Guarding galleries in which every point can see a large area
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Abstract
We prove that if X is a compact simply connected set in the plane of Lebesgue measure
1, such that any point € X sees a part of X of measure at least ¢, then one can choose
a set G of at most const% log% points in X such that any point of X is seen by some
point of G. More generally, if for any k points in X there is a point seeing at least 3 of
them, then all points of X can be seen from at most O(k~"?") points.

1 Introduction

A gallery is a compact set in the plane, X. A point z € X sees a point y € X if the segment
zy is fully contained in X. A subset G C X guards X if each point of X is seen by at least
one point of G. For a point 2 € X, denote by V(z) the visible region of z in X, that is, the
set of all points y € X seen by X.

Theorem 1 Let X be a simply connected gallery of Lebesgue measure \2(X) = 1, and let
e > 0 be a real number such that \?(V (z)) > ¢ for allz € X. Then X can be guarded by at
most const L log 1 points. More generally, if X has h holes, and \*(V (z)) > ¢ for all z € X,
then X can be guarded by C(h) L log ! points.

This answers a problem of Raghavan [?], who asked whether a gallery satisfying the
assumptions of the first part of the theorem can be guarded by f(e) points, for some function
f. The proof uses concepts and results of Vapnik and Chervonenkis [11] and Haussler and
Welzl [4] (VC-dimension and e-nets). For a set with holes (i.e. for h > 0), we use a Ramsey-
type argument which was suggested by Nesetiil in a slightly different context. The proof is
also related to the so-called wisibility graphs; see a remark in section 2.

The following is a more general result for simply connected art galleries:

Theorem 2 Let X be a simply connected gallery and k an integer such that among any k
points in X, there are some 3 which can be seen from a single point. Then X can be guarded
by at most k*** points.

The proof uses a technique developed by Alon and Kleitman [1], employing a fractional
Helly theorem and a linear separation theorem.

There exist galleries (with a large number of holes) in which each point sees a constant
fraction of the area of the gallery (1/10, say) but arbitrarily many points are needed to guard
the whole gallery. IS THIS KNOWN, OR SHOULD WE GIVE AN EXAMPLE??7?
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2 VC-dimension of galleries

First we recall definitions and results from [11], [4]. Let S be a set system on a set X. We
say that a subset A C X is shattered (by S) if every possible subset of A can be obtained as
the intersection of some S € § with A. The VC-dimension of S is the supremum of the sizes
of all finite shattered subsets of X.

Let 4 be a probability measure on X such that all sets of S are measurable. A set N C X
is called an e-net for S (with respect to p) if it intersects each S € S with u(S) >¢e (¢ >0
is a real number). Haussler and Welzl [4], extending ideas of Vapnik and Chervoneniks [11],
proved the following:

Theorem 3 Let X be a set, i a probability measure on X, and S a system of measurable
sets on X of VC-dimension at most d. Then for any € € (0,1) there exists an e-net for S
(with respect to p) of size at most C(d)L log L, where the number C(d) depends on d only.

Let us remark that [4] proves this result for the special case when X is finite and p is
the uniform distribution on X. Howewer, the same proof goes through almost literally for
an arbitrary probabilistic measure (see also [11] for a proof of a related result for general
probability measures). Another fact we need is as follows:

Lemma 4 [8] [9] [11] IfS is a set system of VC-dimension d on an n-point set then

5/ < (g>+(’;)+...+(g).

In particular, if d is fixed, |S| is bounded by a fixed polynomial in n.
Our proof of Theorem 1 is based on the following:

Proposition 5 Let X C R? be compact and simply connected. Then the VC-dimension of
the set system V(X) = {V(z); + € X} is bounded by a constant. More generally, if X has
at most h holes, then the VC-dimension of V(X)) is bounded by a function of h.

