one could

prove this sequence of implications with property H replaced by property HJ stating that

IHJ
∗
(X) → IHJ

∗
(X∗) is an isomorphism for any J .

In fact, the implications R(i) implies Q(i), and P (i) and Q(i) together imply P (i+1), as

proven in [5], depend only on geometric properties of CS sets, the Mayer-Vietoris theorem,

and the Künneth theorem of a CS set with a manifold. Since these properties all hold for

IHJ
∗
, so do these implications. The problematic one is P (i) ⇒ R(i), which relies on the

actual cone formula properties of IH p̄.

The setting for attempting to prove P (i) implies R(i) is geometrically the following: We

have a CS set Rk×cW , and by the arguments of Proposition 6 of [5], (Rk×cW )∗ = Rm×cY .

We take dim(W ) = s and dim(Y ) = t so that t = k−m+s. Letting h : Rk×cW → Rm×cY
represent the (non-stratum-preserving) homeomorphism, it is also shown that h−1(Rm×∗) =

Rk × cA, where A is an m− k − 1 homology sphere and a union of components of strata of

W . One also notes that Rm × cY − h(Rk × ∗), where ∗ is the cone point of cW , carries the

intrinsic stratification of Rk+1 ×W = Rk × (cW − ∗). Since each of these spaces has depth

less than Rk × cW , they can be assume to have property H by induction. This is the basis

for the remainder of the argument showing that IH p̄
∗
(Rk × cW ) ∼= IH p̄

∗
(Rm × cY ), which

is then based upon both some diagram chasing and some calculations involving the explicit

cone formula for intersection homology with a single perversity. Unfortunately, points of this

proof rely heavily on the precise formula - its vanishing in certain ranges and its equivalence

to the intersection homology of the link in the other range. Thus any attempt to apply the

overall argument to IHJ
∗

must be modified.

We do not at present know how to show that IHJ
∗
(Rk × cW ) ∼= IHJ

∗
(Rm × cY ), but

we provide the partial result that IHJ(cY ) is a direct summand of IHJ(cW ), under the

induction hypothesis.

So, consider the space cY × Rm, where Y has dimension t. Let t+m = n, and let y be

the cone point of y. Let V = cY × Rm − Rk × a, where a is the cone point of cA so that

Rk × a ⊂ y × Rm. (Of course Rk × a = Rk ×w, where w is the cone point of cW , under the

homeomorphism h).

Lemma 6.1. IHJ
i (cY ) is a direct summand in IH

J/n
i (V ).

Note: no induction assumption is needed here.

Proof. Let ∗ be any point in Rm − Rk × a and let i : cY × ∗ →֒ V be the inclusion. Since

this inclusion preserves codimensions of strata, it induces a map i∗ : IHJ
∗
(cY ) → IHJ

∗
(V ).

This can be extended to a map j∗ : IHJ
i (cY ) → IH

J/n
i (V ) by composing i∗ with the natural

map p∗ : IHJ
i (V ) → IH

J/n
i (V ).

We find a map that splits j∗. Note that we have a codimension preserving retraction

r : V → cY induced by projecting cY × Rm to cY × ∗. The retraction r induces a map

r∗ of all intersection homology groups of V to those of cY . In particular, we have r∗ :

IH
J/n
i (V ) → IH

J/n
i (cY ). We compose r∗ with ρ∗ : IH

J/n
i (cY ) → IH

J/t
i (cY ), which exists

since J(i, t) ⊃ J(i, n) since t ≤ n. But IH
J/t
i (cY ) is isomorphic to IHJ

i (cY ) by Lemma

5.1. Let’s call this isomorphism k∗ : IH
J/t
i (cY ) → IHJ

i (cY ). We claim that ρ∗r∗j∗k∗ is the

identity on IH
J/t
i (cY ), which implies that k∗ρ∗r∗ splits j∗.

10



To verify the claim, we need only start with a cycle ξ in IC
J/t
i (cY ) and chase it through

the maps. By the chain of isomorphisms IH
J/t
i (Y ) ∼= IHJ

i (cY ) ∼= IHJ/t(cY ) and their

constructions in Proposition 3.2 and Lemma 5.1, it suffices to assume that ξ = cψ+γ, where

γ is J(i+ 1, t) allowable and supported in Y ×R ⊂ cY and that ψ is a J(i, t) allowable i− 1

chain, so that cψ is a J(i, t) allowable i chain. This chain suffices to represent both our given

cycle in IH
J/t
i (cY ) and its image under k∗ in IHJ

i (cY ). Now, let’s apply our other maps:

Under i, ξ is simply included into cY ×∗ ⊂ V . The map p∗ is induced from the quotient

ICJ
i (V ) ։ IC

J/n
i (V ), so we can keep ξ as a representative chain. The retract r collapses V

back to cY × ∗, still not effecting our cycle, and finally ρ∗ is again induced by a quotient.

