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Abstra
tWe prove that ifX is a 
ompa
t simply 
onne
ted set in the plane of Lebesgue measure1, su
h that any point x 2 X sees a part of X of measure at least ", then one 
an 
hoosea set G of at most 
onst 1" log 1" points in X su
h that any point of X is seen by somepoint of G. More generally, if for any k points in X there is a point seeing at least 3 ofthem, then all points of X 
an be seen from at most O(k�???) points.1 Introdu
tionA gallery is a 
ompa
t set in the plane, X. A point x 2 X sees a point y 2 X if the segmentxy is fully 
ontained in X. A subset G � X guards X if ea
h point of X is seen by at leastone point of G. For a point x 2 X, denote by V (x) the visible region of x in X, that is, theset of all points y 2 X seen by X.Theorem 1 Let X be a simply 
onne
ted gallery of Lebesgue measure �2(X) = 1, and let" > 0 be a real number su
h that �2(V (x)) � " for all x 2 X. Then X 
an be guarded by atmost 
onst 1" log 1" points. More generally, if X has h holes, and �2(V (x)) � " for all x 2 X,then X 
an be guarded by C(h) 1" log 1" points.This answers a problem of Raghavan [?℄, who asked whether a gallery satisfying theassumptions of the �rst part of the theorem 
an be guarded by f(") points, for some fun
tionf . The proof uses 
on
epts and results of Vapnik and Chervonenkis [11℄ and Haussler andWelzl [4℄ (VC-dimension and "-nets). For a set with holes (i.e. for h > 0), we use a Ramsey-type argument whi
h was suggested by Ne�set�ril in a slightly di�erent 
ontext. The proof isalso related to the so-
alled visibility graphs; see a remark in se
tion 2.The following is a more general result for simply 
onne
ted art galleries:Theorem 2 Let X be a simply 
onne
ted gallery and k an integer su
h that among any kpoints in X, there are some 3 whi
h 
an be seen from a single point. Then X 
an be guardedby at most k??? points.The proof uses a te
hnique developed by Alon and Kleitman [1℄, employing a fra
tionalHelly theorem and a linear separation theorem.There exist galleries (with a large number of holes) in whi
h ea
h point sees a 
onstantfra
tion of the area of the gallery (1=10, say) but arbitrarily many points are needed to guardthe whole gallery. IS THIS KNOWN, OR SHOULD WE GIVE AN EXAMPLE????�Resear
h supported by Cze
h Republi
 Grant GA�CR 201/94/2167 and Charles University grants No. 351and 361. Part of the work was done while the author was visiting the Hebrew University, Jerusalem.1