Proof of Theorem 1. Consider a gallery X as in Theorem 1. Since each V(z) has
Lebesgue measure at least €, an e-net for the set system V(X) (with respect to Lebesgue
measure) intersects each V' (z), and thus guards X. By Theorem 3 and Proposition 5, an
e-net of size O (L log 1) exists in this situation. O

Let us introduce some terminology concerning visibility graphs. If A is a subset of X, we
define the visibility graph of A in X, denoted by VG x (A), as the graph with vertex set A and
with two distinct points u, v forming an edge iff they see each other (within X). For two sets
A,B C X, we define the bipartite visibility graph of A, B in X, denoted by BV G x (A, B),
as the bipartite graph (A, B, F) (A, B are the color classes and F C A x B is the edge set),
where (a,b) € F iff a and b see each other.

Proof of Proposition 5. Let d be a sufficiently large number, and suppose that there
exists a d-point set A C X shattered by V(X). This means that for each subset S C A there
exists a point yg € X which sees all points of S but no point of A\ S; put B = {yg; S C A}.
In such a situation, we say that A is shattered by B.



Consider the bipartite visibility BVG x (A, B). For later use we note that if G = (U, V, E)
is any fixed bipartite graph, A is sufficiently large, and is shattered by B, then BVGx (A, B)
contains an isomorphic copy of G as an induced subgraph (with vertices of U mapped into
A and vertices of V mapped into B).

Starting with A, B as above, we find a smaller shattered set is a special position. Draw
a line thru each pair of points of A. The arrangement of these at most (g) lines has O(d?)
cells (vertices, edges, and open convex polygons), so there is one such cell containing a subset
B’ C B of at least 2¢/0(d*) points of B. These points correspond to subsets of A, so they
define a set system S; on A. If dy, the VC-dimension of &1, were bounded by a constant
independent of d, then the number of sets in §; would grow at most polynomially with d (by
Lemma 4), but we know it grows exonentially, hence d; grows to infinity with d — oco. Thus,
we may assume that some subset A; C A is shattered by a subset By C B’, with d; = |A44|
large.

By the observation made in the beginning of the proof, we know that the bipartite
visibility graph of A; and B; contains any prescribed bipartite induced subgraph (up to
some size). In particular, we can select subsets By C By and A C A such that dy = | By
is large, |As| = 292 and By is shattered by Ay (so we reverse the sides; dy can be chosen
|logy dq] in this situation — this is an observation due to Assouad [2]).

Next, we repeat the procedure from the first step of the proof, this time selecting a set
Bs C By of size dg (still sufficiently large), and A3 C As, such that Bj is shattered by Az and
Aj lies in a single cell of the arrangement of all lines defined by pairs of points of Bs. This
cell must be 2-dimensional (if it were an edge, we would get that all the points of A3 and
Bj are collinear, which is impossible), so no line determined by two points of A3 intersects
conv(Bj3), and vice versa (in particular, conv(As) N conv(Bs) = (). Hence each point of Bj
sees all points of A3 within an angle smaller than 7, and in the same clockwise angular order;
let <4 be this linear order the points of A3. Similarly we have the common counterclockwise
angular order, <p, of points of By around any point of As.

Let us consider the case of X simply connected. Here it suffices to have d3 = 5. We put
B' = Bs, and for each b € B’ we consider the point a = a(b) € A3 which sees all points of B’
but b. Let these 5 points form a set A’ C As.

Since we have 5 points on each side, we may choose a b € B’ such that b is neither the
first nor the last point of B’ in the <pg ordering, and at the same time a(b) € A’ is not the
first or last point in the <4 ordering of A’. We get a situation as in Fig. 1, namely that b sees
both the predecessor a’ and the successor a” of a(b), and a = a(b) sees both the predecessor
b and the successor b” of b. It is easy to check that the segments ab’ and a'b intersect as
shown (because of the restrictions on the relative position of A’ and B’), and similarly for
the segments a”b and ab”. These four segments are contained in X, and since X is simply
connected, also the shaded region bounded by the segments must be a part of X, hence a
and b see each other — a contradiction.

Next, let X have h holes. We use a Ramsey-type result of Nesetfil and Roédl [5]. An
ordered bipartite graph is a bipartite graph (U, V, E') with some linear orderings on U and on
V. (Negetrfil [private communication] earlier suggested this kind of approach for exhibiting
a forbidden induced bipartite subgraph of visibility graphs of simple polygons; see a remark
in the end of this section.)

