
Guarding galleries in whih every point an see a large areaGil Kalai Ji�r�� Matou�sek�Department of Applied MathematisCharles UniversityMalostransk�e n�am. 25, 118 00 Praha 1Czeh RepubliAbstratWe prove that ifX is a ompat simply onneted set in the plane of Lebesgue measure1, suh that any point x 2 X sees a part of X of measure at least ", then one an hoosea set G of at most onst 1" log 1" points in X suh that any point of X is seen by somepoint of G. More generally, if for any k points in X there is a point seeing at least 3 ofthem, then all points of X an be seen from at most O(k�???) points.1 IntrodutionA gallery is a ompat set in the plane, X. A point x 2 X sees a point y 2 X if the segmentxy is fully ontained in X. A subset G � X guards X if eah point of X is seen by at leastone point of G. For a point x 2 X, denote by V (x) the visible region of x in X, that is, theset of all points y 2 X seen by X.Theorem 1 Let X be a simply onneted gallery of Lebesgue measure �2(X) = 1, and let" > 0 be a real number suh that �2(V (x)) � " for all x 2 X. Then X an be guarded by atmost onst 1" log 1" points. More generally, if X has h holes, and �2(V (x)) � " for all x 2 X,then X an be guarded by C(h) 1" log 1" points.This answers a problem of Raghavan [?℄, who asked whether a gallery satisfying theassumptions of the �rst part of the theorem an be guarded by f(") points, for some funtionf . The proof uses onepts and results of Vapnik and Chervonenkis [11℄ and Haussler andWelzl [4℄ (VC-dimension and "-nets). For a set with holes (i.e. for h > 0), we use a Ramsey-type argument whih was suggested by Ne�set�ril in a slightly di�erent ontext. The proof isalso related to the so-alled visibility graphs; see a remark in setion 2.The following is a more general result for simply onneted art galleries:Theorem 2 Let X be a simply onneted gallery and k an integer suh that among any kpoints in X, there are some 3 whih an be seen from a single point. Then X an be guardedby at most k??? points.The proof uses a tehnique developed by Alon and Kleitman [1℄, employing a frationalHelly theorem and a linear separation theorem.There exist galleries (with a large number of holes) in whih eah point sees a onstantfration of the area of the gallery (1=10, say) but arbitrarily many points are needed to guardthe whole gallery. IS THIS KNOWN, OR SHOULD WE GIVE AN EXAMPLE????�Researh supported by Czeh Republi Grant GA�CR 201/94/2167 and Charles University grants No. 351and 361. Part of the work was done while the author was visiting the Hebrew University, Jerusalem.1



2 VC-dimension of galleriesFirst we reall de�nitions and results from [11℄, [4℄. Let S be a set system on a set X. Wesay that a subset A � X is shattered (by S) if every possible subset of A an be obtained asthe intersetion of some S 2 S with A. The VC-dimension of S is the supremum of the sizesof all �nite shattered subsets of X.Let � be a probability measure on X suh that all sets of S are measurable. A set N � Xis alled an "-net for S (with respet to �) if it intersets eah S 2 S with �(S) � " (" > 0is a real number). Haussler and Welzl [4℄, extending ideas of Vapnik and Chervoneniks [11℄,proved the following:Theorem 3 Let X be a set, � a probability measure on X, and S a system of measurablesets on X of VC-dimension at most d. Then for any " 2 (0; 1) there exists an "-net for S(with respet to �) of size at most C(d)1" log 1" , where the number C(d) depends on d only.Let us remark that [4℄ proves this result for the speial ase when X is �nite and � isthe uniform distribution on X. Howewer, the same proof goes through almost literally foran arbitrary probabilisti measure (see also [11℄ for a proof of a related result for generalprobability measures). Another fat we need is as follows:Lemma 4 [8℄ [9℄ [11℄ If S is a set system of VC-dimension d on an n-point set thenjSj �  n0!+ n1!+ � � �+  nd! :In partiular, if d is �xed, jSj is bounded by a �xed polynomial in n.Our proof of Theorem 1 is based on the following:Proposition 5 Let X � IR2 be ompat and simply onneted. Then the VC-dimension ofthe set system V(X) = fV (x); x 2 Xg is bounded by a onstant. More generally, if X hasat most h holes, then the VC-dimension of V(X) is bounded by a funtion of h.Proof of Theorem 1. Consider a gallery X as in Theorem 1. Sine eah V (x) hasLebesgue measure at least ", an "-net for the set system V(X) (with respet to Lebesguemeasure) intersets eah V (x), and thus guards X. By Theorem 3 and Proposition 5, an"-net of size Oh(1" log 1" ) exists in this situation. 