
SOME ASPECTS OF THE COMBINATORIAL THEORY OFCONVEX POLYTOPESGIL KALAIInstitute of MathematicsHebrew UniversityJerusalem, 91904, Israele{mail: kalai@humus.huji.ac.ilAbstract.We start with a theorem of Perles on the k-skeleton, Skelk(P ) (faces of dimension � k) of d-polytopes P with d+b vertices for large d. The theorem says that for �xed b and d, if d is su�cientlylarge, then Skelk(P ) is the k-skeleton of a pyramid over a (d� 1)-dimensional polytope. Thereforethe number of combinatorially distinct k-skeleta of d-polytopes with d + b vertices is bounded bya function of k and b alone. Next we replace b (the number of vertices minus the dimension) byrelated but deeper invariants of P , the g-numbers. For a d-polytope P there are [d=2] invariantsg1(P ); g2(P ); :::; g[d=2](P ) which are of great importance in the combinatorial theory of polytopes.We study polytopes for which gk is small and carried away to related and slightly related problems.Key words: Convex polytopes, skeleton, simplicial sphere, simplicial manifold, f-vector, g-theorem, ranked atomic lattices, stress, rigidity, sun
ower, lower bound theorem, elementary poly-topes1. Introduction1.1. OverviewIn this paper we will discuss several combinatorial problems concerning the combi-natorial structure of polytopes. For a d-polytope P the number of k-faces is denotedby fk(P ). The vector (f0(P ); f1(P ); : : : fd�1(P )) is called the f -vector of P . Thesame de�nitions will apply to more general combinatorial objects considered below.The k-th skeleton Skelk(P ) of a d-polytope P is the set of all faces of P of dimension� k. Skel1(P ) is called the graph of P and is denoted by G(P ).A simple basic fact is that for every d-dimensional polytope Pf0(P ) � d+ 1: (1)Equality holds if and only if P is a simplex. Important part of convex polytope theoryis the study of polytopes with \few vertices", namely polytopes with a boundeddi�erence between the nunber of vertices and the dimension. The following theoremof Perles is part of the theory of polytopes with \few vertices" and it will play acentral role in this paper.Theorem 1.1 (Perles, 1970) Let f(d; k; b) be the number of combinatorial typesof k-skeleta of d-polytopes with d + b+ 1 vertices. Then for �xed b and k, f(d; k; b)is bounded.



2 GIL KALAIA proof of Perles theorem is given in Section 2. (The proof relies only section1.4 from the Introduction.) The proof given here is somewhat di�erent from Perles'original proof. It relies, like the original proof on the important concept of missingfaces. The proof here uses the famous sun
ower (Delta-system) theorem of Erd}osand Rado.A construction which increase by one both the dimension and the number ofvertices is forming a pyramid over a polytope. Perles theorem asserts that for �xedb and d, if d is su�ciently large, then Skelk(P ) is the k-skeleton of a pyramid overa (d� 1)-dimensional polytope. In contrast, note that the number of combinatorialtypes of d-polytopes with d+3 vertices is bounded below by an exponential functionof d, see [24].Another theorem which is basic to the discussion in the second part of this paperis the lower bound theorem which was conjectured by Br�uckner in 1909 and wasproved by Barnette [7] in 1970.Theorem 1.2 For every simplicial d-polytope P ,f1(P ) � df0(P )��d+ 12 �: (2)Equality is obtained by stacked polytopes, namely polytopes built by gluingsimplices along facets.For a d-polytope P there are [d=2] invariants g1(P ); g2(P ); :::; g[d=2](P ) which areof great importance in the combinatorial theory of polytopes. g1(P ) is just thedi�erence between the number of vertices of P and d + 1. For simplicial polytopesg2(P ) is the di�erence between the left hand side and the right hand side of thelower bound relation (2).In analogy with the theory of polytopes with \few vertices" we discuss in Sections3 and 4 the combinatorial properties of polytopes with a bounded value of gk forsome �xed k. The nonnegativity of gk(P ) is in general a deep fact (and for k > 2 itis not even known for general polytopes which cannot be realized by vertices withrational coordinates.) And we try to use the methods originally applied to prove thenonnegativity of gk(P ) to study those polytopes for which gk(P ) is small.Section 3 deals with simplicial polytopes and Section 4 deals with general poly-topes. In both cases the case k = 2 is substantially simpler than the general case.We will use in this discussion the notion of stresses and the connection betweenstresses and the gk's as developed in Carl Lee's paper [2]. Our discussion in Section4 is strongly related to the �rst section in Margaret Bayer's paper [1] and also tosome topics in Richard Stanley's paper [3].The paper is written in somewhat ununiform style. The discussion in Section 2is self-contained and elementary. In Sections 3-4 while technically the paper is stillmostly self-contained, some prior familiarity with the notions of h-vectors, the lowerbound theorem, the g-theorem and the algebraic tools which play a role in theirstudy would be very useful. There are many problems and conjectures which arequoted and stated all around the paper.1.2. A startTheorem 1.3 Every d-dimensional polytope has at least d+ 1 vertices.



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 3Proof 1 (geometric-algebraic) : This follows at once from the fact that thevertices of a d-dimensional polytope a�nely span a d-dimensional space.Proof 2 (combinatorial) By induction: Let P be a d-polytope and let F be afacet of P . By the induction hypothesis F has at least d vertices. There must be avertex in P not in F therefore P has at least d+ 1 vertices.The combinatorial proof has the advantage that it applies to much more gen-eral combinatorial objects (ranked relatively-complemented lattices). The geometricproof show that g1(P ) is the dimension of the space of a�ne relations among thevertices of P , and suggests to study polytopes with small value of g1 by lookingon the space of a�ne relations among vertices. This is the starting point of a veryuseful theory of \Gale diagrams" see [24] Ch. 6.Both proofs show that equality holds if and only if P is a simplex.The combinatorial proof easily extends to prove the inequalityg1[r](P ) =: fr(P )��d+ 1r + 1� � 0: (3)Indeed, given a d-polytope P and a facet F of P , every (r � 1)-face G of F isincluded in an r-face HG of P such that HG itself in not contained in F . It followsthat HG \ F = G, and therefore G! HG is a one to one map from (r � 1)-faces ofF to r-faces of P which are not contained in F . Thus, by an induction hypothesisthere are at least �d�1r � r-faces of P contained in F , and at least �d�1r�1� r-faces of Pwhich are not contained in F .One of the interesting facts about the combinatorial theory of convex polytopesis that often algebraic arguments are needed. In some cases one needs a suitablemixture of algebraic and combinatorial arguments. We will see this in various placesin this paper.Remark: Relation 3 also have an algebraic interpretation. Each r-face of Pdetermines an r-dimensional 
at in Rd and thus also a vector in the exterior (r+1)-power of Rd+1. The vectors corresponding to all r-faces linearly span this exteriorpower.1.3. Polytopes, simplicial complexes, simplicial manifolds, polyhedralcomplexes and ranked atomic latticesThe set of faces of a polytope P , denoted by L(P ) is a ranked atomic lattice. L(P )is called the face lattice of P . (A lattice L is ranked if for every element x 2 L allmaximal chains of elements which are smaller than x have the same size. This sizeis called the rank of x. An atom is an element of rank 1, and L is atomic if everyjoin-irreducible element is an atom.) For example, the face lattice of a simplex is aBoolean lattice. We say that P and Q are combinatorially isomorphic if there is anorder preserving bijection between P and Q. In most parts of this paper we will notdistinguish between combinatorially isomorphic polytopes and we will also by abuseof notation will not distinguish between a polytope P and its face lattice L(P ). Wesay that Q is dual to P and write Q = P �, if there is an order reversing bijectionbetween L(P ) and L(Q). Every polytope has a dual given by the polar construction(see [24] Ch. 3).A meet semilattice is a poset with the meet operation. Every �nite meet-



