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Abstract.

We start with a theorem of Perles on the k-skeleton, Skelj(P) (faces of dimension < k) of d-
polytopes P with d+b vertices for large d. The theorem says that for fixed b and d, if d is sufficiently
large, then Skelj(P) is the k-skeleton of a pyramid over a (d — 1)-dimensional polytope. Therefore
the number of combinatorially distinct k-skeleta of d-polytopes with d + b vertices is bounded by
a function of k and b alone. Next we replace b (the number of vertices minus the dimension) by
related but deeper invariants of P, the g-numbers. For a d-polytope P there are [d/2] invariants
91(P),92(P), ..., gja/2)(P) which are of great importance in the combinatorial theory of polytopes.
We study polytopes for which g;, is small and carried away to related and slightly related problems.
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1. Introduction

1.1. OVERVIEW

In this paper we will discuss several combinatorial problems concerning the combi-
natorial structure of polytopes. For a d-polytope P the number of k-faces is denoted
by fi(P). The vector (fo(P), fi(P),...fa—1(P)) is called the f-vector of P. The
same definitions will apply to more general combinatorial objects considered below.
The k-th skeleton Skeli(P) of a d-polytope P is the set of all faces of P of dimension
< k. Skely(P) is called the graph of P and is denoted by G(P).

A simple basic fact is that for every d-dimensional polytope P

fo(P) zd+1. (1)

Equality holds if and only if P is a simplex. Important part of convex polytope theory
is the study of polytopes with “few vertices”, namely polytopes with a bounded
difference between the nunber of vertices and the dimension. The following theorem
of Perles is part of the theory of polytopes with “few vertices” and it will play a
central role in this paper.

Theorem 1.1 (Perles, 1970) Let f(d, k,b) be the number of combinatorial types
of k-skeleta of d-polytopes with d + b+ 1 vertices. Then for fized b and k, f(d, k,b)
is bounded.
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A proof of Perles theorem is given in Section 2. (The proof relies only section
1.4 from the Introduction.) The proof given here is somewhat different from Perles’
original proof. It relies, like the original proof on the important concept of missing
faces. The proof here uses the famous sunflower (Delta-system) theorem of Erds
and Rado.

A construction which increase by one both the dimension and the number of
vertices is forming a pyramid over a polytope. Perles theorem asserts that for fixed
b and d, if d is sufficiently large, then Skely(P) is the k-skeleton of a pyramid over
a (d — 1)-dimensional polytope. In contrast, note that the number of combinatorial
types of d-polytopes with d + 3 vertices is bounded below by an exponential function
of d, see [24].

Another theorem which is basic to the discussion in the second part of this paper
is the lower bound theorem which was conjectured by Briickner in 1909 and was
proved by Barnette [7] in 1970.

Theorem 1.2 For every simplicial d-polytope P,

ez e - (5 )

Equality is obtained by stacked polytopes, namely polytopes built by gluing
simplices along facets.

For a d-polytope P there are [d/2] invariants g1 (P), g2(P), ..., ga/2(P) which are
of great importance in the combinatorial theory of polytopes. ¢1(P) is just the
difference between the number of vertices of P and d + 1. For simplicial polytopes
g2(P) is the difference between the left hand side and the right hand side of the
lower bound relation (2).

In analogy with the theory of polytopes with “few vertices” we discuss in Sections
3 and 4 the combinatorial properties of polytopes with a bounded value of g; for
some fixed k. The nonnegativity of gi(P) is in general a deep fact (and for k > 2 it
is not even known for general polytopes which cannot be realized by vertices with
rational coordinates.) And we try to use the methods originally applied to prove the
nonnegativity of gi(P) to study those polytopes for which g, (P) is small.

Section 3 deals with simplicial polytopes and Section 4 deals with general poly-
topes. In both cases the case & = 2 is substantially simpler than the general case.
We will use in this discussion the notion of stresses and the connection between
stresses and the g;’s as developed in Carl Lee’s paper [2]. Our discussion in Section
4 is strongly related to the first section in Margaret Bayer’s paper [1] and also to
some topics in Richard Stanley’s paper [3].

The paper is written in somewhat ununiform style. The discussion in Section 2
is self-contained and elementary. In Sections 3-4 while technically the paper is still
mostly self-contained, some prior familiarity with the notions of h-vectors, the lower
bound theorem, the g-theorem and the algebraic tools which play a role in their
study would be very useful. There are many problems and conjectures which are
quoted and stated all around the paper.

1.2. A START

Theorem 1.3 FEvery d-dimensional polytope has at least d + 1 wvertices.
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Proof 1 (geometric-algebraic) : This follows at once from the fact that the
vertices of a d-dimensional polytope affinely span a d-dimensional space.

Proof 2 (combinatorial) By induction: Let P be a d-polytope and let F' be a
facet of P. By the induction hypothesis F' has at least d vertices. There must be a
vertex in P not in F' therefore P has at least d + 1 vertices.

The combinatorial proof has the advantage that it applies to much more gen-
eral combinatorial objects (ranked relatively-complemented lattices). The geometric
proof show that g;(P) is the dimension of the space of affine relations among the
vertices of P, and suggests to study polytopes with small value of g; by looking
on the space of affine relations among vertices. This is the starting point of a very
useful theory of “Gale diagrams” see [24] Ch. 6.

Both proofs show that equality holds if and only if P is a simplex.

The combinatorial proof easily extends to prove the inequality

niP) = 1) - (11]) 20 (3

Indeed, given a d-polytope P and a facet F of P, every (r — 1)-face G of F is
included in an r-face Hg of P such that Hg itself in not contained in F'. It follows
that H; N F = G, and therefore G — Hg is a one to one map from (r — 1)-faces of
F' to r-faces of P which are not contained in F. Thus, by an induction hypothesis
there are at least (“ ') r-faces of P contained in F, and at least (¢_]) r-faces of P
which are not contained in F.

One of the interesting facts about the combinatorial theory of convex polytopes
is that often algebraic arguments are needed. In some cases one needs a suitable
mixture of algebraic and combinatorial arguments. We will see this in various places
in this paper.

Remark: Relation 3 also have an algebraic interpretation. Each r-face of P
determines an r-dimensional flat in R? and thus also a vector in the exterior (r + 1)-
power of R%*t!. The vectors corresponding to all 7-faces linearly span this exterior
power.

1.3. POLYTOPES, SIMPLICIAL, COMPLEXES, SIMPLICIAL MANIFOLDS, POLYHEDRAL
COMPLEXES AND RANKED ATOMIC LATTICES

The set of faces of a polytope P, denoted by L(P) is a ranked atomic lattice. L(P)
is called the face lattice of P. (A lattice L is ranked if for every element z € L all
maximal chains of elements which are smaller than x have the same size. This size
is called the rank of . An atom is an element of rank 1, and L is atomic if every
join-irreducible element is an atom.) For example, the face lattice of a simplex is a
Boolean lattice. We say that P and @ are combinatorially isomorphic if there is an
order preserving bijection between P and (. In most parts of this paper we will not
distinguish between combinatorially isomorphic polytopes and we will also by abuse
of notation will not distinguish between a polytope P and its face lattice L(P). We
say that @ is dual to P and write Q = P*, if there is an order reversing bijection
between L(P) and L(Q). Every polytope has a dual given by the polar construction
(see [24] Ch. 3).

A meet semilattice is a poset with the meet operation. FEvery finite meet-
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semilattice becomes a lattice by adding to it a maximal element. A polyhedral
complex is a meet-semilattice in which every lower interval is combinatorially iso-
morphic to a face lattice of a polytope. A simplicial complex is a meet-semilattice
in which every lower interval is a Boolean lattice. To every polyhedral complex K
there is an associated topological space denoted by |K]|.

