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Abstract

We propose and discuss two postulates on the nature of errors in

highly correlated noisy physical stochastic systems. The first postulate

asserts that errors for a pair of substantially correlated elements are

themselves substantially correlated. The second postulate asserts that

in a noisy system with many highly correlated elements there will be a

strong effect of error synchronization. These postulates appear to be

damaging for quantum computers.

1 Quantum computers and the threshold theorem

Quantum computers are hypothetical devices based on quantum physics. A

formal definition of quantum computers was pioneered by Deutsch [1], who

also realized that they can outperform classical computation. The idea of a

quantum computer can be traced back to works by Feynman, Manin, and

others, and this development is also related to reversible computation and

connections between computation and physics were studied by Bennett in

the 1970s. Perhaps the most important result in this field and certainly

a major turning point was Shor’s discovery [2] of a polynomial quantum

algorithm for factorization. The notion of a quantum computer along with
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the associated complexity class BQP is an exciting gift from physics to

mathematics and theoretical computer science, and has generated a large

body of research. Quantum computation is also a source of new, deep, and

unifying questions in various areas of experimental and theoretical physics.

For background on quantum computing, see Nielsen and Chuang’s book [3].

Of course, a major question is whether quantum computers are feasible.

An early critique of quantum computation (put forward in the mid-90s by

Unruh, Landauer and others) concerned the matter of noise:

[P0] The postulate of noise: Quantum systems are noisy.

A major step in showing that noise can be handled was the discovery by

Shor [4] and Steane [5] of quantum error-correcting codes. The hypothesis

of fault-tolerant quantum computation (FTQC) was supported in the mid-

90s by the “threshold theorem” [6, 7, 8], which asserts that under certain

natural assumptions of statistical independence on the noise, if the rate of

noise (the amount of noise per step of the computer) is not too large, then

FTQC is possible. It was also proved that high-rate noise is an obstruction

for FTQC. Several other crucial requirements for fault-tolerance were also

described in [9, 10].

The study of quantum error correction and its limitations, as well as

of various approaches to fault-tolerance quantum computation, is extensive

and beautiful; see, for example, [11, 12, 13, 14]. Concerns about noise models

with statistical dependence are mentioned (inter alia) in [15, 16]. Specific

models of noise that may be problematic for quantum error-correction are

studied in [17]. Current FTQC methods apply even to more general models

of noise than those first considered, which allow various forms of time- and

space-statistical dependence; see [18, 19, 20].

The basic conjecture of this paper is that noisy highly correlated data

cannot be stored or manipulated. This applies to both the quantum and

classical cases — but note that in the classical case correlations do not

increase the computational power. When we run a randomized computer

program, the random bits can be sampled once they are created, and it

gives no computational advantage in the classical case to physically maintain

highly correlated data.
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2 Noise and fault tolerance

The postulate of noise is essentially a hypothesis about approximations.

The state of a quantum computer can be prescribed only up to a certain

error. For FTQC there is an important additional assumption on the noise,

namely on the nature of this approximation. The assumption is that the

noise is “local.” This condition asserts that the way in which the state of

the computer changes between computer steps is statistically independent,

for different qubits. We will refer to such changes as “qubits errors”. In

addition, the gates which carry the computation itself are not perfect. We

can suppose that every such gate involves two qubits and that the gate’s

imperfection (or the “noise on the gate”) can have an arbitrary form, so the

errors (referred to as “gate errors”) created on the two qubits involved in a

gate can be statistically dependent.

The basic picture we can have of a noisy computer is that at any time

during the computation we can approximate the state of each qubit only up

to some constant small error term ǫ. Nevertheless, under the assumptions

concerning the errors mentioned above, computation is possible. The noisy

physical qubits allow the introduction of logical “protected” qubits which

are essentially noiseless.

The close analogy between the classical and the quantum cases for error

correction and fault tolerance is very useful. For our puropses, a good way

to understand the notions of quantum error-correction and fault tolerance

is to draw the line not between classical and quantum information but be-

tween deterministic information (or even stochastic information where the

elements are statistically independent) and stochastic highly correlated in-

formation (both classic and quantum). Thus, while the state of a digital

computer having n bits is a string of length n of zeros and ones, in the (clas-

sical) stochastic version, the state is going to be a (classical) probability

distribution on all such strings. The noise or errors will also be represented

by a probability distribution on such strings.