2Let us introdue some terminology onerning visibility graphs. If A is a subset of X, wede�ne the visibility graph of A in X, denoted by V GX(A), as the graph with vertex set A andwith two distint points u; v forming an edge i� they see eah other (within X). For two setsA;B � X, we de�ne the bipartite visibility graph of A;B in X, denoted by BV GX(A;B),as the bipartite graph (A;B;E) (A, B are the olor lasses and E � A�B is the edge set),where (a; b) 2 E i� a and b see eah other.Proof of Proposition 5. Let d be a suÆiently large number, and suppose that thereexists a d-point set A � X shattered by V(X). This means that for eah subset S � A thereexists a point yS 2 X whih sees all points of S but no point of A nS; put B = fyS ; S � Ag.In suh a situation, we say that A is shattered by B.2



Consider the bipartite visibility BV GX(A;B). For later use we note that if G = (U; V;E)is any �xed bipartite graph, A is suÆiently large, and is shattered by B, then BV GX(A;B)ontains an isomorphi opy of G as an indued subgraph (with verties of U mapped intoA and verties of V mapped into B).Starting with A;B as above, we �nd a smaller shattered set is a speial position. Drawa line thru eah pair of points of A. The arrangement of these at most �d2� lines has O(d4)ells (verties, edges, and open onvex polygons), so there is one suh ell ontaining a subsetB0 � B of at least 2d=O(d4) points of B. These points orrespond to subsets of A, so theyde�ne a set system S1 on A. If d1, the VC-dimension of S1, were bounded by a onstantindependent of d, then the number of sets in S1 would grow at most polynomially with d (byLemma 4), but we know it grows exonentially, hene d1 grows to in�nity with d!1. Thus,we may assume that some subset A1 � A is shattered by a subset B1 � B0, with d1 = jA1jlarge.By the observation made in the beginning of the proof, we know that the bipartitevisibility graph of A1 and B1 ontains any presribed bipartite indued subgraph (up tosome size). In partiular, we an selet subsets B2 � B1 and A2 � A1 suh that d2 = jB2jis large, jA2j = 2d2 and B2 is shattered by A2 (so we reverse the sides; d2 an be hosenblog2 d1 in this situation | this is an observation due to Assouad [2℄).Next, we repeat the proedure from the �rst step of the proof, this time seleting a setB3 � B2 of size d3 (still suÆiently large), and A3 � A2, suh that B3 is shattered by A3 andA3 lies in a single ell of the arrangement of all lines de�ned by pairs of points of B3. Thisell must be 2-dimensional (if it were an edge, we would get that all the points of A3 andB3 are ollinear, whih is impossible), so no line determined by two points of A3 intersetsonv(B3), and vie versa (in partiular, onv(A3) \ onv(B3) = ;). Hene eah point of B3sees all points of A3 within an angle smaller than �, and in the same lokwise angular order;let �A be this linear order the points of A3. Similarly we have the ommon ounterlokwiseangular order, �B, of points of B3 around any point of A3.Let us onsider the ase of X simply onneted. Here it suÆes to have d3 = 5. We putB0 = B3, and for eah b 2 B0 we onsider the point a = a(b) 2 A3 whih sees all points of B0but b. Let these 5 points form a set A0 � A3.Sine we have 5 points on eah side, we may hoose a b 2 B0 suh that b is neither the�rst nor the last point of B0 in the �B ordering, and at the same time a(b) 2 A0 is not the�rst or last point in the �A ordering of A0. We get a situation as in Fig. 1, namely that b seesboth the predeessor a0 and the suessor a00 of a(b), and a = a(b) sees both the predeessorb0 and the suessor b00 of b. It is easy to hek that the segments ab0 and a0b interset asshown (beause of the restritions on the relative position of A0 and B0), and similarly forthe segments a00b and ab00. These four segments are ontained in X, and sine X is simplyonneted, also the shaded region bounded by the segments must be a part of X, hene aand b see eah other | a ontradition.Next, let X have h holes. We use a Ramsey-type result of Ne�set�ril and R�odl [5℄. Anordered bipartite graph is a bipartite graph (U; V;E) with some linear orderings on U and onV . (Ne�setr�ril [private ommuniation℄ earlier suggested this kind of approah for exhibitinga forbidden indued bipartite subgraph of visibility graphs of simple polygons; see a remarkin the end of this setion.)Theorem 6 [5℄ Let (U; V;E) be a �xed ordered bipartite graph. There exists a bipartitegraph (R;S; F ) suh that for any linear orders �R on R and �S on S, the orresponding3