Intervals in face lattices of polytopes are also face lattices of polytopes. If L(Q)
is combinatorially isomorphic to an interval of L(P) we say that Q is a quotient of
P. If F is a face of P, the interval [F, P] in L(P) is the face lattice of a polytope
denoted by P/F. For every meet-semilattice L we will use the notation L/F to
denote the set of all elements of L which are > than F. L/F is called the link of F
in L. Let K be a simplicial complex and let F' be a face of K. The star of F in K,
denoted by st(F, K) is the simplicial complex spanned by all the faces containing
F. Note that if v is a vertex of K then st(v, K) is a cone over the link of v in F.
Clearly, a link of face in a polyhedral complex is itself a polyhedral complex and a
link of a face in a simplicial complex is a simplicial complex.

A simplicial polytope P is a convex polytope all whose (proper) faces are sim-
plices. The set of faces of P is a simplicial complex, denoted by B(P), and called the
boundary complex of P. If P is a simplicial polytope and F is a face of P then P/F
is also a simplicial polytope. The boundary complex of P/F is the link of the face F'
in the boundary complex of P. A simplicial d-sphere is a simplicial complex K such
that |K| is homeomorphic to the d-dimensional sphere S¢. Clearly the boundary
complex of every simplicial d-polytope is a simplicial (d— 1)-sphere, but the converse
is far from being true. However many results on simplicial polytopes extend (or are
believed to extend) to arbitrary simplicial spheres.

A ranked atomic lattice L is relatively complemented if every interval in L is
atomic. It is sufficient to require that every interval of rank 2 is atomic or, in other
words, that if £ > y are elements in L and x does not cover gy, then there are at
least 2 elements of L strictly between x and y. (See [13].) Clearly, the face lattice
of every polytope is relatively complemented.

1.4. EMPTY FACES

Let K be a simplicial complex. An empty simplex S of K is a minimal non-face of K,
i.e., S is a subset of the vertices of K, S ¢ K but every proper subset of S is in K.
Empty simplices are called in [6, 41] missing faces. We want to distinguish between
empty faces of various types and therefore we use a slightly different terminology.

Lemma 1.4 The set of empty simplices of a simplicial complex K determine the
complex.

Proof: A set of vertices of K is a face if and only if it does not contain an empty
simplex.

Problem 1 Let m;(K) denotes the number of empty simplices of K of size i + 1.
Characterize the vectors (my(K),ma(K),---mq(K)) which arise from simplicial d-
polytopes.

Let K be a polyhedral complex and let U be a subset of its vertices. The induced
subcomplex of K on U, denoted by K [U], is the set of all faces in K whose vertices
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are in U. An empty face of K is an induced polyhedral subcomplex of K which is
homeomorphic to a polyhedral sphere. An empty 2-dimensional face is called an
empty polygon.

For the proof of Perles’ theorem we need only a much simpler concept of empty
pyramid. An empty pyramid of K is an induced subcomplex of K which consists of
all the proper faces of a pyramid over a face of K.

1.5. h-VECTORS ¢-VECTORS AND THE ¢g-THEOREM

Let d > 0 be a fixed integer. Given a sequence f = (fo, f1,..., fa—1) of nonnegative
integers, put f_; = 1 and define h[f] = (ho, h1,...,hq) by the relation

d d
S omatF =" (@ -1 (4)
k=0

k=0

If f = f(K) is the f-vector of a (d — 1)-dimensional simplicial complex K then
h[f] = h(K) is called the h-vector of K. For the case where K is the boundary
complex of a simplicial sphere, the g-vector g(K') = (go, g1, - - -, g[4/2]) associated with
K is defined by g; = h; —h;_1. Thus, go = 1, g1 = fo— (d+1), g2 = f1 —dfo + (*}")
and g3 = fo— (d—1)f1 + (g) fo+ (dg'l) and so on.

In 1970 P. McMullen [36] proposed a complete characterization of f-vectors of
boundary complexes of simplicial d-dimensional polytopes. McMullen’s conjecture
was settled in 1980. L. Billera and C. Lee [12] proved the sufficiency part of the
conjecture and R. Stanley [43] proved the necessity part. Stanley’s proof relies on
deep algebraic machinery including the hard Lefschetz theorem for toric varieties.
Recently, McMullen [37] found a self-contained proof of the necessity part of the g-
theorem. It is conjectured that the g-theorem applies to arbitrary simplicial spheres.

For positive integers n > k > 0 there is a unique expression of n of the form

= ()4 () = (4) (5)

where ar > ag—1 > ... > a; > 1 > 0. This given, define

o (n) = (“’“k‘l__l 1) + (“’“k‘l_; 1) P (‘?_‘f). (6)

Theorem 1.5 (g-theorem) For a vector h = (hg, h1,...,hq) of nonnegative inte-
gers the following conditions are equivalent:
(i) h is the h-vector of some simplicial d-polytope.
(ii) h satisfies the following conditions
(a) h =ha . for k=0,1,...,[%]
Put gr = hy — hp—1.
(b) go=1 and g, >0, k=1,2,,...,[2].
(c) 8" (gr11) < gi.k < [§]

The relations of part éi(a) are the well-known Dehn-Sommerville relations. They
hold for arbitrary simplicial spheres and even for arbitrary Eulerian simplicial com-
plexes [35, 3]. Part #i(b) consists of linear inequalities called the generalized lower
bound inequalities proposed by McMullen and Walkup in [38].
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Both Stanley’s original proof and McMullen’s new proof of the necessity of the
g-theorem give a (completely different) proof of the same algebraic statement. This
algebraic statement can be expresses in terms of the Stanley-Reisner ring [42], or as
a property of certain stresses on simplicial polytopes (and also in terms of algebraic
shifting [33]). For a thorough explanation the reader is referred to Carl Lee’s paper
in this volume [2].

The g-theorem demonstrates the importance of the g-numbers to the combina-
torial theory of simplicial polytopes (and spheres). It is natural to ask how combi-
natorial properties of P are reflected by its g-numbers.

A far reaching extension of the h-vector (and g-vector) for general polytopes was
given by Stanley [46], see [1, 29]. We will discuss this in Section 4.

The following conjecture was suggested by Kalai, Kleinschmidt and Lee. If true,
this conjecture gives a sharp form of Theorems 2.7 and 3.8 below.

Conjecture 2 For all simplicial d-polytopes with prescribed h-vector h = (hg,hy, ..., had),
the number of i-dimensional missing simplices is mazximized by the Billera-Lee poly-
topes Pgr,(h).

BP(h) is the polytope constructed by Billera and Lee [12] in their proof of the
sufficiency part of the g-theorem. It is quite possible that the conjecture applies also
to general polytopes.

2. Polytopes with few vertices and Perles’ skeleton theorem

2.1. MONOTONICITY PROPERTIES OF ¢

Lemma 2.1 For every face F of a polytope P, gi(P/F) + ¢1(F) < g1(P). In
particular, g1(F) < g1(P) and ¢1(P/F) < g1(P).

Proof: Let k = dimF and note that dim(P/F) =d -k — 1. fo(P/F) is the
number of (k + 1)-faces G which contain F'. Choose a vertex vg in G which is not
a vertex of F. Clearly if H and G are two different (k + 1)-faces which contain
F then vg # vg. Therefore fo(P/F) < fo(P) — fo(F). So gi(F) + ¢1(P/F) =
fo(F) =k =1+ fo(P/F) = (d = k) < fo(P) —d =1 =gi(P).

Lemma 2.2 [10] Put v(P) = Maz{fo(P) — fo(F)—1: F is a facet of P}. Then
for every facet F of P, v(P) > v(F).

Proof: Let F be a facet of P and let G be a facet of F. G is the intersection
of F with another facet F' of P. Thus V(P)\V(F') D V(F)\V(G). Therefore
fo(P) = fo(F") > fo(F) — fo(G). The Lemma follows.