Theorem 6 [5] Let (U,V, E) be a fixed ordered bipartite graph. There exists a bipartite
graph (R, S, F) such that for any linear orders <p on R and <g on S, the corresponding
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Figure 1: A contradiction to invisibility of @ and b.

ordered bipartite graph contains an ordered induced copy of (U, V,E) (i.e. the induced
embedding sends U into R and V into S in an order-preserving manner).

In our situation, we let (U, V, E) be the ordered bipartite graph with U = (ug, u1, ..., usp12),
V = (vg,...,v3p12), where the subgraph on each two triples (us;, usit1, ugi+o) and (vs;, V311, V3i42)
(1 =0,1,...,h) is as the one in Fig. 1, i.e. ug;y1 is connected to v3;, v3; 12 but not to vz;11,
v3;41 18 connected to ug; and ws;y9, and the remaining edges do not matter. We choose dj
so large that the bipartite visibility graph BV Gx (A3, B3) contains an induced copy (non-
ordered) of the graph (R, S, F) constructed for (U, V, E) as in Theorem 6. In the drawing of
BV Gx(As, Bs), we then obtain h + 1 situations as in Fig. 1, with the h + 1 shaded regions
being pairwise disjoint. At most h of these regions may contain a hole of X, and the remain-
ing one gives a contradiction to the supposed invisibility as for the simply connected case.
O

For simply connected galleries, our proof yields a bound of roughly 10'? for the VC-
dimension. The best lower bound we know is 5, and it seems reasonable to conjecture that
the VC-dimension is in fact a small number, perhaps 6. An art gallery with a 5-point
shattered subset is shown in Fig 2. The shattered set is indicated by dots numbered 1 thru
5. Crosses mark points which see only certain subsets; e.g., a cross labeled by 134 sees points
1,3, and 4 only. All types of subsets up to symmetry are shown, with an exception of the
empty set (for which we can always make a tiny niche somewhere in the wall, so that a point
there sees no-one).

Remark. In her thesis [3], Everett asked whether there is a bipartite graph which cannot
occur as an induced subgraph of the visibility graph of a simple polygon (i.e. a graph of the
form VGx(A), where X is a simple polygon and A is the set of its vertices). Shermer [10]
exhibited such a forbidden bipartite subgraph; in fact he constructed a bipartite graph on 30
vertices which cannot occur as VGx(A) for any simply connected X and any A C X. For
the VC-dimension result we need more — namely a bipartite graph which cannot occur as
BVGx (A, B), i.e. it is not a visibility graph even if we add any subset of edges on A and on
B. Perhaps Shermer’s method can be extended to provide a better numerical bound on the
VC-dimension in the simply connected case.

3 Fractional Helly and duality

The extra step we need for the proof of Theorem 2 is the following



Figure 2: A 5-point shattered set.

Proposition 7 If X and k are as in Theorem 2, then there exists a Borel measure on j on
X such that p(V(z)) > e =k?777 for allz € X.

Once this is proved, we can use the results of the preceding section, with the measure p
replacing the Lebesgue measure.

FRACTIONAL HELLY; WEIGHTED VERSION

The next step also follows the Alon-Kleitman proof. They use the duality theorem of
linear programming (which is essentially the separation of disjoint convex sets in a finite-
dimensional space by a hyperplane). We need to deal with an infinite family of sets, so we
apply an infinite-dimensional separation theorem (alternatively, one could use linear pro-
gramming duality and a limit argument), in a way suggested to us by E. Matouskov4.

Lemma 8 Let F be a family of closed sets in a compact Hausdorff space X, and let ¢ € (0, 1]

be a real number. Suppose that for any finite collection Fy, Fy, ..., F, of sets in F and any
choice of nonnegative reals ty,...,t, with t; + to + --- + t, = 1 there exists a point x € X
such that
o oti>e.
i, xEF;

Then there exists a Borel measure, pi, on X, such that u(F') > ¢ for all F € F.



Proof. Let C(X) be the Banach space of all continuous real functions X — R with the
supremum norm (i.e. ||f|| = max,ex |f(z)]). For each set F' € F, define a set Dp C C(X) as
the set of all continuous functions X — [0, 1] which are 1 at all points of F. Let D C C(X)
be the convex hull of Upcr DF.