4 GIL KALAIsemilattice becomes a lattice by adding to it a maximal element. A polyhedralcomplex is a meet-semilattice in which every lower interval is combinatorially iso-morphic to a face lattice of a polytope. A simplicial complex is a meet-semilatticein which every lower interval is a Boolean lattice. To every polyhedral complex Kthere is an associated topological space denoted by jKj.Intervals in face lattices of polytopes are also face lattices of polytopes. If L(Q)is combinatorially isomorphic to an interval of L(P ) we say that Q is a quotient ofP . If F is a face of P , the interval [F; P ] in L(P ) is the face lattice of a polytopedenoted by P=F . For every meet-semilattice L we will use the notation L=F todenote the set of all elements of L which are � than F . L=F is called the link of Fin L. Let K be a simplicial complex and let F be a face of K. The star of F in K,denoted by st(F;K) is the simplicial complex spanned by all the faces containingF . Note that if v is a vertex of K then st(v;K) is a cone over the link of v in F .Clearly, a link of face in a polyhedral complex is itself a polyhedral complex and alink of a face in a simplicial complex is a simplicial complex.A simplicial polytope P is a convex polytope all whose (proper) faces are sim-plices. The set of faces of P is a simplicial complex, denoted by B(P ), and called theboundary complex of P . If P is a simplicial polytope and F is a face of P then P=Fis also a simplicial polytope. The boundary complex of P=F is the link of the face Fin the boundary complex of P . A simplicial d-sphere is a simplicial complex K suchthat jKj is homeomorphic to the d-dimensional sphere Sd. Clearly the boundarycomplex of every simplicial d-polytope is a simplicial (d�1)-sphere, but the converseis far from being true. However many results on simplicial polytopes extend (or arebelieved to extend) to arbitrary simplicial spheres.A ranked atomic lattice L is relatively complemented if every interval in L isatomic. It is su�cient to require that every interval of rank 2 is atomic or, in otherwords, that if x > y are elements in L and x does not cover y, then there are atleast 2 elements of L strictly between x and y. (See [13].) Clearly, the face latticeof every polytope is relatively complemented.1.4. Empty facesLet K be a simplicial complex. An empty simplex S of K is a minimal non-face ofK,i.e., S is a subset of the vertices of K, S =2 K but every proper subset of S is in K.Empty simplices are called in [6, 41] missing faces. We want to distinguish betweenempty faces of various types and therefore we use a slightly di�erent terminology.Lemma 1.4 The set of empty simplices of a simplicial complex K determine thecomplex.Proof: A set of vertices of K is a face if and only if it does not contain an emptysimplex.Problem 1 Let mi(K) denotes the number of empty simplices of K of size i + 1.Characterize the vectors (m1(K);m2(K); � � �md(K)) which arise from simplicial d-polytopes.Let K be a polyhedral complex and let U be a subset of its vertices. The inducedsubcomplex of K on U , denoted by K[U ], is the set of all faces in K whose vertices



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 5are in U . An empty face of K is an induced polyhedral subcomplex of K which ishomeomorphic to a polyhedral sphere. An empty 2-dimensional face is called anempty polygon.For the proof of Perles' theorem we need only a much simpler concept of emptypyramid. An empty pyramid of K is an induced subcomplex of K which consists ofall the proper faces of a pyramid over a face of K.1.5. h-vectors g-vectors and the g-theoremLet d > 0 be a �xed integer. Given a sequence f = (f0; f1; : : : ; fd�1) of nonnegativeintegers, put f�1 = 1 and de�ne h[f ] = (h0; h1; : : : ; hd) by the relationdXk=0 hkxd�k = dXk=0 fk�1(x� 1)d�k: (4)If f = f(K) is the f -vector of a (d � 1)-dimensional simplicial complex K thenh[f ] = h(K) is called the h-vector of K. For the case where K is the boundarycomplex of a simplicial sphere, the g-vector g(K) = (g0; g1; : : : ; g[d=2]) associated withK is de�ned by gi = hi�hi�1. Thus, g0 = 1, g1 = f0� (d+1), g2 = f1�df0+ �d+12 �and g3 = f2 � (d� 1)f1 + �d2�f0 + �d+13 � and so on.In 1970 P. McMullen [36] proposed a complete characterization of f -vectors ofboundary complexes of simplicial d-dimensional polytopes. McMullen's conjecturewas settled in 1980. L. Billera and C. Lee [12] proved the su�ciency part of theconjecture and R. Stanley [43] proved the necessity part. Stanley's proof relies ondeep algebraic machinery including the hard Lefschetz theorem for toric varieties.Recently, McMullen [37] found a self-contained proof of the necessity part of the g-theorem. It is conjectured that the g-theorem applies to arbitrary simplicial spheres.For positive integers n � k > 0 there is a unique expression of n of the formn = �akk �+�ak�1k � 1�+ : : :+�aii �; (5)where ak > ak�1 > : : : > ai � i > 0. This given, de�ne@k(n) = �ak�1 � 1k � 1 �+�ak�1 � 1k � 2 �+ : : :+�ai � 1i� 1 �: (6)Theorem 1.5 (g-theorem) For a vector h = (h0; h1; : : : ; hd) of nonnegative inte-gers the following conditions are equivalent:(i) h is the h-vector of some simplicial d-polytope.(ii) h satis�es the following conditions(a) hk = hd�k for k = 0; 1; : : : ; [d2 ]Put gk = hk � hk�1.(b) g0=1 and gk � 0 , k = 1; 2; ; : : : ; [d2 ].(c) @k(gk+1) � gk; k < [d2 ]The relations of part ii(a) are the well-known Dehn-Sommerville relations. Theyhold for arbitrary simplicial spheres and even for arbitrary Eulerian simplicial com-plexes [35, 3]. Part ii(b) consists of linear inequalities called the generalized lowerbound inequalities proposed by McMullen and Walkup in [38].



6 GIL KALAIBoth Stanley's original proof and McMullen's new proof of the necessity of theg-theorem give a (completely di�erent) proof of the same algebraic statement. Thisalgebraic statement can be expresses in terms of the Stanley-Reisner ring [42], or asa property of certain stresses on simplicial polytopes (and also in terms of algebraicshifting [33]). For a thorough explanation the reader is referred to Carl Lee's paperin this volume [2].The g-theorem demonstrates the importance of the g-numbers to the combina-torial theory of simplicial polytopes (and spheres). It is natural to ask how combi-natorial properties of P are re
ected by its g-numbers.A far reaching extension of the h-vector (and g-vector) for general polytopes wasgiven by Stanley [46], see [1, 29]. We will discuss this in Section 4.The following conjecture was suggested by Kalai, Kleinschmidt and Lee. If true,this conjecture gives a sharp form of Theorems 2.7 and 3.8 below.Conjecture 2 For all simplicial d-polytopes with prescribed h-vector h = (h0; h1; : : : ; hd),the number of i-dimensional missing simplices is maximized by the Billera-Lee poly-topes PBL(h).BP (h) is the polytope constructed by Billera and Lee [12] in their proof of thesu�ciency part of the g-theorem. It is quite possible that the conjecture applies alsoto general polytopes.2. Polytopes with few vertices and Perles' skeleton theorem2.1. Monotonicity properties of g1Lemma 2.1 For every face F of a polytope P , g1(P=F ) + g1(F ) � g1(P ). Inparticular, g1(F ) � g1(P ) and g1(P=F ) � g1(P ).Proof: Let k = dimF and note that dim(P=F ) = d � k � 1. f0(P=F ) is thenumber of (k + 1)-faces G which contain F . Choose a vertex vG in G which is nota vertex of F . Clearly if H and G are two di�erent (k + 1)-faces which containF then vG 6= vH . Therefore f0(P=F ) � f0(P ) � f0(F ). So g1(F ) + g1(P=F ) =f0(F )� k � 1 + f0(P=F )� (d� k) � f0(P )� d� 1 = g1(P ).Lemma 2.2 [10] Put �(P ) = Maxff0(P ) � f0(F ) � 1 : F is a facet of Pg. Thenfor every facet F of P , �(P ) � �(F ).Proof: Let F be a facet of P and let G be a facet of F . G is the intersectionof F with another facet F 0 of P . Thus V (P )nV (F 0) � V (F )nV (G). Thereforef0(P )� f0(F 0) � f0(F )� f0(G). The Lemma follows.Note that �(P ) = 0 if and only if P is a simplex.Lemma 2.3 Every d-polytope with d+ b-vertices contain a (d� b+1)-face which isa simplex.Proof: Choose a sequence P � Fd�1 � Fd�1 � � � � � Fd�b = G such that�(Fi) = f0(Fi) � f0(Fi�1) � 1. If G is not a simplex then �(G) > 0) and thereforeby the previous Lemma �(Fi) > 0 for every i > d � b + 1. Therefore g1(P ) �g1(G) + b� 1 � b. A contradiction.