Note that v(P) = 0 if and only if P is a simplex.

Lemma 2.3 Every d-polytope with d + b-vertices contain a (d — b+ 1)-face which is
a simplez.

Proof: Choose a sequence P D Fy_1 D Fys_1 D -+ D Fy_, = G such that
v(F;) = fo(F;) — fo(Fi—1) — 1. If G is not a simplex then v(G) > 0) and therefore
by the previous Lemma v(F;) > 0 for every i > d — b+ 1. Therefore ¢g;(P) >
91(G) +b—1>b. A contradiction.
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2.2. THE SIMPLICIAL CASE OF PERLES’ THEOREM

Definition: A collection {Ay, As,---, At} of sets is a sunflower if every element
which belongs to two or more of the sets belongs to all the sets. In other words, let
X =nt_, A, then for everyi #j A, NA; =X.

Lemma 2.4 Let P be a simplicial d-polytope, and assume that P contains b disjoint
empty simplices, then P has at least d + b vertices.

Proof: Let F be a facet of P, clearly every empty simplex of P must contain a
vertex not in F', but V(P)\V(F) = fo(P) —d = b. (Here V(F) denotes the set of
vertices of F.)

Lemma 2.5 Let P be a simplicial d-polytope, and assume that P contains a sun-
flower of size b of empty simplices, then P has at least d + b vertices.

Proof: First note that if S is an empty simplex in P and A C S then S\ A is an empty
simplex in P/A. Now, if P contain a sunflower {A;, Ay, -+ Ay} of empty simplices
and N®_, A; = R then A;\R, A5\R, ..., 4,\R, are b disjoint empty simplices in Q =
P/R. Therefore by Lemma 2.5 f(Q) —dim @ > b and by Lemma 2.1 fo(P)—d > b.

Lemma 2.6 (Erdés-Rado sunflower lemma [20]) Let F be a collection of n-
sets which contains no sunflower of size b then |F| < m(n,b) = (b—1)" - nl.

Proof By induction on n. Let F' be a collection of n-sets with out a sunflower of
size b, and let G be a maximal subcollection of pairwise disjoint sets. PutA = UG.
Then |G| < b, |A| < n(b—1) and every set in F' contains an element from A. For
each a € A the family F(a) = {S\{a} : S € F,a € S} is a family of (n — 1)-
sets without a sunflower of size b. Using the induction hypothesis we get |F| <
nb-1)-(b—1)""1n—-1)!=m(n,b).

Let me mention an old and still very interesting conjecture of Erdés and Rado.
Let f(n,b) be the maximum size of a family of n-sets without a sunflower of size b.

Conjecture 3 (Erdés and Rado) For a fized b f(n,b) < C(b)™, where C(b) is a
function of b only.

As a corollary to the results we proved in this section we obtain:

Theorem 2.7 Let P be a d-polytope with d + b vertices. Then the total number of
empty simplices of dimension < k is bounded by a function of b and k.

Proof of Perles’ theorem, the simplicial case:

We want to bound the combinatorial types of k-skeleta of simplicial d-polytopes
P with d+0b vertice. The k-skeleton of P is determined by the set of empty simplices
of P of dimension < k. The number of empty simplices of dimension < k is bounded
by m(k 4+ 1,0+ 1) = b**+' . (k + 1)!. Therefore, the number of all vertices of these
empty faces is bounded by (k + 1) - m(k +1,b+ 1) and the number of isomorphism
types of the family of empty simplices is at most Zf;l ((k+1)m(f+1’b+1)). This is
roughly exp((k + 1)2(log(k + 1) +logb — 1).
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2.3. PERLES THEOREM - THE GENERAL CASE

Lemma 2.8 A d-polytope P with d+ b vertices has at most 2b disjoint empty pyra-
maids.

Proof: In follows from Lemma 2.3 that P must have a (d — b — 1)-face S which
is a simplex. Every empty pyramid (or empty face) must contain vertices outside 5.
The lemma follows from the fact that |V (P)\V(S)| = 2b.

Lemma 2.9 Every collection of more than (b—1)"-n" r-faces each having at most
n vertices, contains a sunflower of size b.

Proof: The proof follows the inductive proof of the sunflower lemma. Let F' be
a collection of faces of dimension r (or less) each having n vertices or less without a
sunflower of size b. Let G be a maximal subcollection of pairwise disjoint faces. Let
A be the set of vertices of all faces in G. Then |G| < b, |[A] < n(b—1) and every set
in F' contains an element from A. For each a € A the family F'(a) = {S/{a}: S €
F,a € S} is a family of (r —1)-faces with at most (n—1)- vertices without a sunflower
of size b. Using an induction hypothesis we get |F| <n(b—1)-(b—1)""tn 1.

Proof of Perles’ theorem (end):' For a polyhedral complex K define the
kernel of P, Ker(P), to be the union of the sets of vertices of all empty pyramids
in K. Clearly the combinatorial type of Ker(K) and the number of vertices of K
determine the combinatorial type of K. Namely the set of faces of K is precisely
F xT where F is a face of K and T is any subset of vertices which are disjoint from
Ker(K). F*T is the |T|-fold pyramid with basis F.

Lemmas 2.9 implies that the kernel of the k-th skeleton of a d-polytope with d+b
vertices has at most (2b)"~1(b+k))" vertices. Therefore the number of isomorphism
types of k-skeleta of d-polytopes with (d + b) vertices is bounded by the number of
k-dimensional polyhedral complexes with (2b)"~1(b + k))" vertices.

2.4. THE SCOPE OF PERLES’ THEOREM

As easily seen the proof of Perles theorem for simplicial polytopes given above applies
for arbitrary pure simplicial complexes. The proof of the general case applies for a
large class of ranked atomic lattices. Perles observed that his proof (and this applies
to the proof given here) applies to arbitrary ranked atomic relatively complemented
lattices. He went further to define an even larger class of lattices, the class of
pyramidally perfect lattices, for which his proof applies. For an element x in an
atomic lattice L, J(z) denotes the set of atoms below z. An atom a is pyramidal
with respect to ¢ € L if a £ « and J(z V a) = J(z) U{a}. A ranked atomic lattice
is called pyramidally perfect if whenever a is pyramidal w.r.t. x it is also pyramidal
w.r.t. every y, y < x,

3. Simplicial polytopes with small value of g,

3.1. OVERVIEW

In this section we discuss simplicial polytopes with small value of g;. The situation
is simpler for g and more involved for higher k£’s.

L This part of the proof is taken from [41] without changes



THE COMBINATORIAL THEORY OF CONVEX POLYTOPES 9

The nonnegativity of g2 can be proved by purely combinatorial methods as well
as by the rigidity theory of frameworks. Both approaches apply to a very general
class of simplicial complexes, the class of pseudomanifolds. The rigidity theoretic
interpretation of go gives much information on the structure of simplicial polytopes
(and simplicial manifolds) with small values of go. This is described below in Sec-
tions 3.3. The proofs of the necessity of the g-theorem (both Stanley’s original proof
and McMullen recent proof) deduce the theorem from a certain crucial algebraic
fact. This gives an interpretation of g which is closely related to the rigidity theo-
retic interpretation of go see [2, 37, 33] and allows to extend some of the results to
simplicial polytopes with small values of g;.