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Figure 1: A ontradition to invisibility of a and b.ordered bipartite graph ontains an ordered indued opy of (U; V;E) (i.e. the induedembedding sends U into R and V into S in an order-preserving manner).In our situation, we let (U; V;E) be the ordered bipartite graph with U = (u0; u1; : : : ; u3h+2),V = (v0; : : : ; v3h+2), where the subgraph on eah two triples (u3i; u3i+1; u3i+2) and (v3i; v3i+1; v3i+2)(i = 0; 1; : : : ; h) is as the one in Fig. 1, i.e. u3i+1 is onneted to v3i; v3i+2 but not to v3i+1,v3i+1 is onneted to u3i and u3i+2, and the remaining edges do not matter. We hoose d3so large that the bipartite visibility graph BVGX(A3; B3) ontains an indued opy (non-ordered) of the graph (R;S; F ) onstruted for (U; V;E) as in Theorem 6. In the drawing ofBV GX(A3; B3), we then obtain h+ 1 situations as in Fig. 1, with the h + 1 shaded regionsbeing pairwise disjoint. At most h of these regions may ontain a hole of X, and the remain-ing one gives a ontradition to the supposed invisibility as for the simply onneted ase.2 For simply onneted galleries, our proof yields a bound of roughly 1012 for the VC-dimension. The best lower bound we know is 5, and it seems reasonable to onjeture thatthe VC-dimension is in fat a small number, perhaps 6. An art gallery with a 5-pointshattered subset is shown in Fig 2. The shattered set is indiated by dots numbered 1 thru5. Crosses mark points whih see only ertain subsets; e.g., a ross labeled by 134 sees points1,3, and 4 only. All types of subsets up to symmetry are shown, with an exeption of theempty set (for whih we an always make a tiny nihe somewhere in the wall, so that a pointthere sees no-one).Remark. In her thesis [3℄, Everett asked whether there is a bipartite graph whih annotour as an indued subgraph of the visibility graph of a simple polygon (i.e. a graph of theform V GX(A), where X is a simple polygon and A is the set of its verties). Shermer [10℄exhibited suh a forbidden bipartite subgraph; in fat he onstruted a bipartite graph on 30verties whih annot our as V GX(A) for any simply onneted X and any A � X. Forthe VC-dimension result we need more | namely a bipartite graph whih annot our asBV GX(A;B), i.e. it is not a visibility graph even if we add any subset of edges on A and onB. Perhaps Shermer's method an be extended to provide a better numerial bound on theVC-dimension in the simply onneted ase.3 Frational Helly and dualityThe extra step we need for the proof of Theorem 2 is the following4
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Figure 2: A 5-point shattered set.Proposition 7 If X and k are as in Theorem 2, then there exists a Borel measure on � onX suh that �(V (x)) � " = k??? for all x 2 X.One this is proved, we an use the results of the preeding setion, with the measure �replaing the Lebesgue measure.FRACTIONAL HELLY; WEIGHTED VERSIONThe next step also follows the Alon-Kleitman proof. They use the duality theorem oflinear programming (whih is essentially the separation of disjoint onvex sets in a �nite-dimensional spae by a hyperplane). We need to deal with an in�nite family of sets, so weapply an in�nite-dimensional separation theorem (alternatively, one ould use linear pro-gramming duality and a limit argument), in a way suggested to us by E. Matou�skov�a.Lemma 8 Let F be a family of losed sets in a ompat Hausdor� spae X, and let " 2 (0; 1℄be a real number. Suppose that for any �nite olletion F1; F2; : : : ; Fn of sets in F and anyhoie of nonnegative reals t1; : : : ; tn with t1 + t2 + � � � + tn = 1 there exists a point x 2 Xsuh that Xi;x2Fi ti � " :Then there exists a Borel measure, �, on X, suh that �(F ) � " for all F 2 F .5