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 72.2. The simplicial case of Perles' theoremDe�nition: A collection fA1; A2; � � � ; Atg of sets is a sun
ower if every elementwhich belongs to two or more of the sets belongs to all the sets. In other words, letX = \ti=1Ai then for every i 6= j Ai \ Aj = X .Lemma 2.4 Let P be a simplicial d-polytope, and assume that P contains b disjointempty simplices, then P has at least d+ b vertices.Proof: Let F be a facet of P , clearly every empty simplex of P must contain avertex not in F , but V (P )nV (F ) = f0(P ) � d = b. (Here V (F ) denotes the set ofvertices of F .)Lemma 2.5 Let P be a simplicial d-polytope, and assume that P contains a sun-
ower of size b of empty simplices, then P has at least d+ b vertices.Proof: First note that if S is an empty simplex in P andA � S then SnA is an emptysimplex in P=A. Now, if P contain a sun
ower fA1; A2; � � �Abg of empty simplicesand \bi=1Ai = R then A1nR, A2nR; : : : ; AbnR, are b disjoint empty simplices in Q =P=R. Therefore by Lemma 2.5 f0(Q)�dimQ � b and by Lemma 2.1 f0(P )�d � b.Lemma 2.6 (Erd}os-Rado sun
ower lemma [20]) Let F be a collection of n-sets which contains no sun
ower of size b then jF j � m(n; b) = (b� 1)n � n!.Proof By induction on n. Let F be a collection of n-sets with out a sun
ower ofsize b, and let G be a maximal subcollection of pairwise disjoint sets. PutA = [G.Then jGj < b, jAj � n(b � 1) and every set in F contains an element from A. Foreach a 2 A the family F (a) = fSnfag : S 2 F; a 2 Sg is a family of (n � 1)-sets without a sun
ower of size b. Using the induction hypothesis we get jF j �n(b� 1) � (b� 1)n�1(n� 1)! = m(n; b).Let me mention an old and still very interesting conjecture of Erd}os and Rado.Let f(n; b) be the maximum size of a family of n-sets without a sun
ower of size b.Conjecture 3 (Erd}os and Rado) For a �xed b f(n; b) � C(b)n, where C(b) is afunction of b only.As a corollary to the results we proved in this section we obtain:Theorem 2.7 Let P be a d-polytope with d + b vertices. Then the total number ofempty simplices of dimension � k is bounded by a function of b and k.Proof of Perles' theorem, the simplicial case:We want to bound the combinatorial types of k-skeleta of simplicial d-polytopesP with d+b vertice. The k-skeleton of P is determined by the set of empty simplicesof P of dimension � k. The number of empty simplices of dimension � k is boundedby m(k + 1; b + 1) = bk+1 � (k + 1)!. Therefore, the number of all vertices of theseempty faces is bounded by (k + 1) �m(k + 1; b+ 1) and the number of isomorphismtypes of the family of empty simplices is at most Pk+1i=1 �(k+1)m(k+1;b+1)i �. This isroughly exp((k + 1)2(log(k + 1) + log b� 1).



8 GIL KALAI2.3. Perles theorem - the general caseLemma 2.8 A d-polytope P with d+ b vertices has at most 2b disjoint empty pyra-mids.Proof: In follows from Lemma 2.3 that P must have a (d� b� 1)-face S whichis a simplex. Every empty pyramid (or empty face) must contain vertices outside S.The lemma follows from the fact that jV (P )nV (S)j = 2b.Lemma 2.9 Every collection of more than (b� 1)r � nr r-faces each having at mostn vertices, contains a sun
ower of size b.Proof: The proof follows the inductive proof of the sun
ower lemma. Let F bea collection of faces of dimension r (or less) each having n vertices or less without asun
ower of size b. Let G be a maximal subcollection of pairwise disjoint faces. LetA be the set of vertices of all faces in G. Then jGj < b, jAj � n(b� 1) and every setin F contains an element from A. For each a 2 A the family F (a) = fS=fag : S 2F; a 2 Sg is a family of (r�1)-faces with at most (n�1)- vertices without a sun
owerof size b. Using an induction hypothesis we get jF j � n(b� 1) � (b� 1)r�1nr�1.Proof of Perles' theorem (end):1 For a polyhedral complex K de�ne thekernel of P , Ker(P ), to be the union of the sets of vertices of all empty pyramidsin K. Clearly the combinatorial type of Ker(K) and the number of vertices of Kdetermine the combinatorial type of K. Namely the set of faces of K is preciselyF �T where F is a face of K and T is any subset of vertices which are disjoint fromKer(K). F � T is the jT j-fold pyramid with basis F .Lemmas 2.9 implies that the kernel of the k-th skeleton of a d-polytope with d+bvertices has at most (2b)r�1(b+k))r vertices. Therefore the number of isomorphismtypes of k-skeleta of d-polytopes with (d+ b) vertices is bounded by the number ofk-dimensional polyhedral complexes with (2b)r�1(b+ k))r vertices.2.4. The scope of Perles' theoremAs easily seen the proof of Perles theorem for simplicial polytopes given above appliesfor arbitrary pure simplicial complexes. The proof of the general case applies for alarge class of ranked atomic lattices. Perles observed that his proof (and this appliesto the proof given here) applies to arbitrary ranked atomic relatively complementedlattices. He went further to de�ne an even larger class of lattices, the class ofpyramidally perfect lattices, for which his proof applies. For an element x in anatomic lattice L, J(x) denotes the set of atoms below x. An atom a is pyramidalwith respect to x 2 L if a 6< x and J(x _ a) = J(x) [ fag. A ranked atomic latticeis called pyramidally perfect if whenever a is pyramidal w.r.t. x it is also pyramidalw.r.t. every y, y < x,3. Simplicial polytopes with small value of gk3.1. overviewIn this section we discuss simplicial polytopes with small value of gk. The situationis simpler for g2 and more involved for higher k's.1 This part of the proof is taken from [41] without changes