We claim that D contains no function f with || f|| < e. Suppose the contrary; this means
that there exists a finite convex combination f = Y ;" ¢;f;, where t; > 0, > ¢; = 1, and
fi € Dp, for some Fi,..., F, € F, such that |[f|| < e. Since each Dp, is convex, we may
assume that the F;’s are all distinct. Apply the assumption of the lemma on the collection
Fy, ..., F, and the numbers ¢1,...,%, corresponding to this convex combination. This yields
a point x with 3=, -y t; > . If x € F}, then f;(x) = 1 by the definition of D, so we get

e>[Ifll > fla) =Y _tifi(z) > Y ti>e,
=1

i;xeF;

which is a contradiction.

The convex sets D and {f € C(X); ||f|| < e} (the open e-ball) are thus disjoint and the
latter one has nonempty interior, hence there exists a hyperplane separating them, that is,
a bounded linear functional h : C(X) — TR such that h(f) > ¢ for f € D, while u(f) < e
for || f|| < e (essentially by the Hahn-Banach theorem; see e.g. [7] for an appropriate version
of the separation result and references for other results referred to in the rest of this proof).
The latter condition gives ||| < 1, where ||h|| = sup{h(f); f € C(X),||f]| = 1}.

By the Riesz Representation theorem, there exists a unique regular Borel sighed measure
v on X such that h(f) = [y fdv for each f € C(X). We claim v(F) > ¢ for all F € F.
Indeed, if v(F) < e, we could find a function f € Dp such that h(f) < e as well (choose a
G D F open with v(G) < e, and then Tietze’s theorem provides an f € C(X) which is 0 on
X\Gand1lon F,soh(f)= [y fdv<v(G)<e).

The proof is finished by choosing p as the variation of v, i.e. the measure defined by
w(E) = sup{>¥_, v(E;)}, where Ey, ..., E}, are disjoint measurable subsets of a set £ C X.
We have u(X) = ||h]] < 1, and u(F) > v(F) > e for F € F. (Alternatively, we could add
the set {f € C(X); f(z) > eVz € X} to D in the beginning; then the functional A provided
by the separation is nonnegative and we get a measure right away.) O

4 A remark on greedy algorithm

One might suspect that under the conditions of Theorem 1, a guarding set of a size bounded in
terms of € could be obtained by a greedy algorithm: Select a guard which sees the maximum
possible area, then select the second guard as one seeing the largest part of the area not seen
by the first guard, etc. We present an example that this procedure might fail, i.e. select
arbitrarily many guards for some simply connected galleries. An example of such a gallery
is depicted in fig. 3.

The boundary of the gallery is drawn by a full line, the dotted lines are only auxiliary.
The little spikes (“fins”) Fy, F|, F5, F3,... are chosen so that the area of F; and F] is much
larger than the area of F;; and Fj . The guards placed at A and B suffice to guard all the
gallery. However, the first greedily placed guard comes to the point G, where it sees both
Fy and F| and the largest possible piece of the other fins (all points of the gallery, except
for the fins, see everything but possibly parts of the fins, and since Fy, F| dominate, we look
for a position where both can be seen). Now only the shaded parts of the other fins remain



Figure 3: The greedy algorithm fails.

unguarded, with the dominating portion of the area being in Fy, Fj, so the next guard is
place in G, etc.

The gallery in the figure requires 3 greedily placed guards. It is problematic to actually
draw examples of this type forcing the greedy algorithm to place more guards, but the
construction method is extended easily. Namely, we start with fins F;, F{ much smaller and
much closer to the tip of the large triangle, and then we adjoin progressively smaller fins
along the sides of the triangle, the next pair always coming to the right of the intersection of
the lines connecting the previous pair to A and B (as in Fig. 3). Points in each fin F; see the
portion of the triangle above the horizontal level of A and to the right of the vertical level of
the last fin, Fy. If F} is placed sufficiently far from the vertical side of the triangle (i.e., if we
start close enough to the tip with the first pair of fins), this represents a constant fraction of
the area (we can get any fraction below % by adjusting the proportions appropriately).
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