When we consider a system with many correlated bits (or entangled

qubits), an error in one bit will also affect the other bits. On an intuitive

level this looks like an obstacle to error correction but, as is, it is not. Errors
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affecting a substantial but small fraction of — even highly correlated – bits

can be handled. (For this, basic linearity properties of probability theory as

well as of quantum physics are crucial.)

Errors that exceed, with substantial probabilities, the capacity of the

error-corrector are problematic. Under the independence assumptions of

the threshold theorems, if the rate of errors is small the probability for

exceeding the capacity of the error-corrector is extremely small. The crux

of the matter is whether independent (or almost independent) errors on

highly correlated elements (bits/qubits) is a possible or even a physically

meaningful notion.

3 Noisy stochastic correlated physical systems

3.1 The postulate of noisy correlated pairs

The purpose of this section is to propose and discuss the following postulate:

[P1] In any noisy physical system, the errors for a pair of elements that

are themselves substantially statistically dependent are themseves sub-

stantially statistically dependent.

In particular, for quantum computers1 this postulate reads:

[P1] In a quantum computer, the errors for a pair of substantially correlated

qubits are substantially correlated.

Another way to put Postulate [P1] is: noisy correlated elements cannot

be approximated up to almost independent error terms: if we cannot have

an approximation better than a certain error-rate for each of two corre-

lated elements, then an uncorrelated or almost uncorrelated approximation

is likewise impossible.

Remarks:

1Our conjectures themselves come in (highly correlated) pairs. Each conjecture is for-

mulated first for general noisy physical systems and then specified to quantum computers

that are physical devices able to maintain and manipulate highly entangled qubits.
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1. The threshold theorem and pair purification. The thresh-

old theorem which allows FTQC has various remarkable applications, but

our postulate can be regarded as challenging its simplest non-trivial conse-

quence. The assumptions of the threshold theorem allow the errors on a pair

of qubits involved in a gate to be statistically dependent. In other words,

the outcome of a gate acting on a pair of qubits prescribes the position of

the two qubits only up to an error that is allowed to exhibit an arbitrary

form of correlation. The process of fault tolerance allows us to reach pairs

of entangled qubits that, while still being noisy, have errors that are almost

independent. (The proof of the threshold theorem implies that this property

of having almost independent errors, will be satisfied by most pairs of qubits

when the overall number of qubits is large.) This “purification” nature of

fault tolerance for quantum computation is arguably an element we do not

find in fault tolerance for deterministic computation. (Recall that fault toler-

ance does not improve the “quality” of individual qubits, and fault-tolerant

computation allows computation in noisy computers where at any point the

state of an individual qubit can only be estimated up to a substantial small

error.)

2. Real-life examples: The weather and the stock market. We

can discuss Postulate [P1] for cases of (classical) stochastic systems with

highly correlated noise. I am not aware of a case of a natural system with

stochastic highly correlated elements that admits an approximation up to

an “almost independent” error term. This is the kind of approximation

required for fault-tolerant quantum computation.

Can we expect to estimate the distribution of prices of two very corre-

lated stocks in the stock market up to an error distribution that is almost

independent?

Or take, for example, the weather. Suppose you wish to forecast the

probabilities for rain in twenty nearby locations. We suppose these proba-

bilities will be strongly dependent. Can we expect to have a forecast that

is off by a substantial error that is almost statistically independent for the

different locations?

Let D be the distribution that represents the best forecast we can give

for the rain probabilities at time T from the data we have at time T − 1.
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Let D′ be the best forecast from data we have at time T − 1 − t. Suppose

that D is highly correlated. Can we expect that the difference D − D′ will

be almost statistically independent for the different locations?

3. Going beyond pairs. Pairwise (almost) independence for qubits

errors appears necessary for fault-tolerant quantum computation (and thus

is the first thing to question). However, note that for the conclusion of the

threshold theorem, the assumption of pairwise (almost) independence for

qubits errors is not sufficient. Independence (or at least almost indepen-

dence) for errors on larger sets of bits/qubits is also crucial.