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 9The nonnegativity of g2 can be proved by purely combinatorial methods as wellas by the rigidity theory of frameworks. Both approaches apply to a very generalclass of simplicial complexes, the class of pseudomanifolds. The rigidity theoreticinterpretation of g2 gives much information on the structure of simplicial polytopes(and simplicial manifolds) with small values of g2. This is described below in Sec-tions 3.3. The proofs of the necessity of the g-theorem (both Stanley's original proofand McMullen recent proof) deduce the theorem from a certain crucial algebraicfact. This gives an interpretation of gk which is closely related to the rigidity theo-retic interpretation of g2 see [2, 37, 33] and allows to extend some of the results tosimplicial polytopes with small values of gk.In Section 3.2 we state a conjecture giving a complete description of g-vectorsof sequences of simplicial polytopes which converge to smooth bodies. Like the g-theorem the conjecture consists of a linear part and a nonlinear part. The linear partof the conjecture may be doable by improving the methods and results describedhere. In Section 3.3 we describe the main tool we use, the notion of stresses. This isa very quick outline of some facts from Carl Lee's paper [2]. In Section 3.4 we statethe lower bound inequalities and in Section 3.5 we describe the structure of the proofshowing that g2 = 0 only for stacked polytopes. In Section 3.6 we describe somepartial information on polytopes with vanishing gk. In Section 3.7 we extend Perlestheorem to simplicial polytopes with bounded gk. In Section 3.8 we study in moredetails the case k = 2. It turns out that every simplicial polytope with small valueof g2 can be obtained by gluing together \small" pieces. In Section 3.8 we diverge todescribe �ner invariants of simplicial polytopes which give much more informationthan the g-numbers.3.2. g-numbers of simplicial polytopes which converge to a smooth bodyWe state two conjectures on the behavior of g-numbers of simplicial polytopes whichconverge to a smooth body. The �rst conjecture falls into our study of polytopeswith a bounded values of gk. It is trivial for k = 1 and follows from the result ofSection 3.8 for k = 2. The second conjecture calls for a similar study of polytopesfor which g<k>k � gk+1 is bounded.Conjecture 4 ([26]) Let k; d be positive integers d � 2k. Let Pn be a sequence ofd-polytopes which converge to a smooth body K. Thenlimn!1 gk(Pn)!1: (7)Conjecture 5 Let Pn be a sequence of d-polytopes which converge to a smooth bodyK. Then for k < [d=2] limn!1(gk(Pn)� @k(gk+1(Pn)))!1: (8)If Conjectures 4 and 5 are true then they give a complete descriptions of sequencesof g-vectors which come from sequence of simplicial polytopes converging to a smoothbody K. (Note: the description is independent from K.)If Pn is a sequence of polytopes which converges to a convex body K, and Qn isany sequence of polytopes, then one can glue a projective copy of Qn to one facetof Pn and the resulting sequence of polytopes will also converges to K.



10 GIL KALAIIf Gd is the set of g-vectors of simplicial d-polytopes, and Bd(r) is the set ofvectors (a1; : : : ; a[d=2]) such that jaij � r for every i. Then if Conjectures 4 and 5 aretrue, a sequence of g-vectors fgng is the sequence of g-vectors of simplicial polytopesconverging to a smooth convex body K if and only if for every r there is Nr suchthat gn +Bd(r) � Gd for every n > Nr.Remarks: 1. Connections between metrics on the sphere and combinatorialinvariantsIt is possible to formulate similar questions in a purely combinatorial way forsequences of simplicial spheres (and even simplicial manifolds). Every triangulationof the sphere induces a metric and it is possible to consider limits of such metrics (see[23]) as the number of vertices tends to in�nity. It is natural to study Conjectures4 and 5 in this more general context, and more generally to study the followingProblem 6 Given a metric on the (d�1)-sphere and sequence of simplicial sphereswhose induced metrics converges to this metric, �nd relations between the g-numbers(and other combinatorial properties) of the simplicial spheres in the sequence andthe geometric properties of the limiting metric.2. Separation properties of G(P �).Let K be a pure (d � 1)-dimensional simplicial complex. The dual graph of K,denoted by G�(K) is de�ned as follows. the vertices of G�(K) are the facets (=(d � 1)-faces) of K and two vertices F and G are adjacent if F \ G is a (d � 2)-dimensional face. If K is the boundary complex of a simplicial polytope P thenG�(K) is just the graph of the dual polytope P �.Let f(r) be a function of the integer number r and consider the class Pf ofall simplicial polytope P (or even simplicial spheres) with the following property.Whenever r vertices are deleted from G(P �n ) then the remaining graph has a con-nected component having all vertices accept at most f(r) of them. It is plausible(and would imply Conjecture 4) that for every function f(r) and for all polytopes inPf the value of gk(P ) (k < [d=2]) is bounded. See [33] for some results on separationproperties of graphs of special types of simple polytops.3.3. StressesThis is a very quick outline of some important ingredients of Carl Lee's paper [2].See also the papers of Tay, White and Whiteley [50] on skeletal rigidity. The readershould also consult Lee's paper for the relations between stresses and the Stanley-Reisner's ring and [33] for the connection with algebraic shifting.LetK be a simplicial complex embedded into Rd. (By \embedded" we only meanthat the vertices are embedded in such a way that the vertices of faces are a�nelyindependent.) A k-stress (which is an abbreviation here for an a�ne k-stress sincewe will not consider linear stresses,) is de�ned as follows. For every (k � 1)-faceF choose a point uF 2 F . If G is a k-face containing a (k � 1)-face F let v(F;G)denotes the vertex of G not in F . A k-stress is an assignment of weights wG to thek-faces G of K such that for every (k � 1)-face FXfwG(v(F;G) � uF ) : G � Fg 2 A� (F ): (9)



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 11Here, A� (F ) is the a�ne span of the face F . Let Sak denotes the space of k-stresses of K.Let Ak(K) be the space of all assignment of weights wG to the k-faces G of K.Now consider the map Tk which assigns to every w 2 Ak(K) weights on (k�1)-facesF as follows: The weight of a (k � 1)-face F is PfwG(v(F;G) � uF ) : G � Fgconsidered as a vector in the quotient space Rd=Aff(F ). (The weights are vectorsof dimensions d� k+1.) The space of k-stress is precisely the kernel of Tk. There isa complementary notion of k-rigidity, (or skeletal k-rigidity) which is of importancehere. Roughly speaking, K is k-rigid if the image of Tk is \as large as possible".What we will need is that if K is k-rigid, and K 0 is obtained from K by adding justone k-face then K 0 has a non-zero k-stress.All these concepts become classic for k = 1. 1-rigidity is called in�nitesimalrigidity. 1-stress is the classical notion of a stress of a framework. 0-stresses are justa�ne relations among the vertices, and being 0-rigid just mean that the vertices ofK a�nly span Rd.The basic fact connecting stresses with the g-vector is the following fact whichfollows from the two known proofs of the necessity part of the g-theorem. (InStanley's proof the following fact is proved only for rational polytopes.)Theorem 3.1 Let P be a simplicial d-polytope let k < [(d + 1)=2]. Then gk(P ) =dimSak (P ):This is equivalent to the fact that Skelk(P ) is k-rigid.An important fact about stresses is that they behave nicely under forming a cone.Let K be a simplicial k-dimensional complex and consider a generic embedding ofK in Rd. Consider also a generic embedding of a cone over K in Rd+1. Then theembedding of K is k-stress free i� the embedding of the cone is k-stress free. See[50]. (This is related to the fact that the operation of forming a cone commutes withalgebraic shifting.)Remark: Stresses can be regarded as analogs for Gale transforms which are oneof the most useful tools in the study of polytopes with few vertices. However, theextension of the basic property of Gale transform is not yet known:Conjecture 7 ([26]) Let P1 and P2 be two simplicial d-polytopes and let � be abijection from V (P ) to V (Q) such that, � is a combinatorial isomorphism fromSkelk(P ) to Skelk(Q) and moreover the map induced by � gives an isomorphismbetween the space of k-stresses of P and the space of k-stresses of Q. Then � inducesa combinatorial isomorphism between P and Q.In other words, is the k-skeleton plus the vector space of k-stresses determineuniquely the combinatorial type of simplicial polytopes?Note that for k = [d=2] the space of stresses is trivial, but indeed an importanttheorem of Perles asserts that for two simplicial d-polytopes every combinatorialisomorphism between Skel[d=2](P ) and Skel[d=2](Q) can be extended to a combina-torial isomorphism between P and Q. Also, as we shall see later, if for k < [d=2] thespace of k-stresses of a simplicial d-polytope is trivial (i.e. gk(P ) = 0) then P hasno missing faces in dimensions greater than k and smaller then d� k and again thek-skeleta determine the combinatorial structure of the polytope.