2 VC-dimension of galleriesFirst we re
all de�nitions and results from [11℄, [4℄. Let S be a set system on a set X. Wesay that a subset A � X is shattered (by S) if every possible subset of A 
an be obtained asthe interse
tion of some S 2 S with A. The VC-dimension of S is the supremum of the sizesof all �nite shattered subsets of X.Let � be a probability measure on X su
h that all sets of S are measurable. A set N � Xis 
alled an "-net for S (with respe
t to �) if it interse
ts ea
h S 2 S with �(S) � " (" > 0is a real number). Haussler and Welzl [4℄, extending ideas of Vapnik and Chervoneniks [11℄,proved the following:Theorem 3 Let X be a set, � a probability measure on X, and S a system of measurablesets on X of VC-dimension at most d. Then for any " 2 (0; 1) there exists an "-net for S(with respe
t to �) of size at most C(d)1" log 1" , where the number C(d) depends on d only.Let us remark that [4℄ proves this result for the spe
ial 
ase when X is �nite and � isthe uniform distribution on X. Howewer, the same proof goes through almost literally foran arbitrary probabilisti
 measure (see also [11℄ for a proof of a related result for generalprobability measures). Another fa
t we need is as follows:Lemma 4 [8℄ [9℄ [11℄ If S is a set system of VC-dimension d on an n-point set thenjSj �  n0!+ n1!+ � � �+  nd! :In parti
ular, if d is �xed, jSj is bounded by a �xed polynomial in n.Our proof of Theorem 1 is based on the following:Proposition 5 Let X � IR2 be 
ompa
t and simply 
onne
ted. Then the VC-dimension ofthe set system V(X) = fV (x); x 2 Xg is bounded by a 
onstant. More generally, if X hasat most h holes, then the VC-dimension of V(X) is bounded by a fun
tion of h.Proof of Theorem 1. Consider a gallery X as in Theorem 1. Sin
e ea
h V (x) hasLebesgue measure at least ", an "-net for the set system V(X) (with respe
t to Lebesguemeasure) interse
ts ea
h V (x), and thus guards X. By Theorem 3 and Proposition 5, an"-net of size Oh(1" log 1" ) exists in this situation. 2Let us introdu
e some terminology 
on
erning visibility graphs. If A is a subset of X, wede�ne the visibility graph of A in X, denoted by V GX(A), as the graph with vertex set A andwith two distin
t points u; v forming an edge i� they see ea
h other (within X). For two setsA;B � X, we de�ne the bipartite visibility graph of A;B in X, denoted by BV GX(A;B),as the bipartite graph (A;B;E) (A, B are the 
olor 
lasses and E � A�B is the edge set),where (a; b) 2 E i� a and b see ea
h other.Proof of Proposition 5. Let d be a suÆ
iently large number, and suppose that thereexists a d-point set A � X shattered by V(X). This means that for ea
h subset S � A thereexists a point yS 2 X whi
h sees all points of S but no point of A nS; put B = fyS ; S � Ag.In su
h a situation, we say that A is shattered by B.2



Consider the bipartite visibility BV GX(A;B). For later use we note that if G = (U; V;E)is any �xed bipartite graph, A is suÆ
iently large, and is shattered by B, then BV GX(A;B)
ontains an isomorphi
 
opy of G as an indu
ed subgraph (with verti
es of U mapped intoA and verti
es of V mapped into B).Starting with A;B as above, we �nd a smaller shattered set is a spe
ial position. Drawa line thru ea
h pair of points of A. The arrangement of these at most �d2� lines has O(d4)
ells (verti
es, edges, and open 
onvex polygons), so there is one su
h 
ell 
ontaining a subsetB0 � B of at least 2d=O(d4) points of B. These points 
orrespond to subsets of A, so theyde�ne a set system S1 on A. If d1, the VC-dimension of S1, were bounded by a 
onstantindependent of d, then the number of sets in S1 would grow at most polynomially with d (byLemma 4), but we know it grows exonentially, hen
e d1 grows to in�nity with d!1. Thus,we may assume that some subset A1 � A is shattered by a subset B1 � B0, with d1 = jA1jlarge.By the observation made in the beginning of the proof, we know that the bipartitevisibility graph of A1 and B1 
ontains any pres
ribed bipartite indu
ed subgraph (up tosome size). In parti
ular, we 
an sele
t subsets B2 � B1 and A2 � A1 su
h that d2 = jB2jis large, jA2j = 2d2 and B2 is shattered by A2 (so we reverse the sides; d2 
an be 
hosenblog2 d1
 in this situation | this is an observation due to Assouad [2℄).Next, we repeat the pro
edure from the �rst step of the proof, this time sele
ting a setB3 � B2 of size d3 (still suÆ
iently large), and A3 � A2, su
h that B3 is shattered by A3 andA3 lies in a single 
ell of the arrangement of all lines de�ned by pairs of points of B3. This
ell must be 2-dimensional (if it were an edge, we would get that all the points of A3 andB3 are 
ollinear, whi
h is impossible), so no line determined by two points of A3 interse
ts
onv(B3), and vi
e versa (in parti
ular, 
onv(A3) \ 
onv(B3) = ;). Hen
e ea
h point of B3sees all points of A3 within an angle smaller than �, and in the same 
lo
kwise angular order;let �A be this linear order the points of A3. Similarly we have the 
ommon 
ounter
lo
kwiseangular order, �B, of points of B3 around any point of A3.Let us 
onsider the 
ase of X simply 
onne
ted. Here it suÆ
es to have d3 = 5. We putB0 = B3, and for ea
h b 2 B0 we 
onsider the point a = a(b) 2 A3 whi
h sees all points of B0but b. Let these 5 points form a set A0 � A3.Sin
e we have 5 points on ea
h side, we may 
hoose a b 2 B0 su
h that b is neither the�rst nor the last point of B0 in the �B ordering, and at the same time a(b) 2 A0 is not the�rst or last point in the �A ordering of A0. We get a situation as in Fig. 1, namely that b seesboth the prede
essor a0 and the su