3.2 The postulate of error synchronization

Suppose we have an error-rate of ǫ. The assumptions of the various threshold

theorems (and other proposed methods for quantum fault tolerance) imply

that the probability of a proportion of δ qubits being “hit” is exponentially

small (in the number of bits/qubits) when δ exceeds ǫ. Error synchronization

refers to an opposite scenario: there will be a substantial probability of a

large fraction of qubits being hit.

[P2] In any noisy physical system with many substantially correlated ele-

ments there will be a strong effect of spontaneous error-synchronization.

[P2] In any quantum computer at a highly entangled state there will be a

strong effect of spontaneous error-synchronization.

Postulate [P2] of error synchronization follows from a strong form of

[P1]. If it is the case that the correlation of the noise “hitting” a pair of

highly correlated elements is substantial and positive, then this would imply

a strong effect of error synchronization.

For the case, described in the introduction, where the errors are repre-

sented by a distribution D on strings of bits, error synchronization refers to

a situation where, although the expected number of errors is small, there is

a substantial probability that the number of errors is a large fraction of all

bits. (An even stronger form of error synchronization is considered in [21],

and there, a more formal definitions for the quantum case, can be found.)
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Remarks:

1. Empiric. Postulates [P1] and [P2] can be tested, in principle, for

quantum computers with a small number of qubits (10-20). Having such

devices where the qubits themselves are sufficiently stable is well down the

road, but still expected long before the superior complexity power of quan-

tum computers kicks in. (I suspect that [P2] will be easier to test experi-

mentally than [P1].)

2. Spontaneous synchronization for highly correlated systems.

The idea that for the evolution of highly correlated systems changes tend

to be synchronized, so that we may witness rapid changes affecting large

portions of the system (between long periods of relative calm), is appealing

and may be related to other matters like sharp threshold phenomena, the

theory of evolution, the evolution of scientific thought, and so on.2 We

can examine the possibility of error synchronization for the examples we

considered above. Can we expect synchronized errors for weather forecasts?

Can we expect stock prices, even in short time scales, to exhibit substantial

probabilities for changes affecting a large proportion of stocks? This matter

is related also to the issue of pattern formation for correlated systems.

3. Error synchronization and the concentration of measure phe-

nomenon. A mathematical reason to find spontaneous synchronization of

errors an appealing possibility is that this is what a “random” random noise

looks like. Talking about a random form of noise is easier in the quantum

context. If you prescribe the noise-rate and consider the noise as a random

(say unitary) operator (conditioning on the given noise-rate), you will see

a perfect form of synchronization for the errors, and this property will be

violated with extremely low probability.

Random unitary operators with a given noise-rate are not a realistic form

of noise. The qubits in a quantum computer are expected to be quite iso-

lated, so that the errors are described by a “locally defined” process (namely,

a process (stochastically) generated by operations on a small number of

qubits at a time) — similar to the (noiseless) evolution described by the

quantum computation itself.

2This idea is conveyed in the Hebrew proverb “troubles come in clusters”, and the

English one “it never rains it pours.”
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While random unitary operators with prescribed error-rate appear to be

unapproachable by any process of a “local” nature, their statistical proper-

ties may well hold for such stochastic processes describing the errors. The

fact that perfect error-synchronization is the “generic” form of noise suggests

that stochastic processes describing the noise will approach this “generic”

behavior unless they have good reason not to. (One obstruction to error

synchronization, pointed out by Greg Kuperberg, is time independence.)

4. Correcting highly synchronized errors. An observation that

complements the discussion so far is that synchronized errors that are un-

biased can be corrected to produce noiseless deterministic bits. Suppose we

have a situation in which an error hits every bit with probability (1 − ǫ)

and when a bit is hit it becomes a random unbiased bit. (That is, a bit is

flipped with probability (1 − ǫ)/2.) This type of noise can be corrected by

representing a 0 bit by a long string of 0’s and a 1 bit by a long string of 1’s.

(If the noise hits a smaller fraction of bits, the condition of it being unbiased

can be compromised.) However, there is no quantum error-correction code

for such noise (and most likely also no error correction that allows correlated

classical information to prevail).

This means that deterministic noiseless bits can prevail even for some

forms of highly correlated errors. (Our postulates do not imply high correla-

tion for the errors when the elements of the system are statistically indepen-

dent, but mechanisms leading to our conjectural effects may still be relevant

for the nature of noise for certain classical forms of storing information and

computation.)