12 GIL KALAI3.4. g2 and the lower bound inequalitiesA simplicial d-polytope is stacked if it can be obtained by gluing d-simplices alongfacets. Every stacked polytope with n vertices is obtained from a stacked polytopewith n� 1 vertices by adding a vertex beyond exactly one facet. P is stacked if andonly if it can be triangulated without introducing faces of dimension smaller than(d� 1). The boundary complex of a stacked polytope is called a stacked sphere.It is easy to see that the f -vector of a stacked d-polytopes is determined bythe number of vertices. Let �k(n; d) denotes the number of k-faces of a stackedd-polytope with n vertices. Thus, �k(n; d) = �dk�n � �d+1k+1�k, for k, 1 � k � d � 2,and �d�1(n; d) = (d� 1)n� (d+ 1)(d� 2).The lower bound inequalities assert that for every simplicial d-polytope P with nvertices, fk(P ) � �k(n; d). The case k = 1 of this inequality is just the nonnegativityof g2. There is an inductive way to deduce the lower bound inequalities from thenonnegativity of g2. See [7, 38, 27]. However, this inductive argument does notapply for certain generalization of the lower bound inequalities such as for centrallysymmetric polytopes and for general polytopes. Thus, it may be useful to �nd adirect interpretation of g2[r] = fk(P ) � �k(n; d) as the dimension of some vectorspace.3.5. Simplicial polytope with vanishing g2Theorem 3.2 For d > 4 the following conditions are equivalent: (1) P is stacked(2) P=fvg is stacked for every vertex v, (3) P has no empty simplices of dimensionr, for 1 < r < d� 1.The proof of this theorem is given in [27]. It applies to arbitrary simplicial(d� 1)-manifolds which are simply connected. For non-simply connected manifoldsM conditions 2 and 3 remain valid and are equivalent to the fact thatM is obtainedfrom the boundary of stacked polytope by additional operations of handle formingvia identifying the vertices of two disoint facets and deleting the facet.Theorem 3.3 For d � 4 the following are equivalent (1) P is stacked (2) P has noempty faces (of any kind) of dimension r, for 1 < r < d � 1 (3) P has no emptysimplices of dimension r, for 1 < r < d� 1 and no empty polygons.The crucial point behind this theorem is the situation for simplicial 3-polytope.A simplicial 3-polytope is stacked i� it has no missing polygons other than trian-gles. While the two theorems above are purely combinatorial rigidity arguments areneeded to prove the followingTheorem 3.4 For d > 3, if g2 = 0 then(1) P has no empty faces of dimension r, 1 < r < d � 1 (2) g2(P=v) = 0 forevery vertex v. (3) P has no empty polygons.It follows from the theorems quoted above that if g2(P ) = 0 then P is a stackedpolytope. This result applies to arbitrary simplicial manifolds (and pseudomani-folds).



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 13Remark: There is an interesting issue which is related to the above theorems.Consider a simplicial manifold K and assume that all links of vertices K=v (whichare simplicial spheres) have certain combinatorial properties. What does this implyon the topology of K? If all links are stacked spheres then for dimensions > 3 thisimplies severe restrictions on the topology of K, and in particular, if K is simplyconnected then K is a sphere (the 3-dimensional case is open).3.6. Simplicial polytopes with vanishing gkWe do not have good understanding of simplicial polytopes such that gk(P ) = 0.McMullen and Walkup conjectured that every such polytope is k-stacked, namely itcan be triangulated without introducing faces of dimensions < d�k. Unlike stacked(1-stacked) polytopes which are well understood, k-stacked polytopes are themselvesquite mysterious. Parts of the discussion concerning the vanishing of g2 extends tohigher k's but other parts are still not known (but perhaps doable).Proposition 3.5 For d � 2k+3 the following are equivalent (1) P is k-stacked (2)P=v is k-stacked for every vertex v.Proposition 3.6 For d > 2k + 1, if gk(P ) = 0 then (1) P has no empty simplexsof dimension r, k � r � d� k (2) gk(P=v) = 0 for every vertex v.Proof: (1) Assume that S is an empty k-simplex. Now, the vertex �gure P=v isk-rigid and therefore st(v; P ) (being a cone over it) is k-rigid. R = Snv is a (k� 1)-face in P which is not in st(v; P ). Therefore st(v; P ) [ R has a non-zero stress andsince st(v; P ) [ R � P , P has a nonzero k-stress, and gk(P ) > 0. If S is an emptysimplex of size k + i choose V � S, jV j = i and a vertex v 2 V . Apply the sameargument for P=V inside P=(V nfvg).Part (2) follows at once from the cone property for k-stresses. In fact, we getLemma 3.7 gk(P=v) � gk(P ).Proof: gk(P=v) is the dimension of the space of k-stresses of P=v w.r.t to em-bedding in Rd�1, therefore gk(P=v) is the dimension of the space of k-stresses ofst(v; P ) w.r.t. embedding in Rd.Part (2) of Proposition 3.6 also follows from the identityXv gk(P=v) = (d� k + 1)gk(P ) + (k + 1)gk+1(P );and the nonnegativity of gk+1(P ).Conjecture 8 For d � 2k the following are equivalent (1) P is k-stacked (2) P hasno empty faces (of any kind) of dimension r, for k < r < d� k for d � 2k these twoconditions are equivalent to (3) gk(P ) = 0.Remark: The k-the skeleton of every d-polytope contains a subdivision of thek-skeleton of a d-simplex. For simplicial polytopes nonvanishing of gk also seemsrelated to the existence of a subdivision of the k-skeleton of a (d + 1)-simplex.Indeed, nonvanishing of g2 for a simplicial polytope P is equivalent to the fact thatthe graph of P contains a re�nement of K5 [27]. For k > 2 results of Stanley [48]seems relevant.



14 GIL KALAI3.7. Analog of Perles theorem for simplicial polytopes with smallvalue of gkTheorem 3.8 For positive integers k � 1; r � k and b � 0 there is a functionbk(r; b) with the following property: Let P be a simplicial d-polytope with gk(P ) � b.Then P has at most bk(r; b) empty r-simplices.Proof (sketch)By the sun
ower theorem it is enough to prove that there is no sun
ower of emptyr-simplices of size b + 1. We have seen that an empty r-simplex, d � k > r > kis responsible to a k-stress, so it is enough to show that in case of a sun
owerfS1; S2; : : : ; Sb+1g we get a contribution of at least b+1 to the space of stresses. LetR be the intersection of the Si's. If jRj > r � k the situation is very easy; chooseV � R such that jV j = r � k and a vertex v 2 V . Let K = P=(V nfvg). K=v isk-rigid in dimension d�jV j and therefore st(v;K) is k-rigid in dimension d�jV j+1and adding to it the b+ 1 k-faces S1nV; S2nV : : : ; Sb+1nV create a k-stress space ofdimension at least b+ 1. The case where jRj is smaller is slightly more complicatedand we omit the details.Corollary 3.9 There exists a function uk(r; b) with the following property: Let Kbe the k-th skeleton of a simplicial d-polytope P with gk(P ) < b (Note: gk can beread from the k-skeleton.) Then there are only uk(r; b) possibilities for the r-skeletonof P .Note that the number of 1-skeleta of stacked d-polytopes with n vertice is expo-nential in n.It seems that Theorem 3.8 applies to general empty faces and not only to emptysimplices. What we need to do is given an empty face in dimension r; k < r <d� k to �nd a nonzero k-stress, such that for disjoint empty faces one gets linearlyindependent k-stresses. It looks that an appropriate Meyer-Vietoris type statementfor k-stresses is needed. Proving this may be helpful also in verifying Conjecture 4.3.8. Simplicial polytopes with small value of g2A simplicial polytope P is prime if it does not contain an empty (d � 1)-simplex.If P is not prime then P can be obtained by gluing together along facets of primesimplicial polytopes. We write P = P1#P2# � � �#Pk for the description of P as theunion of prime simplicial polytopes. It is easy to see that g2(P ) = P g2(Pi). Thefollowing theorem shows that if g2(P ) is small then P is obtained by gluing togethermany small pieces. (Clearly most of these pieces must be simplices.)Theorem 3.10 There is a function u(d; b) such that if P is a prime simplicial d-polytope and g2(P ) � b then g1(P ) � u(d; b).Proof: (sketch) For d > 4. We know that the number of empty simplices ofP of dimension r, 1 < r < d � 1 is at most X = X(d; b). The number of edges ofP is bounded by a linear function of the number of vertices. Therefore (by Tur�antheorem) if the number of vertices is large then G(P ) contains an independent setU of vertices of size > X . For u 2 U , if P=fug (= the link of u in P ) is not stacked