In Section 3.2 we state a conjecture giving a complete description of g-vectors
of sequences of simplicial polytopes which converge to smooth bodies. Like the g-
theorem the conjecture consists of a linear part and a nonlinear part. The linear part
of the conjecture may be doable by improving the methods and results described
here. In Section 3.3 we describe the main tool we use, the notion of stresses. This is
a very quick outline of some facts from Carl Lee’s paper [2]. In Section 3.4 we state
the lower bound inequalities and in Section 3.5 we describe the structure of the proof
showing that go = 0 only for stacked polytopes. In Section 3.6 we describe some
partial information on polytopes with vanishing gi. In Section 3.7 we extend Perles
theorem to simplicial polytopes with bounded g;. In Section 3.8 we study in more
details the case k = 2. It turns out that every simplicial polytope with small value
of g2 can be obtained by gluing together “small” pieces. In Section 3.8 we diverge to
describe finer invariants of simplicial polytopes which give much more information
than the g-numbers.

3.2. g-NUMBERS OF SIMPLICIAL POLYTOPES WHICH CONVERGE TO A SMOOTH BODY

We state two conjectures on the behavior of g-numbers of simplicial polytopes which
converge to a smooth body. The first conjecture falls into our study of polytopes
with a bounded values of g;. It is trivial for ¥ = 1 and follows from the result of
Section 3.8 for £k = 2. The second conjecture calls for a similar study of polytopes
for which g%~ — gx+1 is bounded.

Conjecture 4 ([26]) Let k,d be positive integers d > 2k. Let P, be a sequence of
d-polytopes which converge to a smooth body K. Then

lim gi(Pn) — 0. (7)

n—oQ

Conjecture 5 Let P, be a sequence of d-polytopes which converge to a smooth body
K. Then for k < [d/2]

lim (g2(Pa) = 8" (gus1(Py))) — . (8)

n—oo

If Conjectures 4 and 5 are true then they give a complete descriptions of sequences
of g-vectors which come from sequence of simplicial polytopes converging to a smooth
body K. (Note: the description is independent from K.)

If P, is a sequence of polytopes which converges to a convex body K, and @, is
any sequence of polytopes, then one can glue a projective copy of @, to one facet
of P, and the resulting sequence of polytopes will also converges to K.



10 GIL KALAT

If G, is the set of g-vectors of simplicial d-polytopes, and Bgy(r) is the set of
vectors (a1, .. .,ajq/z)) such that |a;| < r for every i. Then if Conjectures 4 and 5 are
true, a sequence of g-vectors {¢g™} is the sequence of g-vectors of simplicial polytopes
converging to a smooth convex body K if and only if for every r there is N, such
that g™ 4+ By(r) C G4 for every n > N,.

Remarks: 1. Connections between metrics on the sphere and combinatorial
muvariants

It is possible to formulate similar questions in a purely combinatorial way for
sequences of simplicial spheres (and even simplicial manifolds). Every triangulation
of the sphere induces a metric and it is possible to consider limits of such metrics (see
[23]) as the number of vertices tends to infinity. It is natural to study Conjectures
4 and 5 in this more general context, and more generally to study the following

Problem 6 Given a metric on the (d— 1)-sphere and sequence of simplicial spheres
whose induced metrics converges to this metric, find relations between the g-numbers
(and other combinatorial properties) of the simplicial spheres in the sequence and
the geometric properties of the limiting metric.

2. Separation properties of G(P*).

Let K be a pure (d — 1)-dimensional simplicial complex. The dual graph of K,
denoted by G*(K) is defined as follows. the vertices of G*(K) are the facets (=
(d — 1)-faces) of K and two vertices F' and G are adjacent if ' N G is a (d — 2)-
dimensional face. If K is the boundary complex of a simplicial polytope P then
G*(K) is just the graph of the dual polytope P*.

Let f(r) be a function of the integer number r and consider the class Py of
all simplicial polytope P (or even simplicial spheres) with the following property.
Whenever r vertices are deleted from G(P}) then the remaining graph has a con-
nected component having all vertices accept at most f(r) of them. It is plausible
(and would imply Conjecture 4) that for every function f(r) and for all polytopes in
Py the value of gx(P) (k < [d/2]) is bounded. See [33] for some results on separation
properties of graphs of special types of simple polytops.

3.3. STRESSES

This is a very quick outline of some important ingredients of Carl Lee’s paper [2].
See also the papers of Tay, White and Whiteley [50] on skeletal rigidity. The reader
should also consult Lee’s paper for the relations between stresses and the Stanley-
Reisner’s ring and [33] for the connection with algebraic shifting.

Let K be a simplicial complex embedded into R?. (By “embedded” we only mean
that the vertices are embedded in such a way that the vertices of faces are affinely
independent.) A k-stress (which is an abbreviation here for an affine k-stress since
we will not consider linear stresses,) is defined as follows. For every (k — 1)-face
F choose a point up € F. If G is a k-face containing a (k — 1)-face F' let v(F,G)
denotes the vertex of G not in F. A k-stress is an assignment of weights wg to the
k-faces G of K such that for every (k — 1)-face F

Z{wg(v(RG)—uF) :GDF} e Aff(F). (9)
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Here, Aff(F) is the affine span of the face F. Let S} denotes the space of k-
stresses of K.

Let A, (K) be the space of all assignment of weights wg to the k-faces G of K.
Now consider the map T} which assigns to every w € Ay (K) weights on (k —1)-faces
F as follows: The weight of a (k — 1)-face F' is Y {wg(v(F,G) —up) : G D F}
considered as a vector in the quotient space R?/Aff(F). (The weights are vectors
of dimensions d — k+1.) The space of k-stress is precisely the kernel of Tj. There is
a complementary notion of k-rigidity, (or skeletal k-rigidity) which is of importance
here. Roughly speaking, K is k-rigid if the image of T} is “as large as possible”.
What we will need is that if K is k-rigid, and K’ is obtained from K by adding just
one k-face then K’ has a non-zero k-stress.

All these concepts become classic for & = 1. 1-rigidity is called infinitesimal
rigidity. 1-stress is the classical notion of a stress of a framework. O-stresses are just
affine relations among the vertices, and being 0-rigid just mean that the vertices of
K affinly span R%.

The basic fact connecting stresses with the g-vector is the following fact which
follows from the two known proofs of the necessity part of the g-theorem. (In
Stanley’s proof the following fact is proved only for rational polytopes.)

Theorem 3.1 Let P be a simplicial d-polytope let k < [(d + 1)/2]. Then gx(P) =
dimSg(P).

This is equivalent to the fact that Skely(P) is k-rigid.

An important fact about stresses is that they behave nicely under forming a cone.
Let K be a simplicial k-dimensional complex and consider a generic embedding of
K in R% Consider also a generic embedding of a cone over K in R?*!. Then the
embedding of K is k-stress free iff the embedding of the cone is k-stress free. See
[50]. (This is related to the fact that the operation of forming a cone commutes with
algebraic shifting.)

Remark: Stresses can be regarded as analogs for Gale transforms which are one
of the most useful tools in the study of polytopes with few vertices. However, the
extension of the basic property of Gale transform is not yet known:

Conjecture 7 ([26]) Let P, and Py be two simplicial d-polytopes and let ¢ be a
bijection from V(P) to V(Q) such that, ¢ is a combinatorial isomorphism from
Skelr(P) to Skelp(Q) and moreover the map induced by ¢ gives an isomorphism
between the space of k-stresses of P and the space of k-stresses of Q. Then ¢ induces
a combinatorial isomorphism between P and Q.

In other words, is the k-skeleton plus the vector space of k-stresses determine
uniquely the combinatorial type of simplicial polytopes?

Note that for £ = [d/2] the space of stresses is trivial, but indeed an important
theorem of Perles asserts that for two simplicial d-polytopes every combinatorial
isomorphism between Skeljy5(P) and Skeljq/5(Q) can be extended to a combina-
torial isomorphism between P and Q. Also, as we shall see later, if for k < [d/2] the
space of k-stresses of a simplicial d-polytope is trivial (i.e. gx(P) = 0) then P has
no missing faces in dimensions greater than k& and smaller then d — k and again the
k-skeleta determine the combinatorial structure of the polytope.
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3.4. go AND THE LOWER BOUND INEQUALITIES

A simplicial d-polytope is stacked if it can be obtained by gluing d-simplices along
facets. Every stacked polytope with n vertices is obtained from a stacked polytope
with n — 1 vertices by adding a vertex beyond exactly one facet. P is stacked if and
only if it can be triangulated without introducing faces of dimension smaller than
(d — 1). The boundary complex of a stacked polytope is called a stacked sphere.