essor a00 of a(b), and a = a(b) sees both the prede
essorb0 and the su

essor b00 of b. It is easy to 
he
k that the segments ab0 and a0b interse
t asshown (be
ause of the restri
tions on the relative position of A0 and B0), and similarly forthe segments a00b and ab00. These four segments are 
ontained in X, and sin
e X is simply
onne
ted, also the shaded region bounded by the segments must be a part of X, hen
e aand b see ea
h other | a 
ontradi
tion.Next, let X have h holes. We use a Ramsey-type result of Ne�set�ril and R�odl [5℄. Anordered bipartite graph is a bipartite graph (U; V;E) with some linear orderings on U and onV . (Ne�setr�ril [private 
ommuni
ation℄ earlier suggested this kind of approa
h for exhibitinga forbidden indu
ed bipartite subgraph of visibility graphs of simple polygons; see a remarkin the end of this se
tion.)Theorem 6 [5℄ Let (U; V;E) be a �xed ordered bipartite graph. There exists a bipartitegraph (R;S; F ) su
h that for any linear orders �R on R and �S on S, the 
orresponding3
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Figure 1: A 
ontradi
tion to invisibility of a and b.ordered bipartite graph 
ontains an ordered indu
ed 
opy of (U; V;E) (i.e. the indu
edembedding sends U into R and V into S in an order-preserving manner).In our situation, we let (U; V;E) be the ordered bipartite graph with U = (u0; u1; : : : ; u3h+2),V = (v0; : : : ; v3h+2), where the subgraph on ea
h two triples (u3i; u3i+1; u3i+2) and (v3i; v3i+1; v3i+2)(i = 0; 1; : : : ; h) is as the one in Fig. 1, i.e. u3i+1 is 
onne
ted to v3i; v3i+2 but not to v3i+1,v3i+1 is 
onne
ted to u3i and u3i+2, and the remaining edges do not matter. We 
hoose d3so large that the bipartite visibility graph BVGX(A3; B3) 
ontains an indu
ed 
opy (non-ordered) of the graph (R;S; F ) 
onstru
ted for (U; V;E) as in Theorem 6. In the drawing ofBV GX(A3; B3), we then obtain h+ 1 situations as in Fig. 1, with the h + 1 shaded regionsbeing pairwise disjoint. At most h of these regions may 
ontain a hole of X, and the remain-ing one gives a 
ontradi
tion to the supposed invisibility as for the simply 
onne
ted 
ase.2 For simply 
onne
ted galleries, our proof yields a bound of roughly 1012 for the VC-dimension. The best lower bound we know is 5, and it seems reasonable to 
onje
ture thatthe VC-dimension is in fa
t a small number, perhaps 6. An art gallery with a 5-pointshattered subset is shown in Fig 2. The shattered set is indi
ated by dots numbered 1 thru5. Crosses mark points whi
h see only 
ertain subsets; e.g., a 
ross labeled by 134 sees points1,3, and 4 only. All types of subsets up to symmetry are shown, with an ex
eption of theempty set (for whi
h we 
an always make a tiny ni
he somewhere in the wall, so that a pointthere sees no-one).Remark. In her thesis [3℄, Everett asked whether there is a bipartite graph whi
h 
annoto