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 15and also if P=fug contains a empty d � 2 simplex which is not a face of P , we geta non-zero stress su is st(u;K). Moreover su have nonzero weight on some edgecontaining u. Since U is an independent set of vertices this edge is not included inthe star of any other vertex of U . Therefore, all the stresses fsu : u 2 Ug are linearlyindependent. A contradiction.It follows that for some u 2 U , st(u; P ) does not contain a non-zero stress.Therefore either P=fug is a simplex and thus an empty (d � 1)-simplex or P=fugis stacked, and contains an empty (d � 2)-simplex R, such that R is not an emptysimplex in P . In this case R [ fug is an empty (d� 1)-simplex in P . The proof ford = 4 is more involved and we will not include it here.Remarks: 1. It is quite possible that u(d; b) is actually independent from d,and it would be interesting to determine its best possible value. I do not know ofexamples of prime simplicial polytopes with g1 � g2 � 1.2. The proof of Theorem 3.10 applies in much more general contexts. The proofas described above applies for simplicial spheres and even for simplicial manifolds.Every simply connected prime simplicial manifold can written as a connected sumof prime (simply connected) simplicial manifolds. For arbitrary manifolds one hasto add another operation - that of \handle forming" via an identi�cation of twofacets. Every simplicial manifold with small value of g2 can be obtained from small\prime" pieces by the operations of connected sum and handle forming. (Everyhandle increase the value of g2 by �d+12 �.) It follows that for every b there are only�nitely many d-manifolds which have a triangulation K such that g2(K) � b:3. Even more generally, Theorem 3.10 applies to all pseudomanifolds such thatthe link of every face of codimension � 1 is connected and the link of every link ofdimension � 2 is simply connected.3.9. Diversion: Finer invariantsAn order ideal of monomials I is a collection of monomials in variables (say) x1; x2; : : :such that 1 2 I and if m 2 I and m0 divides m then m0 2 I . We will denote by fk(I)the number of monomials of I of degree k and call the vector (f0(I); f1(I); : : :) thef -vector of I . (Note: the indices here are shifted by 1.) An order ideal of monomialis shifted if for every monomial m in S if xj has positive degree in m and i < j thenm � xi � x�1j 2 I .A sequence of integers (m0;m1; : : :) is an M-vector ifm0 = 1 and 0 � @k(mk+1) �mk for every k � 1. An old theorem of Macaulay asserts that M-vectors are preciselythe possible f -vectors of order ideal of monomials. Every M-vector can be realized(usually in many ways) as the f -vector of a shifted order ideal of monomials.For a simplicial d-polytope (and probably for every simplicial (d � 1)-sphere,)the vector (1; g1; : : : ; g[d2 ]) is an M - vector. The proof of the necessity part of theg-theorem actually associates to every simplicial polytope P a shifted order ideal ofmonomials S(P ) such that gi(K) is the number of monomials of degree i in S. (See[33].) S(P ) can be regarded as a delicate invariant of P . It is conjectured that thesame algebraic construction applies to arbitrary simplicial spheres.Conversly, for every shifted order ideal of monomial S there is a construction of asimplicial sphere K(S), see [28]. It is conceivable but not known that S(K(S)) = S.It would be interesting to study the structural properties of P as a function of



16 GIL KALAIS(P ), in a similar line to the approach of this paper. Here is a far-reaching extensionsof Conjectures 4 and 2.Let M(d) denotes the set of all monomials of degree � [d=2] on the countable setof variables x1; x2; : : : ; xn; : : :.Conjecture 9 Let Pn be a sequence of simplicial d-polytopes which converges to asmooth body K. Then [S(Pn) =M(d).Conjecture 10 For simplicial spheres K with S(K) = S, the vector of empty sim-plices is maximizes for the complex K(S).Remarks: 1. It is known for quite a long time that there are simplicial (andpolyhedral) spheres that cannot be realized as the boundary complex of a simplicialpolytope. In high dimensions there is a striking gap between the number of com-binatorial types of simplicial polytopes and the number of combinatorial types ofsimplicial spheres. See [22, 28]. However, most of the results mentioned here for sim-plicial polytopes are either known or conjectured to be known for simplicial spheres.While face numbers are probably too weak to distinguish simplicial polytopes fromarbitrary triangulations of spheres it is possible that the �ner invariant S(K) willcontain some useful parameters for this problem.2. It is interesting to note that neither the g-vectors nor the �ner invariantS(P ) can distinguish between di�erent neighborly polytopes. Indeed P is neighborlyi� S(P ) is the ideal of all monomials of degree � d=2 in n � d variables. Thecombinatorial structure of neighborly polytopes (even in dimension 4) is a rich topicand it seems that completely di�erent invariants are needed for their study.4. General Polytopes4.1. OverviewIn this section we consider general polytopes. In this case even the de�nition ofgk(P ) is quite subtle. We describe the de�nition in Section 4.2. More details canbe found in Bayer's paper [1]. Section 4.3 is devoted to g2(P ). We describe therigidity theoretic meaning of g2(P ), and describe some facts on the remarkable classof polytopes with vanishing g2. The nonnegativity of the gk's implies many linearinequalities for 
ag numbers of polytopes. The possibility to use the large amountof complicated data given by such inequalities to prove basic and easy to state prop-erties of polytopes is discussed in Section 4.4. We describe there results of Meisingerwho developed an automatic polytope theorem prover FLAGTOOL. In Section 4.5we make some conjectures for additional linear inequalities for 
ag numbers of poly-topes. In Section 4.6 we discuss special classes of polytopes and in Section 4.7 weask to which generality can we hope for a notion of h- and g-numbers.4.2. gk for general polytopes and flag numbersIntersection homology theory have led to deep and mysterious extensions of g-numbers from simplicial polytopes to general polytopes.The de�nition (which can be found also in [1, 3]) goes as follows. For a polytopeP denote by Pk the set of k-faces of P .