It is easy to see that the f-vector of a stacked d-polytopes is determined by
the number of vertices. Let ¢y (n,d) denotes the number of k-faces of a stacked
d-polytope with n vertices. Thus, ¢x(n,d) = ({)n — (ZE)I@ fork, 1 <k<d-2,
and ¢g_1(n,d) = (d—1)n — (d+ 1)(d — 2).

The lower bound inequalities assert that for every simplicial d-polytope P with n
vertices, fr(P) > ¢r(n,d). The case k = 1 of this inequality is just the nonnegativity
of ga. There is an inductive way to deduce the lower bound inequalities from the
nonnegativity of go. See [7, 38, 27]. However, this inductive argument does not
apply for certain generalization of the lower bound inequalities such as for centrally
symmetric polytopes and for general polytopes. Thus, it may be useful to find a
direct interpretation of go[r] = fi(P) — ¢x(n,d) as the dimension of some vector
space.

3.5. SIMPLICIAL POLYTOPE WITH VANISHING gs

Theorem 3.2 For d > 4 the following conditions are equivalent: (1) P is stacked
(2) P/{v} is stacked for every vertex v, (3) P has no empty simplices of dimension
r, forl<r<d-1.

The proof of this theorem is given in [27]. It applies to arbitrary simplicial
(d — 1)-manifolds which are simply connected. For non-simply connected manifolds
M conditions 2 and 3 remain valid and are equivalent to the fact that M is obtained
from the boundary of stacked polytope by additional operations of handle forming
via identifying the vertices of two disoint facets and deleting the facet.

Theorem 3.3 For d > 4 the following are equivalent (1) P is stacked (2) P has no
empty faces (of any kind) of dimension r, for 1 <r < d—1 (8) P has no empty
simplices of dimension r, for 1 <r < d—1 and no empty polygons.

The crucial point behind this theorem is the situation for simplicial 3-polytope.
A simplicial 3-polytope is stacked iff it has no missing polygons other than trian-
gles. While the two theorems above are purely combinatorial rigidity arguments are
needed to prove the following

Theorem 3.4 For d > 3, if go =0 then
(1) P has no empty faces of dimensionr, 1 <r <d—1 (2) g2(P/v) =0 for
every vertex v. (8) P has no empty polygons.

It follows from the theorems quoted above that if go(P) = 0 then P is a stacked
polytope. This result applies to arbitrary simplicial manifolds (and pseudomani-
folds).
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Remark: There is an interesting issue which is related to the above theorems.
Consider a simplicial manifold K and assume that all links of vertices K /v (which
are simplicial spheres) have certain combinatorial properties. What does this imply
on the topology of K7 If all links are stacked spheres then for dimensions > 3 this
implies severe restrictions on the topology of K, and in particular, if K is simply
connected then K is a sphere (the 3-dimensional case is open).

3.6. SIMPLICIAL POLYTOPES WITH VANISHING g

We do not have good understanding of simplicial polytopes such that g(P) = 0.
McMullen and Walkup conjectured that every such polytope is k-stacked, namely it
can be triangulated without introducing faces of dimensions < d — k. Unlike stacked
(1-stacked) polytopes which are well understood, k-stacked polytopes are themselves
quite mysterious. Parts of the discussion concerning the vanishing of g» extends to
higher k’s but other parts are still not known (but perhaps doable).

Proposition 3.5 For d > 2k + 3 the following are equivalent (1) P is k-stacked (2)
P/v is k-stacked for every vertez v.

Proposition 3.6 For d > 2k + 1, if gx(P) = 0 then (1) P has no empty simplexs
of dimension v, k <r <d—k (2) gu(P/v) =0 for every vertez v.

Proof: (1) Assume that S is an empty k-simplex. Now, the vertex figure P/v is
k-rigid and therefore st(v, P) (being a cone over it) is k-rigid. R = S\v is a (k — 1)-
face in P which is not in st(v, P). Therefore st(v, P) U R has a non-zero stress and
since st(v, P) U R C P, P has a nonzero k-stress, and g;(P) > 0. If S is an empty
simplex of size k + ¢ choose V' C S, |V| =i and a vertex v € V. Apply the same
argument for P/V inside P/(V\{v}).

Part (2) follows at once from the cone property for k-stresses. In fact, we get

Lemma 3.7 gx(P/v) < gr(P).

Proof: g;(P/v) is the dimension of the space of k-stresses of P/v w.r.t to em-
bedding in R%"!, therefore gi(P/v) is the dimension of the space of k-stresses of
st(v, P) w.r.t. embedding in RY.

Part (2) of Proposition 3.6 also follows from the identity

> gk(P/v) = (d =k +1)ge(P) + (k + 1)ges1(P),

and the nonnegativity of gp41(P).

Conjecture 8 For d > 2k the following are equivalent (1) P is k-stacked (2) P has
no empty faces (of any kind) of dimension r, for k <r < d—k for d > 2k these two
conditions are equivalent to (3) gr(P) = 0.

Remark: The k-the skeleton of every d-polytope contains a subdivision of the
k-skeleton of a d-simplex. For simplicial polytopes nonvanishing of g, also seems
related to the existence of a subdivision of the k-skeleton of a (d + 1)-simplex.
Indeed, nonvanishing of g, for a simplicial polytope P is equivalent to the fact that
the graph of P contains a refinement of K5 [27]. For k£ > 2 results of Stanley [48]
seems relevant.
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3.7. ANALOG OF PERLES THEOREM FOR SIMPLICIAL POLYTOPES WITH SMALL
VALUE OF g

Theorem 3.8 For positive integers k > 1,7 > k and b > 0 there is a function
bi(r,b) with the following property: Let P be a simplicial d-polytope with gi(P) < b.
Then P has at most bi(r,b) empty r-simplices.

Proof (sketch)

By the sunflower theorem it is enough to prove that there is no sunflower of empty
r-simplices of size b + 1. We have seen that an empty r-simplex, d — k > r > k
is responsible to a k-stress, so it is enough to show that in case of a sunflower
{51, Sa,...,Sp+1} we get a contribution of at least b+ 1 to the space of stresses. Let
R be the intersection of the S;’s. If |R| > r — k the situation is very easy; choose
V C R such that |[V| =r — k and a vertex v € V. Let K = P/(V\{v}). K/v is
k-rigid in dimension d —|V| and therefore st(v, K) is k-rigid in dimension d — V| +1
and adding to it the b+ 1 k-faces S1\V,S2\V ..., Sp41\V create a k-stress space of
dimension at least b+ 1. The case where |R)| is smaller is slightly more complicated
and we omit the details.

Corollary 3.9 There exists a function uy(r,b) with the following property: Let K
be the k-th skeleton of a simplicial d-polytope P with gp(P) < b (Note: g can be
read from the k-skeleton.) Then there are only uy(r,b) possibilities for the r-skeleton
of P.

Note that the number of 1-skeleta of stacked d-polytopes with n vertice is expo-
nential in n.

It seems that Theorem 3.8 applies to general empty faces and not only to empty
simplices. What we need to do is given an empty face in dimension 7,k < r <
d — k to find a nonzero k-stress, such that for disjoint empty faces one gets linearly
independent k-stresses. It looks that an appropriate Meyer-Vietoris type statement
for k-stresses is needed. Proving this may be helpful also in verifying Conjecture 4.