ur as an indu
ed subgraph of the visibility graph of a simple polygon (i.e. a graph of theform V GX(A), where X is a simple polygon and A is the set of its verti
es). Shermer [10℄exhibited su
h a forbidden bipartite subgraph; in fa
t he 
onstru
ted a bipartite graph on 30verti
es whi
h 
annot o

ur as V GX(A) for any simply 
onne
ted X and any A � X. Forthe VC-dimension result we need more | namely a bipartite graph whi
h 
annot o

ur asBV GX(A;B), i.e. it is not a visibility graph even if we add any subset of edges on A and onB. Perhaps Shermer's method 
an be extended to provide a better numeri
al bound on theVC-dimension in the simply 
onne
ted 
ase.3 Fra
tional Helly and dualityThe extra step we need for the proof of Theorem 2 is the following4
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Figure 2: A 5-point shattered set.Proposition 7 If X and k are as in Theorem 2, then there exists a Borel measure on � onX su
h that �(V (x)) � " = k??? for all x 2 X.On
e this is proved, we 
an use the results of the pre
eding se
tion, with the measure �repla
ing the Lebesgue measure.FRACTIONAL HELLY; WEIGHTED VERSIONThe next step also follows the Alon-Kleitman proof. They use the duality theorem oflinear programming (whi
h is essentially the separation of disjoint 
onvex sets in a �nite-dimensional spa
e by a hyperplane). We need to deal with an in�nite family of sets, so weapply an in�nite-dimensional separation theorem (alternatively, one 
ould use linear pro-gramming duality and a limit argument), in a way suggested to us by E. Matou�skov�a.Lemma 8 Let F be a family of 
losed sets in a 
ompa
t Hausdor� spa
e X, and let " 2 (0; 1℄be a real number. Suppose that for any �nite 
olle
tion F1; F2; : : : ; Fn of sets in F and any
hoi
e of nonnegative reals t1; : : : ; tn with t1 + t2 + � � � + tn = 1 there exists a point x 2 Xsu
h that Xi;x2Fi ti � " :Then there exists a Borel measure, �, on X, su
h that �(F ) � " for all F 2 F .5