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 17De�ne by induction two polynomialshP (x) = dXk=0hkxd�k; gP (x) = [d=2]Xk=0 gkxd�k;by the rules: (a) gk = hk � hk�1, (b) If P is the empty polytope or a 0-polytope P ,hP = gP = 1, and hP (x) = dXk=0(x� 1)d�kXfgF (x) : x 2 Pkg:Thus g1(P ) = f0(P )� d� 1 andg2(P ) = f1(P ) +Xff0(F )� 3 : F 2 P2g � df0(P ) +�d+ 12 �:The value of g2 for general polytopes have also a rigidity theoretic meaning. Inthis case, however, the nonnegativity of g2 is still open for more general objects likepolyhedral spheres and manifolds.The higher g numbers for general polytopes are quite mysterious, and at presenttheir nonnegativity is known only for polytopes with rational vertices. Goresky andMacPherson (unpublished) developed a concrete way to describe gk(P ) as certainhyperhomology groups based directly on the geometry of the polytope. This concretedescription (which they proved only for rational polytopes, ) may shed some light ontheir geometric meaning. McMullen's recent new proof of the necessity part of theg-theorem also gives some hope for elementary interpretation of the g-numbers forgeneral polytopes and new proof for their nonnegativity. McMullen's proof also con-tain a relatively easy reduction from simple polytopes to rational simple polytopesand there is hope that this part, at least, can be extended to general polytopes.Stanley [46] conjectured that the g-vector is an M-vector for every polytope [46].It is not even known that gk(P ) = 0 implies that gk+1(P ) = 0. Stanley also pointedout what is the extreme combinatorial generality for which the g-numbers as de�nedin this section should work: Namely for regular cell decomposition of (homology)spheres whose faces form a lattice.For A d-polytope P , and a subset S = fi1; : : : ; ikg � f0; 1; : : : ; d � 1g the 
agnumber fS(P ) is the number of chains of faces of P F1 � F2 � � � � � Fk suchthat dimFj = ij . (The same de�nition applies to ranked lattices.) For simplicialpolytopes the 
ag numbers are determined by the face numbers, but for generalpolytopes 
ag numbers seems to be the \correct" invariants. A remarkable theoremof Bayer and Billera asserts that the a�ne dimension of the space of 
ag numbersof d-polytopes is cd � 1, were cd is the d-th Fibonacci number. The g-numbers arelinear combination of 
ag numbers and this is explained in details in [1].4.3. g2 for general polytopes and elementary polytopesLet P be a d-polytope. A framework based on P is a graph embedded in Rd whichis obtained by triagulating all the 2-faces of P by polygons. Let f+1 be the numberof edges in such a framework. g2(P ) = f+1 (P )�df0(P )+�d+12 �:Whiteley [51] proved



18 GIL KALAI(by a clever inductive argument starting with the case d = 3 which was proved byAlexandrov,) that every such framework is in�nitesimally rigid (i.e. 1-rigid). Thisimplies that g2(P ) is the dimension of the space of stresses of a framework based onP and therefore g2(P ) is nonnegative for every d-polytope.A polytope P is elementary if g2(P ) = 0.Theorem 4.1 Let P be a d-polytope then g2(P ) � g2(F )+g1(F )g1(P=F )+g2(P=F )Proof: (Rough sketch) Let F be a k-face of P . Choose a vertex in each (k+1)-faceG containing F , which is not in F . On all these vertices form a graph H whose edgescorrespond to edges of a framework of P=F . Pur G = G(F ). Consider now G � F ,the join of G and H , (Namely, the graph H [G union all edges between a vertex inH and a vertex in G,) as a framework in Rd. It is possible to move from G(P ) to aframework containing G �H by successively applying the following operation. Movefrom a framework A to a framework A0 by adding an edge e1 and deleting an edgee2 when A [ A0 contains a minimal stress containing both e1 and e2.Theorem 4.2 (ii) If g2(P ) = 0 then g2(P �) = 0.Proof: (sketch) Every d-polytope for d � 3 is elementary so let d � 4. Ford = 4 it is easy to verify that g2(P ) = g2(P �). For d > 4 the Theorem follows byinduction using the following:Theorem 4.3 For a d-polytope P , d > 4, the following conditions are equivalent(a) for every proper face F of P , (1) g2(F ) = 0, (2) g2(P=F ) = 0 and (3) EitherF is a simplex or P=F is a simplex.(b) g2(P ) = 0.Proof: (sketch) (b) implies (a) by Theorem 4.1 above. (a) implies (b) for ra-tional polytopes by the following identity (which can easily be veri�ed by expandingboth sides in terms of 
ag numbers):3Xfg2(F ) : F 2 P4g+ 2Xfg1(F ) � g1(P=F ) : F 2 P2g (10)+Xfg2(P=v) : v 2 P0g = (d� 1)g2(P ) + 3g3(P ):(Very rough sketch of the proof for general polytopes is: Follow the second proof ofTheorem 9.3 in [27].)De�nition: An abstract polytope is a ranked lattice L such that(a) every interval of length two has four elements, and(b) the following connectivity property holds: For every two elements x and y ofrank k in L there is a sequence of elements of rank k, x = x1; x2; : : : ; xt = y suchthat rank(xi ^ xi+1) = k � 1 for every i and xi � x _ y for every i.This notion (which is purely combinatorial) clearly includes as special cases sim-plicial and polyhedral manifolds and pseudomanifolds.Conjecture 11 The inequality g2 � 0 holds for arbitrary abstract polytopes L .Equality holds only for face lattices of polytopes. Moreover, every elementary polytopecan be realized with rational coordinates.



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 19It is conjectured that elementary polytopes have many of the pleasant propertiesof 3-polytopes. Here is one question in this direction.Conjecture 12 The graph of every elementary d-polytope is d+1 colorable. More-over, every graph obtained by triangulating (with no new vertices) the 2-faces of anelementary d-polytope is (d+ 1)-colorable.We also conjecture that the main theorems of this section extend to higher gk's.Conjecture 13 ([29]) (1) gk(P ) = 0 if and only if gk(P �) = 0.(2) For every face F , gk(P ) �Pki=0 gi(F )gk�i(P=F ):4.4. Diversion: quotients, faces and Meisinger's FLAGTOOLThe reader could have noticed that the inequalities gk � 0 for general polytopesare rather complicated, and it may be asked to what extent these relations (evenif they will be proved completely), are relevant to basic combinatorial properties ofpolytopes. As described in Bayer's paper [1] (See also [29]) a few basic linear in-equalities for 
ag numbers of polytope imply by convolutions a large number of otherinequalities. G�unter Meisinger developed a computerized system called FLAGTOOLwhose aim is to try to prove automatically theorems on polytopes using the largeamount of (known and conjectured) inequalities for face numbers. The followingthree conjectures were (among others) some targets for FLAGTOOL.Conjecture 14 (Perles) For every integer k > 0 there exists f(k) so that everyd-polytope d � f(k) has a k-dimensional quotient which is a simplex.Conjecture 15 For every integer k > 0 there exist integers n(k) and d(k) so thatevery d-polytope d � d(k) has a k-dimensional face with at most n(k) vertices.It can be conjectured that n(k) can be chosen to be 2k and that the followingstronger conjecture holdsConjecture 16 ([32]) For every integer k > 0 there exists d(k) so that every d-polytope has a k-dimensional face which is either a simplex or combinatorially iso-morphic to a cube.These conjectures are valid for k = 2, It follows easily from Euler's theorem thatevery polytope in 3-space has a triangular face or its dual has such a face. It alsofollows from Euler's theorem that every polytope in 3-space has a face with at most�ve vertices, and in [32] it is proved that every d-polytope, d � 5 has a face with atmost four vertices.The hope (which was ful�lled) was that FLAGTOOL will automatically provesome of these conjectures in low dimensions and moreover (this was not ful�lled yet)will give some insight on what is involved in a proof for arbitrary dimension.FLAGTOOL proved automatically the following partial results and supportedresults to the above conjectures (among many other results).