The method of “clown and sample” appears to be essentially the only

error-correction method we find in nature. This method allows us to intro-

duce gates where errors on the involved bits will be almost independent to

start with, and thus will reduce “noise on gates” to “noise on bits.” But

this method is not available for stochastic noisy correlated data.

5. The censorship conjecture. Notions of “highly correlated” or

“highly entangled” systems are not easy to define. We will refer informally

to systems that up to a small error are induced by their marginal distribu-

tions on small sets of elements as “approximately local.” For a suggested

definition of “approximately local” (just for the quantum case), and a precise
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formulation of the conjecture below, see [21].

[C] Censorship conjecture: Noisy stochastic physical systems are approx-

imately local.

[C] The states of quantum computers are approximately local.

The rationale for this conjecture is that high forms of entanglement will

increase the effect of error synchronization which in turn will push the system

towards locality.

4 Discussion

Our conjectures on the nature of noise (more precisely, the nature of feasible

approximations) for correlated systems appear to be damaging to the possi-

bility of storing and manipulating correlated quantum or classical data. It

will thus be damaging for quantum computation but not for classical com-

putation (even randomized), because there, for the computation itself, no

correlation is needed. Moreover, classical noiseless bits can prevail also in

certain cases of highly correlated errors.

Causality

We do not propose that the entanglement of the pair of noisy qubits causes

the dependence between their errors. The correlation between errors can

be caused by the process leading to the correlations between the qubits, or

simply just by the ability of the device to achieve strong forms of correlation.

How it comes about

The most basic challenge is to present concrete models of noise that support

Postulates [P1] and [P2]. (Of course, there is a big difference between show-

ing that the type of behavior we are looking for is possible and showing that

it is unavoidable.) One possibility is to consider for this purpose “generic”

(both in terms of dependence among the elements and dependence in time)

locally-defined noise models. (See also [21].)
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One way to view the noise is as represented by a rather primitive stochas-

tic program (or circuit) running along the actual program. We run the pro-

gram P and we actually get P+N . The simplest explanation for why errors

of correlated qubits are themselves correlated is that the noise N depends on

P, or can be described as a weak perturbation of the original program itself.

But this is not the only possibility. It may be the case that N does not

depend on P but rather a device that allows the high amount of correlation

required for quantum computation is vulnerable to highly correlated noise,

no matter what the state of the computer is. (In this case N can represent

a certain form of “random” quantum program.)

It can also be instructive to check [P1] and [P2] for the case of a very

small amount of independent errors for the initial state of your classical

or quantum computer program P, which accumulates to constant-rate error

over a large number (say, a polynomial number in the number of bits/qubits)

of computer steps. It is interesting to observe that indeed in many examples

of this kind we witness strong forms of error synchronization. (Of course,

fault tolerance easily deals with such a noise for the original program P. But

if our computer actually runs along P some weak perturbations of P that are

not directly targeted by the error correction, then this may be damaging.)

The models suggested by Alicki, Horodecki, Horodecki, and Horodecki

[17] appear to be relevant. Also relevant is Alicki’s idea [22] (see also [23])

that “slow gates” (combined with the free evolution of the system) will be

an obstacle to error correction.

But perhaps the easiest way to find relevant models of noise is to look

for them in the literature. There is a substantial interest in local stochastic

behavior leading to spontaneous (collective) synchronization (e.g., [24, 25,

26, 27, 28]) as well as in the emergence of patterns in stochastic (correlated)

systems.

Linearity

Do our postulates violate linearity of quantum physics? The plain simple

answer is no. Again the analogy with classical stochastic processes is telling.

The conjecture that in noisy systems like the weather substantially corre-
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lated events are subject to substantially correlated noise (or, in other words,

can only be approximated up to error terms that are also substantially cor-

related) is perhaps bold and may well be false, but it is not remotely bold

enough to violate the laws of probability theory. This is also so in the

quantum case.

It is indeed correct that these conjectures amount to systematic non-

linear inequalities for noisy highly correlated systems — or, in other words,

to the nature of feasible approximations for highly correlated physical sys-

tems. Such non-linear inequalities, if they exist, may be of independent

interest.

Faraway qubits

Suppose we have two qubits that are far away from each other at a given

entangled state at time T . Consider their state at time T + t. Is there

any reason to believe that the changes will not be independent? And if t is

small compared to the distance between the qubits isn’t it the case that to

implement a noise that is not independent we will need to violate the speed

of light? And finally isn’t this observation a counterexample to Postulate

[P1]?