3.8. SIMPLICIAL POLYTOPES WITH SMALL VALUE OF g2

A simplicial polytope P is prime if it does not contain an empty (d — 1)-simplex.
If P is not prime then P can be obtained by gluing together along facets of prime
simplicial polytopes. We write P = Py#Py# - - - # P, for the description of P as the
union of prime simplicial polytopes. It is easy to see that go(P) = 3 g2(P;). The
following theorem shows that if go(P) is small then P is obtained by gluing together
many small pieces. (Clearly most of these pieces must be simplices.)

Theorem 3.10 There is a function u(d,b) such that if P is a prime simplicial d-

polytope and ga(P) < b then g1(P) < u(d,b).

Proof: (sketch) For d > 4. We know that the number of empty simplices of
P of dimension r, 1 < r < d—1is at most X = X(d,b). The number of edges of
P is bounded by a linear function of the number of vertices. Therefore (by Turdn
theorem) if the number of vertices is large then G(P) contains an independent set
U of vertices of size > X. For u € U, if P/{u} (= the link of u in P) is not stacked
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and also if P/{u} contains a empty d — 2 simplex which is not a face of P, we get
a non-zero stress s, is st(u,K). Moreover s, have nonzero weight on some edge
containing u. Since U is an independent set of vertices this edge is not included in
the star of any other vertex of U. Therefore, all the stresses {s, : v € U} are linearly
independent. A contradiction.

It follows that for some u € U, st(u,P) does not contain a non-zero stress.
Therefore either P/{u} is a simplex and thus an empty (d — 1)-simplex or P/{u}
is stacked, and contains an empty (d — 2)-simplex R, such that R is not an empty
simplex in P. In this case RU {u} is an empty (d — 1)-simplex in P. The proof for
d = 4 is more involved and we will not include it here.

Remarks: 1. It is quite possible that u(d,b) is actually independent from d,
and it would be interesting to determine its best possible value. I do not know of
examples of prime simplicial polytopes with ¢; < g — 1.

2. The proof of Theorem 3.10 applies in much more general contexts. The proof
as described above applies for simplicial spheres and even for simplicial manifolds.
Every simply connected prime simplicial manifold can written as a connected sum
of prime (simply connected) simplicial manifolds. For arbitrary manifolds one has
to add another operation - that of “handle forming” via an identification of two
facets. Every simplicial manifold with small value of g can be obtained from small
“prime” pieces by the operations of connected sum and handle forming. (Every
handle increase the value of g, by (d'gl).) It follows that for every b there are only
finitely many d-manifolds which have a triangulation K such that go(K) < b.

3. Even more generally, Theorem 3.10 applies to all pseudomanifolds such that
the link of every face of codimension > 1 is connected and the link of every link of
dimension > 2 is simply connected.

3.9. DIVERSION: FINER INVARIANTS

An order ideal of monomials [ is a collection of monomials in variables (say) z1, 22, . . .
such that 1 € T and if m € I and m’ divides m then m' € I. We will denote by f;(I)
the number of monomials of I of degree k and call the vector (fo(I), f1(I),...) the
f-vector of I. (Note: the indices here are shifted by 1.) An order ideal of monomial
is shifted if for every monomial m in S if ; has positive degree in m and ¢ < j then
m-x; - x;l e 1.

A sequence of integers (mg, my, . ..) is an M-vector if mg = 1 and 0 < 0% (myp41) <
my, for every k > 1. An old theorem of Macaulay asserts that M-vectors are precisely
the possible f-vectors of order ideal of monomials. Every M-vector can be realized
(usually in many ways) as the f-vector of a shifted order ideal of monomials.

For a simplicial d-polytope (and probably for every simplicial (d — 1)-sphere,)
the vector (1,gq,... ,g[%]) is an M - vector. The proof of the necessity part of the
g-theorem actually associates to every simplicial polytope P a shifted order ideal of
monomials S(P) such that g;(K) is the number of monomials of degree i in S. (See
[33].) S(P) can be regarded as a delicate invariant of P. It is conjectured that the
same algebraic construction applies to arbitrary simplicial spheres.

Conversly, for every shifted order ideal of monomial S there is a construction of a
simplicial sphere K (S), see [28]. It is conceivable but not known that S(K(S)) = S.

It would be interesting to study the structural properties of P as a function of
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S(P), in a similar line to the approach of this paper. Here is a far-reaching extensions
of Conjectures 4 and 2.

Let M (d) denotes the set of all monomials of degree < [d/2] on the countable set
of variables z1,Z2,...,Zn,....

Conjecture 9 Let P, be a sequence of simplicial d-polytopes which converges to a
smooth body K. Then US(P,) = M(d).

Conjecture 10 For simplicial spheres K with S(K) = S, the vector of empty sim-
plices is maximizes for the complex K(S).

Remarks: 1. It is known for quite a long time that there are simplicial (and
polyhedral) spheres that cannot be realized as the boundary complex of a simplicial
polytope. In high dimensions there is a striking gap between the number of com-
binatorial types of simplicial polytopes and the number of combinatorial types of
simplicial spheres. See [22, 28]. However, most of the results mentioned here for sim-
plicial polytopes are either known or conjectured to be known for simplicial spheres.
While face numbers are probably too weak to distinguish simplicial polytopes from
arbitrary triangulations of spheres it is possible that the finer invariant S(K) will
contain some useful parameters for this problem.

2. It is interesting to note that neither the g-vectors nor the finer invariant
S(P) can distinguish between different neighborly polytopes. Indeed P is neighborly
iff S(P) is the ideal of all monomials of degree < d/2 in n — d variables. The
combinatorial structure of neighborly polytopes (even in dimension 4) is a rich topic
and it seems that completely different invariants are needed for their study.

4. General Polytopes

4.1. OVERVIEW

In this section we consider general polytopes. In this case even the definition of
gx(P) is quite subtle. We describe the definition in Section 4.2. More details can
be found in Bayer’s paper [1]. Section 4.3 is devoted to ga(P). We describe the
rigidity theoretic meaning of go(P), and describe some facts on the remarkable class
of polytopes with vanishing g». The nonnegativity of the g;’s implies many linear
inequalities for flag numbers of polytopes. The possibility to use the large amount
of complicated data given by such inequalities to prove basic and easy to state prop-
erties of polytopes is discussed in Section 4.4. We describe there results of Meisinger
who developed an automatic polytope theorem prover FLAGTOOL. In Section 4.5
we make some conjectures for additional linear inequalities for flag numbers of poly-
topes. In Section 4.6 we discuss special classes of polytopes and in Section 4.7 we
ask to which generality can we hope for a notion of h- and g-numbers.

4.2. g FOR GENERAL POLYTOPES AND FLAG NUMBERS

Intersection homology theory have led to deep and mysterious extensions of g-
numbers from simplicial polytopes to general polytopes.

The definition (which can be found also in [1, 3]) goes as follows. For a polytope
P denote by Py the set of k-faces of P.
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Define by induction two polynomials

d [d/2]
hp(x) =Y ' gp(z) =Y gra’™,
k=0 k=0

by the rules: (a) gr = hx — hx—1, (b) If P is the empty polytope or a 0-polytope P,
hp =gp =1, and

d
hp(z) = Z(x —1)d-k Z{gp(x) cx € Py}

k=0

Thus g1(P) = fo(P) —d—1 and

5(P) = F(P)+ S 0(F) - 3: 7 € Py - do(P)+ ().

The value of g for general polytopes have also a rigidity theoretic meaning. In
this case, however, the nonnegativity of g is still open for more general objects like
polyhedral spheres and manifolds.