20 GIL KALAITheorem 4.4 (Meisinger [39]) 1. Every rational d-polytope, d � 9 has a 3-facewith at most 150 vertices.2. Every d-polytope d � 9, has a 3-dimensional quotient which is a simplex.3. Every d-polytope d � 7 has a triangle as the quotient of 1-face in an 4-face.4. Every 7-polytope has a 3-face with at most 17 vertices or its dual has such aface.5. Every 5-polytope has a 3-quotient with at most 8 vertices and every 7-polytopehas a 4-quotient with at most 16 vertices.4.5. Fake f-vectors and more linear inequalitiesEvery linear combination of face numbers which is nonnegative for all simplicialpolytopes is a linear combination with nonnegative coe�cients of g0; g2; : : : ; g[d=2].In [29] the author conjectured that the nonnegativity of g1; : : : ; g[d=2] give by convo-lutions (see [1]) all linear inequalities among 
ag numbers of polytopes. Meisinger[39] showed that this is false and, in fact, if we write g1[r](P ) = fr(P )� �d+1r �, thenwhile g1[r] is nonnegative for every d-polytope this inequality does not follows fromthe nonnegativity of the g0is. So the problem of �nding all linear inequalities for 
agnumbers of polytopes is wide open. We will describe in this section some conjecturesabout new such inequalities.We suspect that the lower bound inequalities which for simplicial polytopes areconsequences of the nonnegativity of g2 correspond to independent inequalities forgeneral polytopes. We state now what seems to be the right \analogs" of the lowerbound inequalities for general polytopes and present a general conjecture whichcorresponds to the generalized lower bound inequalities.Let grk(P ) = Pfgk(F ) : F 2 Pkg. Thus gr0(P ) = fr(P ). Recall that �k(n; d) isthe number of k-faces of stacked d-polytopes with n vertices. Here is an extension ofthe lower bound inequalities for general polytopes. There is some hope that certainrigidity type argument may be useful for a proof.Conjecture 17 Let P be a d-polytope (and more generally an abstract polytope).Then for k < d� 1, fk(P ) + gk1 (P ) + gk+11 (P ) � �k(n; d);and for k = d� 1, fd�1(P ) + gd�11 (P ) � �d�1(n; d):Equality holds if and only if P is an elementary polytope.Note that the case k = 1 is just the nonnegativity of g2(P ).We will describe now a more general conjecture. Let P be a simplicial polytopewith gk(P ) = 0. For the class of all such polytopes all face numbers are determinedby f0(P ); : : : ; fk�1(P ), and de�ne �k(r; i) such that for simplicial d-polytopes withvanishing gk we have fr =Pki=0 �k(r; i)fi�1: (�k(r; i) is determined uniquely.) Forarbitrary simplicial d-polytopes P one gets the inequalitiesfr � kXi=0 �k(r; i)fi�1: (11)



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 21In the simplicial case, thses inequalities do not contribute anything new. Theyfollow from the nonnegativity of the g-numbers. Moreover, similar to the case forthe lower bound inequalities they also follow from the nonnegativity of the gi's i < rfor the polytope and its quotients.Remark: In order to get the �k(r; i) explicitly �rst expend fr in term of thehi's, by the de�ning relations. Next use the relations hi � hk for i; d � k � i � k,and hi = hd�i for i > d � k. This gives an inequality fr �Pki=0 �k(r; i)hi. Finallyexpand the hi's back in term of the f 0is to obtain fr �Pki=0 �k(r; i)fi�1:We will consider now general polytopes:De�nition: Let P be an arbitrary d-polytope and let h(P ) = (h0; h1; :::; hd) be theh-vector of P . De�ne the fake f-vector of P by P f̂k�1(P )(x� 1)d�k =Phkxd�k.Explicitly one gets f̂k = kXi=0 iXr=0�ir�gk+ri :Note that the \fake number of edges", f̂1 is the number of edges in a frameworkbased on P (denoted before by f+1 (P )).Now de�ne a truncated version of the fake face number:f̂k[m] = mXi=0 iXr=0�ir�gk+ri :Conjecture 18 f̂r[k] � kXi=0 �k(r; i)f̂i:Remark: Another class of conjectures for linear inequalities of 
ag numbers ofpolytopes was suggested by Stanley. Let P be an Eulerian poset of rank n. Thecd-index [3] of P associates for every word w in noncommuting variables c and d suchthat the number of c's plus twice the number of d's is n a certain linear combinationof 
ag numbers of P denoted by �P (w). Stanley conjectured that over all P 's whichare face-lattices of (n�1)-dimensional polytopes, the value of this linear combinationof 
ag numbers is minimized precisely when P is a Boolean algebra (i.e., the facelattice of a simplex).4.6. Centrally symmetric polytopes, cubical polytopes, kupitopes andother classes of polytopesIt is of interest to study the combinatorial structure of polytopes in special classesof polytopes. We decribe here a few such classes.� The class of polytopes which were studied the most are the class of centrallysymmetric polytopes. There are known lower bound theorems for simplicialcentrally symmetric polytopes [45]. But the proofs are non elementary anddo not extend to more general structures. For general centrally symmetricpolytopes there are some partial results [21]. But even the simple question: Arethere always at least 3d proper faces is open [31]. For more information see [1].



22 GIL KALAI� Kupitopes are polytopes with no triangular 2-faces. Kupitz studied this classof polytopes and conjectured that the number of r-faces is at least the numberof r-faces of the cube. It took quite a while before Blind and Blind [18] provedKupitz' conjecture. It seem plausible that in analogy with inequality g2(P ) � 0for general polytopes,Conjecture 19 For every d-kupitope Pf1 + 1=2Xff0(F )� 4 : F 2 P2g � (d+ 1)=2f0 � 2d�1: (12)In particular, for every cubical d-polytopef1 � (d+ 1)=2f0 � 2d�1:Some variants of rigidity theory may be helpful here. This is part of a generalconcept of h-numbers for cubical polytopes and kupitopes introduced by Adin[5].� Polytopes without r-faces which are simplices. This may be useful for the studyof Conjectures 15, 16.� A classM of polytopes which are of interest is the class of polytopes de�ned bysystem of linear inequalities each of which have the form xi � axj + b. In thecontext of linear programming these classes were studied by Megiddo [40] andothers. But it seems that their combinatorial structure was not studied. Facesof polytopes in M are also in M.� Balanced d-polytopes of type (k1; k2; : : : ; kt) are simplicial polytopes whose er-tices can be colored with t colors such that each facet contains exactly ki ver-tices of colors i. Of particular interest are balanced polytope of type (1; 1; : : : ; 1)which are called completely balanced. Duals of completely balanced polytopesare precisely the simple polytopes with 2-chromatic graphs, or in other words,precisely the simple polytopes all whose 2-faces have even sides. For an exten-sion of h-vector theory to this setting see [44].� Charney and Davis considered simplicial complexes with no empty simplices ofdimension greater than 1, and called them 
ag complexes. they made excitingconjectures concerning face numbers of 
ag polytopes and spheres. (see [19]).� Another class of polytopes which are of interest are polytopes with the propertythat every k-face has at most Ck facets.4.7. h-vectors for more exotic structuresAs we saw h-vectors and g-vectors plays a crucial role in the study of polytopesand related combinatorial structures. It was suggested that these concept can beextended to much more general classes of combinatorial objects. The extension fromsimplicial polytopes to general polytopes is instructive. What needed is to add extraterms measuring the amount for which the faces are not simplices.One direction would be to de�ne h-vectors for arbitrary simplicial manifolds andeven pseudomanifolds. For manifolds one can expect that the \correcting terms" willbe in terms of the Betti numbers. (See [27].) For pseudomanifolds we can expectsome terms for Betti numbers of links of faces.Another direction proposed by Bjorner [14] is to give a de�nition for arbitraryregular cell decomposition of spheres. The de�nition and properties of h-vectors
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