Proof. Let C(X) be the Bana
h spa
e of all 
ontinuous real fun
tions X ! IR with thesupremum norm (i.e. kfk = maxx2X jf(x)j). For ea
h set F 2 F , de�ne a set DF � C(X) asthe set of all 
ontinuous fun
tions X ! [0; 1℄ whi
h are 1 at all points of F . Let D � C(X)be the 
onvex hull of SF2F DF .We 
laim that D 
ontains no fun
tion f with kfk < ". Suppose the 
ontrary; this meansthat there exists a �nite 
onvex 
ombination f = Pni=1 tifi, where ti � 0, P ti = 1, andfi 2 DFi for some F1; : : : ; Fn 2 F , su
h that kfk < ". Sin
e ea
h DFi is 
onvex, we mayassume that the Fi's are all distin
t. Apply the assumption of the lemma on the 
olle
tionF1; : : : ; Fn and the numbers t1; : : : ; tn 
orresponding to this 
onvex 
ombination. This yieldsa point x with Pi;x2Fi ti � ". If x 2 Fi, then fi(x) = 1 by the de�nition of DFi , so we get" > kfk � f(x) = nXi=1 tifi(x) � Xi;x2Fi ti � " ;whi
h is a 
ontradi
tion.The 
onvex sets D and ff 2 C(X); kfk < "g (the open "-ball) are thus disjoint and thelatter one has nonempty interior, hen
e there exists a hyperplane separating them, that is,a bounded linear fun
tional h : C(X) ! IR su
h that h(f) � " for f 2 D, while �(f) � "for kfk � " (essentially by the Hahn-Bana
h theorem; see e.g. [7℄ for an appropriate versionof the separation result and referen
es for other results referred to in the rest of this proof).The latter 
ondition gives khk � 1, where khk = supfh(f); f 2 C(X); kfk = 1g.By the Riesz Representation theorem, there exists a unique regular Borel signed measure� on X su
h that h(f) = RX fd� for ea
h f 2 C(X). We 
laim �(F ) � " for all F 2 F .Indeed, if �(F ) < ", we 
ould �nd a fun
tion f 2 DF su
h that h(f) < " as well (
hoose aG � F open with �(G) < ", and then Tietze's theorem provides an f 2 C(X) whi
h is 0 onX nG and 1 on F , so h(f) = RX fd� � �(G) < ").The proof is �nished by 
hoosing � as the variation of �, i.e. the measure de�ned by�(E) = supfPki=1 �(Ei)g, where E1; : : : ; Ek are disjoint measurable subsets of a set E � X.We have �(X) = khk � 1, and �(F ) � �(F ) � " for F 2 F . (Alternatively, we 
ould addthe set ff 2 C(X); f(x) � "8x 2 Xg to D in the beginning; then the fun
tional h providedby the separation is nonnegative and we get a measure right away.) 24 A remark on greedy algorithmOne might suspe
t that under the 
onditions of Theorem 1, a guarding set of a size bounded interms of " 
ould be obtained by a greedy algorithm: Sele
t a guard whi
h sees the maximumpossible area, then sele
t the se
ond guard as one seeing the largest part of the area not seenby the �rst guard, et
. We present an example that this pro
edure might fail, i.e. sele
tarbitrarily many guards for some simply 
onne
ted galleries. An example of su
h a galleryis depi
ted in �g. 3.The boundary of the gallery is drawn by a full line, the dotted lines are only auxiliary.The little spikes (\�ns") F1; F 01; F2; F 02; : : : are 
hosen so that the area of Fi and F 0i is mu
hlarger than the area of Fi+1 and F 0i+1. The guards pla
ed at A and B suÆ
e to guard all thegallery. However, the �rst greedily pla
ed guard 
omes to the point G1, where it sees bothF1 and F 01 and the largest possible pie
e of the other �ns (all points of the gallery, ex
eptfor the �ns, see everything but possibly parts of the �ns, and sin
e F1; F 01 dominate, we lookfor a position where both 
an be seen). Now only the shaded parts of the other �ns remain6
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Figure 3: The greedy algorithm fails.unguarded, with the dominating portion of the area being in F2; F 02, so the next guard ispla
e in G2, et
.The gallery in the �gure requires 3 greedily pla
ed guards. It is problemati
 to a
tuallydraw examples of this type for
ing the greedy algorithm to pla
e more guards, but the
onstru
tion method is extended easily. Namely, we start with �ns F1; F 01 mu
h smaller andmu
h 
loser to the tip of the large triangle, and then we adjoin progressively smaller �nsalong the sides of the triangle, the next pair always 
oming to the right of the interse
tion ofthe lines 
onne
ting the previous pair to A and B (as in Fig. 3). Points in ea
h �n Fi see theportion of the triangle above the horizontal level of A and to the right of the verti
al level ofthe last �n, Fk. If Fk is pla
ed suÆ
iently far from the verti
al side of the triangle (i.e., if westart 
lose enough to the tip with the �rst pair of �ns), this represents a 
onstant fra
tion ofthe area (we 
an get any fra
tion below 12 by adjusting the proportions appropriately).A
knowledgment. We thank Eva Matou�skov�a for help with Lemma 8. Thanks go alsoto Nati Linial and Jaroslav Ne�set�ril for useful dis
ussions, and to Hazel Everett for pointingout the referen
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