Thus our representative cycle represents the same cycle after applying ρ∗r∗j∗k∗.

Corollary 6.2. If we assume inductively that IHJ
∗
(W ) ∼= IHJ

∗
(V ), then IHJ

i (cY ) is a direct

summand in IH
J/n
i (W ).

Proof. We have a commutative diagram

IHJ
∗
(W ) - IHJ/n

∗
(W )

IHJ
∗
(V )

=

?
- IHJ/n

∗
(V )

?

IHJ
∗
(cY ),

6
�

where the map IHJ
∗
(cY ) → IH

J/n
∗ (V ) is a split injection by the preceding lemma and the

diagonal map is is induced by inclusion. The corollary now follows by diagram chasing.

Remark 6.3. There are essentially two sticking points in finishing the proof of P (i) ⇒ R(i)

in the J case. The first is to show that IH
J/n
∗ (cY ) ∼= IHJ/n(V ), not just that it is a direct

summand. The second is the show that if IHJ
∗
(V ) ∼= IHJ

∗
(W ), then IH

J/n
∗ (V ) ∼= IHJ/n(W ),

or, equivalently, that if two spaces share the same intersection homology IHJ
∗
, then so do

their cones.

Using Lemma 6.1, we can also prove the following basic case of invariance of IHJ
∗

under

restratification:

Proposition 6.4. Let Y be a locally-conelike space of dimension n − 1. Let SY be the

suspension of Y . Then IHJ
∗
(cSY ) ∼= IHJ

∗
(cY ).

Proof. Of course as topological spaces (ignoring the stratifications), cSY ∼= cY × R. The

only difference in the stratifications of the two spaces is the existence of the extra cone point

v in the stratification of cSY .
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Interpreting Lemma 6.1 in this situation, we see that IHJ
∗
(cY ) (which is isomorphic to

IHJ/n(Y ) by Lemma 5.1) is a summand in IH
J/n
∗ (V ), where V = (cY ×R)−v. But cY ×R−v

has a stratum-preserving deformation retract to (cY ×−1)∪ (Y × [−1, 1])∪ (cY × 1) ∼= SY .

So IH
J/n
∗ (V ) ∼= IHJ

∗
(cSY ). So we just need to show that the summand injection is in fact an

isomorphism, which will be the case if each homology class in IH
J/n
∗ (V ) has a representative

with support in cY × 1

So suppose that ξ is a cycle representing an element of IH
J/n
i (V ). If |ξ| ∩ R− × y = ∅,

where y is the cone point of cY and R− = (0,−∞), then we can use stratified homotopy

invariance to push ξ into cY × 1, whence ξ represents an element of IH
J/n
i (cY ). But if

|ξ| ∩ R × y 6= ∅, then for each simplex σ of ξ with σ ∩ R− × y 6= ∅, if σ is p̄ allowable, then

we must have 0 ≤ i − n + p̄(n), since R− × y has codimension n in V . So p̄ ∈ J(i, n − 1).

Now we note that J(i, n− 1) ⊂ J(i+ 1, n) because p̄(n + 1) ≥ p̄(n) for each perversity. So

after subdividing and regrouping, we can write

ξ = ζ + γ,

where |ζ | ∩ R− × y = ∅ and γ ⊂ IC
J(i+1,n)
i (V ). We cannot, however, say that γ = 0 in

IC
J/n
i (V ) because we do not know that ∂γ is J(i, n) allowable. We can, however, write

∂γ = η + ω,

where η consists of the simplices shared by ∂γ and (negatively) ∂ζ and ω consists of simplices

subdivided from ∂ξ. Note that this makes ω J(i, n) allowable since ξ is a cycle in IC
J/n
i (V ).

Furthermore, by applying the usual arguments (see [1] and the discussion above in the proof

of Lemma 3.1), η will be J(i+ 1, n) allowable, since γ is. Also, |η| ∩ R− × y = ∅.
Now, we do the following. By initial homotopies, we may assume that |ξ| ⊂ (cY ×

1) ∪ (Y × [−1, 1]) ∪ (cY × −1). We can also assume to have subdivided sufficiently that

|γ| ⊂ cY × −1 (if this is not possible, then |ξ| ∩ cY × −1 = ∅, and we are done already).

Consider now

Γ = (γ × 1) − (η × [−1, 1]) − (γ ×−1),

where the second factor in each term refers to a chain in R. In particular, η × [−1, 1] is the

product chain, triangulated compatibly with η×−1 and η× 1. η× [−1, 1] is also J(i+ 1, n)

allowable since η is (see [2]). Thus Γ is J(i+ 1, n) allowable. Furthermore,

∂Γ = (η × 1) + (ω × 1) − ((η × 1) − (η ×−1) + (∂η × [−1, 1])) − ((η ×−1) + (ω ×−1))

= (ω × 1) − (∂η × [−1, 1]) − (ω ×−1).