The higher g numbers for general polytopes are quite mysterious, and at present
their nonnegativity is known only for polytopes with rational vertices. Goresky and
MacPherson (unpublished) developed a concrete way to describe gp(P) as certain
hyperhomology groups based directly on the geometry of the polytope. This concrete
description (which they proved only for rational polytopes, ) may shed some light on
their geometric meaning. McMullen’s recent new proof of the necessity part of the
g-theorem also gives some hope for elementary interpretation of the g-numbers for
general polytopes and new proof for their nonnegativity. McMullen’s proof also con-
tain a relatively easy reduction from simple polytopes to rational simple polytopes
and there is hope that this part, at least, can be extended to general polytopes.

Stanley [46] conjectured that the g-vector is an M-vector for every polytope [46].
It is not even known that g (P) = 0 implies that gg11(P) = 0. Stanley also pointed
out what is the extreme combinatorial generality for which the g-numbers as defined
in this section should work: Namely for regular cell decomposition of (homology)
spheres whose faces form a lattice.

For A d-polytope P, and a subset S = {iy,...,ix} C {0,1,...,d — 1} the flag
number fg(P) is the number of chains of faces of P F; C F» C --- C Fj such
that dimF; = i;. (The same definition applies to ranked lattices.) For simplicial
polytopes the flag numbers are determined by the face numbers, but for general
polytopes flag numbers seems to be the “correct” invariants. A remarkable theorem
of Bayer and Billera asserts that the affine dimension of the space of flag numbers
of d-polytopes is ¢4 — 1, were ¢4 is the d-th Fibonacci number. The g-numbers are
linear combination of flag numbers and this is explained in details in [1].

4.3. g2 FOR GENERAL POLYTOPES AND ELEMENTARY POLYTOPES

Let P be a d-polytope. A framework based on P is a graph embedded in R? which
is obtained by triagulating all the 2-faces of P by polygons. Let f;% be the number
of edges in such a framework. go(P) = f;"(P)—dfo(P)+ (dé'l). Whiteley [51] proved
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(by a clever inductive argument starting with the case d = 3 which was proved by
Alexandrov,) that every such framework is infinitesimally rigid (i.e. 1-rigid). This
implies that go(P) is the dimension of the space of stresses of a framework based on
P and therefore go(P) is nonnegative for every d-polytope.

A polytope P is elementary if go(P) = 0.

Theorem 4.1 Let P be a d-polytope then go(P) > go(F)+g1(F)g1(P/F)+g2(P/F)

Proof: (Rough sketch) Let F' be a k-face of P. Choose a vertex in each (k + 1)-face
G containing F', which is not in F'. On all these vertices form a graph H whose edges
correspond to edges of a framework of P/F. Pur G = G(F). Consider now G x F,
the join of G and H, (Namely, the graph H U G union all edges between a vertex in
H and a vertex in G,) as a framework in R?. It is possible to move from G(P) to a
framework containing G * H by successively applying the following operation. Move
from a framework A to a framework A’ by adding an edge e; and deleting an edge
es when A U A’ contains a minimal stress containing both e; and es.

Theorem 4.2 (i) If g2(P) = 0 then g2(P*) = 0.

Proof: (sketch) Every d-polytope for d < 3 is elementary so let d > 4. For
d = 4 it is easy to verify that go(P) = g2(P*). For d > 4 the Theorem follows by
induction using the following:

Theorem 4.3 For a d-polytope P, d > 4, the following conditions are equivalent
(a) for every proper face F of P, (1) g2(F) =0, (2) g2(P/F) =0 and (3) Either
F is a simplex or P/F is a simplez.
(b) g2(P) = 0.

Proof: (sketch) (b) implies (a) by Theorem 4.1 above. (a) implies (b) for ra-
tional polytopes by the following identity (which can easily be verified by expanding
both sides in terms of flag numbers):

3 {02(F): FeP}+2Y {gi(F)-q1(P/F): F € Py} (10)

+Z{92(P/U) 1v € Po} = (d—1)g2(P) + 3g3(P).

(Very rough sketch of the proof for general polytopes is: Follow the second proof of
Theorem 9.3 in [27].)

Definition: An abstract polytope is a ranked lattice L such that

(a) every interval of length two has four elements, and

(b) the following connectivity property holds: For every two elements z and y of
rank k in L there is a sequence of elements of rank k, x = z1,22,...,2; = y such
that rank(x; A xiz1) = k — 1 for every i and z; < x V y for every 7.

This notion (which is purely combinatorial) clearly includes as special cases sim-
plicial and polyhedral manifolds and pseudomanifolds.

Conjecture 11 The inequality go > 0 holds for arbitrary abstract polytopes L .
Equality holds only for face lattices of polytopes. Moreover, every elementary polytope
can be realized with rational coordinates.
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It is conjectured that elementary polytopes have many of the pleasant properties
of 3-polytopes. Here is one question in this direction.

Conjecture 12 The graph of every elementary d-polytope is d+ 1 colorable. More-
over, every graph obtained by triangulating (with no new vertices) the 2-faces of an
elementary d-polytope is (d + 1)-colorable.

We also conjecture that the main theorems of this section extend to higher g;’s.

Conjecture 13 ([29]) (1) gx(P) = 0 if and only if g, (P*) = 0.
(2) For every face F, g.(P) > Zf:o 9i(F)gr—i(P/F).

4.4. DIVERSION: QUOTIENTS, FACES AND MEISINGER’S FLAGTOOL

The reader could have noticed that the inequalities gr > 0 for general polytopes
are rather complicated, and it may be asked to what extent these relations (even
if they will be proved completely), are relevant to basic combinatorial properties of
polytopes. As described in Bayer’s paper [1] (See also [29]) a few basic linear in-
equalities for flag numbers of polytope imply by convolutions a large number of other
inequalities. Giinter Meisinger developed a computerized system called FLAGTOOL
whose aim is to try to prove automatically theorems on polytopes using the large
amount of (known and conjectured) inequalities for face numbers. The following
three conjectures were (among others) some targets for FLAGTOOL.

Conjecture 14 (Perles) For every integer k > 0 there exists f(k) so that every
d-polytope d > f(k) has a k-dimensional quotient which is a simplez.

Conjecture 15 For every integer k > 0 there exist integers n(k) and d(k) so that
every d-polytope d > d(k) has a k-dimensional face with at most n(k) vertices.

It can be conjectured that n(k) can be chosen to be 2% and that the following
stronger conjecture holds

Conjecture 16 ([32]) For every integer k > 0 there exists d(k) so that every d-
polytope has a k-dimensional face which is either a simplex or combinatorially iso-
morphic to a cube.

These conjectures are valid for £ = 2, It follows easily from Euler’s theorem that
every polytope in 3-space has a triangular face or its dual has such a face. It also
follows from Euler’s theorem that every polytope in 3-space has a face with at most
five vertices, and in [32] it is proved that every d-polytope, d > 5 has a face with at
most four vertices.

The hope (which was fulfilled) was that FLAGTOOL will automatically prove
some of these conjectures in low dimensions and moreover (this was not fulfilled yet)
will give some insight on what is involved in a proof for arbitrary dimension.

FLAGTOOL proved automatically the following partial results and supported
results to the above conjectures (among many other results).
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Theorem 4.4 (Meisinger [39]) 1. Every rational d-polytope, d > 9 has a 3-face
with at most 150 vertices.

2. Every d-polytope d > 9, has a 3-dimensional quotient which is a simplez.

3. Every d-polytope d > 7 has a triangle as the quotient of 1-face in an 4-face.

4. Bvery T-polytope has a 3-face with at most 17 vertices or its dual has such a
face.

5. Every 5-polytope has a 3-quotient with at most 8 vertices and every 7-polytope
has a 4-quotient with at most 16 vertices.