The answer to the final question is negative. There is no difficulty in

conceding that changes over time in the states of two faraway entangled

qubits will be independent. The problem with this critique is the initial

assumption: we are given two qubits at time T at a given state. Starting

with noiseless correlated elements, we may well reach correlated elements

that can be described up to substantial but independent error terms. But

for fault tolerance we may not assume noiseless pairs of entangled qubits to

start with.

Probability, secrets, and computing

We will now describe a potential difficulty to our conjectures at least in the

classical case. Consider a situation where Alice wants to describe to Bob a

complicated correlated distribution D on n bits that can be described by a

polynomial-size randomized circuit. Having a noiseless (classical) computa-
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tion with perfect independent coins, Alice can create a situation where for

Bob the distribution of the n bits is described precisely by D. In this case

the values of the n bits will be deterministic and D reflects Bob’s uncer-

tainty. Alice can also make sure that for Bob the distribution of the n bits

will be D + E , where E describes independent errors of prescribed rate.

Is this a counterexample to our Postulates [P1] and [P2]? One can argue

that the actual state of the n bits is deterministic and the distribution

represents Bob’s uncertainty rather than a “genuine” stochastic behavior

of a physical device.3 But the meaning of “genuine stochastic behavior

of a physical device” is vague and perhaps ill-posed. Indeed, what is the

difference between Alice’s secrets and nature’s secrets? In any case, the

difficulty described in this paragraph cannot be easily dismissed.4

However, note that like in the case of faraway qubits, the noisy dis-

tribuion D+E , was based on the ability to achieve the noiseless distribution

D. Achieving the distribution D was based on noiseless classical computa-

tion to start with. For the case of quantum computers, we can still defend

our Postulates [P1] and [P2] against this argument as follows: Even if na-

ture can simulate Alice, and Bob’s “mental” uncertainty can be replaced

by a “real” physical situation where a highly correlated distribution is pre-

scribed up to an independent error term, this approximation was achieved

via a noiseless computation to start with. Therefore, such an approximation

cannot serve, in the quantum case, as a basis for fault tolerance.

Computation complexity

While it looks intuitively correct that our postulates are damaging for quan-

tum computation, proving it, and especially proving a reduction all the way

to the classic model of computation is not going to be an easy task. (This

3Compare the interesting debate between Goldreich and Aaronson [29], whether nature

can “really” manipulate exponentially long vectors.
4The distinction between the two basic interpretations of probability as expressing

human uncertainty or as expressing some genuine physical phenomenon is an important

issue in the foundation of (classical) probability. See, e.g., Anscombe and Aumman [30].

Opinions vary from those who see no distinction at all between these concepts to those

who regard human uncertainty as the only genuine interpretation.
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is an interesting question in computational complexity [21].) Let me men-

tion that the problem of describing complexity classes of quantum computers

subject to various models of noise was proposed by Peter Shor [31] in the 90s,

but apparently was not picked up. Compare also Aaronson [32]. In particu-

lar, going below the computation power of logarithmic depth polynomial-size

quantum circuits appears to be difficult (and to require more than just [P1]

and [P2]), yet such circuits combined with classical computers are strong

enough to allow a polynomial-time algorithm for factoring. (This follows

from a recent result of Cleve and Watrous [33].)

Is it possible that our assumptions on noise (and, in particular, the

possibility of a dependence of the noise N on the program P), rather than

being harmful, will allow an even stronger computation power than BQP?

Well, optimism is always a good human trait, and yes, this is a possibility.

But it looks like a remote possibility.

Conclusion

My belief is that the interesting question of the physically realistic complex-

ity class (put forward mainly by Deutsch) and, in particular, the feasibility

of computationally superior quantum computers, will have a convincing so-

lution, and that, no matter what this solution will be, the asymptotic ap-

proach — namely, the relevance of the asymptotic behavior of complexity

to real-life computation — which lies behind this question, will prevail. The

question “How can (computationally superior) quantum computers fail?”

is an important part of the quantum information and quantum computers

endeavor, as is the question “How can (computationally superior) quantum

computers succeed?” As a matter of fact, these two questions are the same.
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