We observe that ∂η = −∂ω, and again we can assume from our chain division process that

∂ω inherits the allowability of ω. Thus ∂ω, and hence ∂η × [−1, 1] are J(i, n) allowable.

Thus, overall, Γ is J(i+ 1, n) allowable and ∂Γ is J(i, n) allowable, i.e. Γ = 0 ∈ IC
J/n
i (V ).

But now we can form ξ′+Γ, where ξ′ is the subdivision of ξ that we have been using, and

observe that the γ × −1 terms cancel, leaving no simplices in ξ′ + Γ that intersect R− × y.

So ξ′ + Γ can be homotoped into cY × 1, and since ξ′ + Γ and ξ represent the same element

of IH
J/n
i (V ), we see that IH

J/n
∗ (cY ) → IH

J/n
∗ (V ) is indeed a surjection.
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7 A sample computation

In this section, we provide a sample calculation of IHJ
∗

in a simple case. This is provided

mainly to prove that IHJ
∗

≇ IH s̄
∗
, where s̄ is the perversity given by s̄(k) = sup{p̄(k) | p̄ ∈ J}.

Let X3 be a CS set of dimension 3 such that the singular set Σ consists of a single point

x, i.e., X = X3 ⊃ X2 = X1 = X0 = x. Let p̄ be the perversity (0, 1, 1, 1) (beginning

with p̄(2) = 0), and let q̄ be the perversity (0, 0, 1, 2). Let J = {p̄, q̄}. We will calculate

IHJ
∗
(c(X × S1)).

We begin by noting that the singular set of X × S1 is the single stratum x × S1, and it

has codimension 3. Since p̄(3) > q̄(3), IHJ
∗
(X × S1) = IH p̄(X × S1). This will be typical

of a space Z with only one singular stratum of codimension k: IHJ(Z) will equal IH r̄
∗
(Z),

where r̄ is any perversity in J such that r̄(k) ≥ ū(k) for all ū ∈ J .

Next we consider IH
J(4)
∗ (X × S1). To compute these groups, we need to know what

J(i, 4) is for each i. Recall that J(i, k) = {p̄j ∈ J | 0 ≤ i − (k + 1) + p̄j(k + 1)}. In this

case, J(i, 4) = {p̄j ∈ J | 0 ≤ i − 5 + p̄j(5)}. Thus J(i, 4) contains p̄ when 0 ≤ i − 4, and it

contains q̄ when 0 ≤ i− 3. In other words,

J(0, 4) = ∅

J(1, 4) = ∅

J(2, 4) = ∅

J(3, 4) = q̄

J(4, 4) = J.

Now, IC
J(4)
i (X×S1) = {ξ ∈ ICJ

i (X×S1) | ξ ∈ IC
J(i+1,4)
i (X×S1), ∂ξ ∈ IC

J(i,4)
i−1 (X×S1)}.

So

IC
J(4)
0 (X × S1) = ∅

IC
J(4)
1 (X × S1) = ∅

IC
J(4)
2 (X × S1) = {ξ ∈ IC q̄

2(X × S1) | ∂ξ = 0}

IC
J(4)
3 (X × S1) = {ξ ∈ ICJ

3 (X × S1) = IC p̄
3 (X × S1) | ∂ξ ∈ IC q̄(X × S1)}

IC
J(4)
4 (X × S1) = {ξ ∈ ICJ

4 (X × S1) = IC p̄
4 (X × S1)}.

Thus,

IH
J(4)
0 (X × S1) = 0

IH
J(4)
1 (X × S1) = 0

IH
J(4)
2 (X × S1) = im(IH q̄

2(X × S1) → IH p̄
2 (X × S1))

IH
J(4)
3 (X × S1) = IH p̄

3 (X × S1)

IH
J(4)
4 (X × S1) = IH p̄

4 (X × S1).
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From the long exact sequence for IH
J(n)
∗ , IHJ

∗
, and IH

J/n
∗ , and recalling IHJ

∗
(X×S1) =

IH p̄(X × S1), we get

IH
J/4
0 (X × S1) = IH p̄

0 (X × S1)

IH
J/4
1 (X × S1) = IH p̄

1 (X × S1)

IH
J/4
2 (X × S1) = cok(IH q̄

2(X × S1) → IH p̄
2 (X × S1))

IH
J/4
3 (X × S1) = 0

IH
J/4
4 (X × S1) = 0,

which are the groups of IHJ
∗
(c(X × S1)) by the cone formula.

We note by contrast that the supremum perversity for J is s̄ = (0, 1, 1, 2), and by the

standard cone formula,

IH s̄
i (c(X × S1)) =

{

0, i ≥ 2,

IH s̄
i (X × S1) = IH p̄

i (X × S1), i < 2.