4.5. FAKE f-VECTORS AND MORE LINEAR INEQUALITIES

Every linear combination of face numbers which is nonnegative for all simplicial
polytopes is a linear combination with nonnegative coefficients of go, g2, . - ., g[a/2)-
In [29] the author conjectured that the nonnegativity of gi,. .., g4/ give by convo-
lutions (see [1]) all linear inequalities among flag numbers of polytopes. Meisinger
[39] showed that this is false and, in fact, if we write g;[r](P) = f(P) — (d':l), then
while g;[r] is nonnegative for every d-polytope this inequality does not follows from
the nonnegativity of the gis. So the problem of finding all linear inequalities for flag
numbers of polytopes is wide open. We will describe in this section some conjectures
about new such inequalities.

We suspect that the lower bound inequalities which for simplicial polytopes are
consequences of the nonnegativity of g, correspond to independent inequalities for
general polytopes. We state now what seems to be the right “analogs” of the lower
bound inequalities for general polytopes and present a general conjecture which
corresponds to the generalized lower bound inequalities.

Let g;(P) = > {gx(F) : F € Py}. Thus g{(P) = f-(P). Recall that ¢x(n,d) is
the number of k-faces of stacked d-polytopes with n vertices. Here is an extension of
the lower bound inequalities for general polytopes. There is some hope that certain
rigidity type argument may be useful for a proof.

Conjecture 17 Let P be a d-polytope (and more generally an abstract polytope).
Then for k < d—1,

fe(P) + g1 (P) + 91" (P) > ¢1(n, d),
and fork=d -1,
fa-1(P) + g{7"(P) > dg—1(n.d).
Equality holds if and only if P is an elementary polytope.

Note that the case k = 1 is just the nonnegativity of g2(P).

We will describe now a more general conjecture. Let P be a simplicial polytope
with gx(P) = 0. For the class of all such polytopes all face numbers are determined
by fo(P),..., f—1(P), and define ay(r,7) such that for simplicial d-polytopes with
vanishing gx we have f, = Zf:o a(r, i) fi—1. (ag(r,1) is determined uniquely.) For
arbitrary simplicial d-polytopes P one gets the inequalities

k
fr Zzak(rvi)fifl- (11)
=0
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In the simplicial case, thses inequalities do not contribute anything new. They
follow from the nonnegativity of the g-numbers. Moreover, similar to the case for
the lower bound inequalities they also follow from the nonnegativity of the g;’s i < r
for the polytope and its quotients.

Remark: In order to get the ay(r,i) explicitly first expend f, in term of the
h;’s, by the defining relations. Next use the relations h; > hy for i,d — k > i > k,
and h; = hy_; for i > d — k. This gives an inequality f, > S Bx(r,i)h;. Finally
expand the h;’s back in term of the f/s to obtain f, > Zf:o a(r, i) fiz1.

We will consider now general polytopes:

Definition: Let P be an arbitrary d-polytope and let h(P) = (ho, h1, ..., hq) be the
h-vector of P. Define the fake f-vector of P by 3 fu—1(P)(z — 1)4% = 3" hjad—*.

Explicitly one gets
ki,
~ 2 ot
=30 (1)

=0 r=0

Note that the “fake number of edges”, f1 is the number of edges in a framework
based on P (denoted before by f;"(P)).
Now define a truncated version of the fake face number:

im =33 (o

i=0 r=0
Conjecture 18

k
frlk] > Zak(r,z’)ﬁ.

Remark: Another class of conjectures for linear inequalities of flag numbers of
polytopes was suggested by Stanley. Let P be an Eulerian poset of rank n. The
cd-index [3] of P associates for every word w in noncommuting variables ¢ and d such
that the number of ¢’s plus twice the number of d’s is n a certain linear combination
of flag numbers of P denoted by ®p(w). Stanley conjectured that over all P’s which
are face-lattices of (n —1)-dimensional polytopes, the value of this linear combination
of flag numbers is minimized precisely when P is a Boolean algebra (i.e., the face
lattice of a simplex).

4.6. CENTRALLY SYMMETRIC POLYTOPES, CUBICAL POLYTOPES, KUPITOPES AND
OTHER CLASSES OF POLYTOPES

It is of interest to study the combinatorial structure of polytopes in special classes

of polytopes. We decribe here a few such classes.

— The class of polytopes which were studied the most are the class of centrally
symmetric polytopes. There are known lower bound theorems for simplicial
centrally symmetric polytopes [45]. But the proofs are non elementary and
do not extend to more general structures. For general centrally symmetric
polytopes there are some partial results [21]. But even the simple question: Are
there always at least 3¢ proper faces is open [31]. For more information see [1].
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— Kupitopes are polytopes with no triangular 2-faces. Kupitz studied this class
of polytopes and conjectured that the number of r-faces is at least the number
of r-faces of the cube. It took quite a while before Blind and Blind [18] proved
Kupitz’ conjecture. It seem plausible that in analogy with inequality go(P) > 0
for general polytopes,

Conjecture 19 For every d-kupitope P

A+1/2> {fo(F)—4:FeP}>(d+1)/2fo — 27" (12)
In particular, for every cubical d-polytope
fiz(d+1)/2f -2,

Some variants of rigidity theory may be helpful here. This is part of a general
concept of h-numbers for cubical polytopes and kupitopes introduced by Adin
[5].

— Polytopes without r-faces which are simplices. This may be useful for the study
of Conjectures 15, 16.

— A class M of polytopes which are of interest is the class of polytopes defined by
system of linear inequalities each of which have the form z; < az; + b. In the
context of linear programming these classes were studied by Megiddo [40] and
others. But it seems that their combinatorial structure was not studied. Faces
of polytopes in M are also in M.

— Balanced d-polytopes of type (ki, ks, ..., k:) are simplicial polytopes whose er-
tices can be colored with ¢ colors such that each facet contains exactly k; ver-
tices of colors i. Of particular interest are balanced polytope of type (1,1,...,1)
which are called completely balanced. Duals of completely balanced polytopes
are precisely the simple polytopes with 2-chromatic graphs, or in other words,
precisely the simple polytopes all whose 2-faces have even sides. For an exten-
sion of h-vector theory to this setting see [44].

— Charney and Davis considered simplicial complexes with no empty simplices of
dimension greater than 1, and called them flag complexes. they made exciting
conjectures concerning face numbers of flag polytopes and spheres. (see [19]).

— Another class of polytopes which are of interest are polytopes with the property
that every k-face has at most Ck facets.

4.7. h-VECTORS FOR MORE EXOTIC STRUCTURES

As we saw h-vectors and g-vectors plays a crucial role in the study of polytopes
and related combinatorial structures. It was suggested that these concept can be
extended to much more general classes of combinatorial objects. The extension from
simplicial polytopes to general polytopes is instructive. What needed is to add extra
terms measuring the amount for which the faces are not simplices.

One direction would be to define h-vectors for arbitrary simplicial manifolds and
even pseudomanifolds. For manifolds one can expect that the “correcting terms” will
be in terms of the Betti numbers. (See [27].) For pseudomanifolds we can expect
some terms for Betti numbers of links of faces.

Another direction proposed by Bjorner [14] is to give a definition for arbitrary
regular cell decomposition of spheres. The definition and properties of h-vectors
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of general polytopes is expected to apply for regular cell decomposition of spheres
whose faces form a lattice. For regular cell decomposition of spheres without the
lattice property one expects some correction terms for the non lattice property, but
so far nobody was able to come up with a reasonable definition even for h;. Such
h-vectors should include as special cases the Kazhdan-Lusztig polynomials.

h-vectors play in the combinatorial theory of structures considered here similar
role to the role of zeta functions in number theory. (This is not a totally artificial
analogy since in some special cases the generating function of the h numbers is a
zeta function of some variety.) In simple cases the definition is obvious but proving
the basic properties is hard. In more general cases the main challenge is to find the
right definition.
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