Proof. Let C(X) be the Banah spae of all ontinuous real funtions X ! IR with thesupremum norm (i.e. kfk = maxx2X jf(x)j). For eah set F 2 F , de�ne a set DF � C(X) asthe set of all ontinuous funtions X ! [0; 1℄ whih are 1 at all points of F . Let D � C(X)be the onvex hull of SF2F DF .We laim that D ontains no funtion f with kfk < ". Suppose the ontrary; this meansthat there exists a �nite onvex ombination f = Pni=1 tifi, where ti � 0, P ti = 1, andfi 2 DFi for some F1; : : : ; Fn 2 F , suh that kfk < ". Sine eah DFi is onvex, we mayassume that the Fi's are all distint. Apply the assumption of the lemma on the olletionF1; : : : ; Fn and the numbers t1; : : : ; tn orresponding to this onvex ombination. This yieldsa point x with Pi;x2Fi ti � ". If x 2 Fi, then fi(x) = 1 by the de�nition of DFi , so we get" > kfk � f(x) = nXi=1 tifi(x) � Xi;x2Fi ti � " ;whih is a ontradition.The onvex sets D and ff 2 C(X); kfk < "g (the open "-ball) are thus disjoint and thelatter one has nonempty interior, hene there exists a hyperplane separating them, that is,a bounded linear funtional h : C(X) ! IR suh that h(f) � " for f 2 D, while �(f) � "for kfk � " (essentially by the Hahn-Banah theorem; see e.g. [7℄ for an appropriate versionof the separation result and referenes for other results referred to in the rest of this proof).The latter ondition gives khk � 1, where khk = supfh(f); f 2 C(X); kfk = 1g.By the Riesz Representation theorem, there exists a unique regular Borel signed measure� on X suh that h(f) = RX fd� for eah f 2 C(X). We laim �(F ) � " for all F 2 F .Indeed, if �(F ) < ", we ould �nd a funtion f 2 DF suh that h(f) < " as well (hoose aG � F open with �(G) < ", and then Tietze's theorem provides an f 2 C(X) whih is 0 onX nG and 1 on F , so h(f) = RX fd� � �(G) < ").The proof is �nished by hoosing � as the variation of �, i.e. the measure de�ned by�(E) = supfPki=1 �(Ei)g, where E1; : : : ; Ek are disjoint measurable subsets of a set E � X.We have �(X) = khk � 1, and �(F ) � �(F ) � " for F 2 F . (Alternatively, we ould addthe set ff 2 C(X); f(x) � "8x 2 Xg to D in the beginning; then the funtional h providedby the separation is nonnegative and we get a measure right away.) 24 A remark on greedy algorithmOne might suspet that under the onditions of Theorem 1, a guarding set of a size bounded interms of " ould be obtained by a greedy algorithm: Selet a guard whih sees the maximumpossible area, then selet the seond guard as one seeing the largest part of the area not seenby the �rst guard, et. We present an example that this proedure might fail, i.e. seletarbitrarily many guards for some simply onneted galleries. An example of suh a galleryis depited in �g. 3.The boundary of the gallery is drawn by a full line, the dotted lines are only auxiliary.The little spikes (\�ns") F1; F 01; F2; F 02; : : : are hosen so that the area of Fi and F 0i is muhlarger than the area of Fi+1 and F 0i+1. The guards plaed at A and B suÆe to guard all thegallery. However, the �rst greedily plaed guard omes to the point G1, where it sees bothF1 and F 01 and the largest possible piee of the other �ns (all points of the gallery, exeptfor the �ns, see everything but possibly parts of the �ns, and sine F1; F 01 dominate, we lookfor a position where both an be seen). Now only the shaded parts of the other �ns remain6
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Figure 3: The greedy algorithm fails.unguarded, with the dominating portion of the area being in F2; F 02, so the next guard isplae in G2, et.The gallery in the �gure requires 3 greedily plaed guards. It is problemati to atuallydraw examples of this type foring the greedy algorithm to plae more guards, but theonstrution method is extended easily. Namely, we start with �ns F1; F 01 muh smaller andmuh loser to the tip of the large triangle, and then we adjoin progressively smaller �nsalong the sides of the triangle, the next pair always oming to the right of the intersetion ofthe lines onneting the previous pair to A and B (as in Fig. 3). Points in eah �n Fi see theportion of the triangle above the horizontal level of A and to the right of the vertial level ofthe last �n, Fk. If Fk is plaed suÆiently far from the vertial side of the triangle (i.e., if westart lose enough to the tip with the �rst pair of �ns), this represents a onstant fration ofthe area (we an get any fration below 12 by adjusting the proportions appropriately).Aknowledgment. We thank Eva Matou�skov�a for help with Lemma 8. Thanks go alsoto Nati Linial and Jaroslav Ne�set�ril for useful disussions, and to Hazel Everett for pointingout the referene [10℄.
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