These groups can well be different, as it is not difficult to find examples for which cok(IH q̄
2(X×

S1) → IH p̄
2 (X × S1)) 6= 0. For example, suppose that X is the suspension of the torus T 2.

Then by the Künneth theorem for products with a manifold and some elementary comutation

of IH∗(X), one has

IH q̄
2(X × S1) ∼= (IH q̄

2(X) ⊗H0(S1)) ⊕ (IH q̄
1(X) ⊗H1(S1)) ∼= (0 ⊗ Z) ⊕ (Z2 ⊗ Z) ∼= Z2

IH p̄
2 (X × S1) ∼= (IH p̄

2 (X) ⊗H0(S1)) ⊕ (IH p̄
1 (X) ⊗H1(S1)) ∼= (Z2 ⊗ Z) ⊕ (0 ⊗ Z) ∼= Z2.

These groups are isomorphic (in fact they must be, at least with rational coefficients, by

the Goresky-MacPherson Poincaré Duality [3]). However, we observe that the generators of

IH q̄
2(X × S1) are simply the products of generators of H1(T

2) with S1, e.g. each has the

form ξ × S1. These terms goes to 0 in IH p̄
2 (X × S1), where they are bounded by chains

of the form c̄ξ × S1, where c̄ξ is the cone on ξ to one “pole” of the suspension. Thus the

homomorphism IH q̄
2(X × S1) → IH p̄

2 (X × S1) is trivial, and the cokernel is Z2.

8 Duality?

A natural question to ask is whether IHJ
∗

satisfies any form of Poincaré duality. We note

that the most obvious thing to try does not work.

For a perversity, p̄, let p̂ be the dual perversity: p̄(k) + p̂(k) = k − 2. Then it is natural

to try to set Ĵ = {p̂ | p̄ ∈ J}.
However, suppose that X has only a point singularity of codimension n, that J = {p̄, q̄}

and that p̄(k) > q̄(k). Then one we note that IHJ
∗
(X; Q) = IH p̄

∗
(X; Q) ∼= IH p̂

n−∗
(X;Q).

But since p̄(k) > q̄(k), q̂(k) > p̂(k) and IH Ĵ
n−∗

(X; Q) = IH q̂
n−∗

(X; Q). So this is not the

correct way to get duality.
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9 Questions

1. Is IHJ
∗

a topological invariant?

2. If dimX = dimY and IHJ
∗
(X) ∼= IHJ

∗
(Y ), does IHJ

∗
(cX) ∼= IHJ

∗
(cY )?

3. Can IHJ always be calculated from knowledge of all IH p̄?

4. Does IHJ
∗

possess a generalization of Poincaré duality?

5. Is there a “nice” formula for IHJ
∗
(SX) in terms of IHJ

∗
(X)?

6. Is there a Deligne-type sheaf theoretic description of IHJ
∗
?

• If so, can it be axiomatized?

• Is there a duality theory via Verdier duality?

7. Is there a simple collection of spaces {Xi} sufficient to determine J given IHJ
∗
(Xi) for

all i?

8. What spaces are distinguished by IHJ
∗

but not by any IH p̄
∗
?

9. Is there a simple collection of spaces {Xi} which represents all possible functions from

multiperversities J to sequences of nonnegative integers (dim IHJ
i (X,Q) := 0, 1, . . . , n)

for n-pseudomanifolds. (This question is of interest already for the usual intersection

homology groups.)

10. Is it possible to prove PL-invariance of IHJ
∗
(X) for simplicial pseudomanifolds X based

on the Goresky and MacPherson treatement of the behavior under subdivisions. (As

far as we know, showing independence from the stratification along this line is not

known even for the original intersection homology groups.)

Concerning Problem 7 note that for ordinary intersection homology groups, if we consider

the set of open cones over products of spheres (or suspensions over products of spheres), then

for an unknown perversity p̄, given IH p̄
i (X) for these spaces we can determine p̄ uniquely. For

IHJ a larger family may be needed. The class of spaces containing spheres and closed under

forming cones and taking Cartesian products may be relevant to problems 7 and perhaps

also to Problems 8 and 9.

Finally we note that multiperversities may not be the end of the road. We can define

more and more refined conditions on allowable singular chains by considering next chains in

ICJ1 ∩ ICJ2 ∩ . . . for a set {J1, J2, . . . } of multiperversities. And continue by alternating

between sums and intersections. We will not say more about this further generalization

but rather introduce a notation: Tolerance will be a collective name for perversities, sets of

perversities, sets of sets of perversities etc. (Thus, 0-tolerance is a single perversity.) Since

duality appears to replace sums and intersections, duality which exists for 0-tolerance may

be regained by taking tolerance to the limit.
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