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הקדמה

הטרוגנים, מוצרים k יש המוכר בידי יחיד. לקונה יחיד מוכר של רווח מקסום בעית נבחן

אדיטיבי, הקונה בעיני המוצרים שווי ממכירתם. רווח למקסם וברצונו עבורו, ערך חסרי

המוכר על תלוי). בלתי בהכרח לא המוצרים (שווי ידועה ממדית k מהתפלגות ומתקבל

כל כאשר המוצרים, את לרכוש הקונה של השונות האפשרויות את הכולל תפריט להציע

הקונה אדיטיבי. בהכרח לא אשר נדרש, ומחיר המוצעים המוצרים את מכילה אפשרות

בעיניו המוצרים ערך את תמקסם אשר זו היותר, לכל מהתפריט אחת באפשרות יבחר

“פשוטים” מכניזמים יותר), (או מוצרים שני שעבור מכבר זה ידוע שלהם. העלות פחות

בשתי נעזר מכניזמים הערכת בעת לכן, האופטימלי. מהרווח זניח חלק להניב עלולים

המוצרים כל מכירת היא הראשונה ייחוס, כנקודת המוצרים למכירת פשוטות דרכים

אם דטרמיניסטי ייקרא מכניזם בנפרד. מהמוצרים אחד כל מכירת היא והשניה כחבילה

מכניזם מוצרים). של חלקית הקצאה (אין המוצרים k של קבוצות תתי מוצעים בתפריט

פונקציה מהווה בעיניו המוצרים בערך כתלות הקונה של התשלום אם מונוטוני ייקרא

מ יותר פי גדול רווח להניב יכולים לא מונוטונים שמכניזמים נראה זו בתזה מונוטונית.

דטרמיניסטים. מכניזמים עבור תוצאות מספר ונציג בנפרד ממכירה מהרווח k

תודות

עידוד על ובפרט שאלך, בכל והליווי התמיכה על להוריי, כל ראשית להודות ברצוני

השונים לרעיונות קשבת אוזן היוו אשר לחבריי תודה התיכון. מגיל עוד האקדמית דרכי

הסבלנות, על הרט, סרג‘יו פרופסור שלי, למנחה חב אני מיוחדת תודה זו. בתזה המובאים

ולהוכחות בשלות לטענות בוסריים רעיונות בהפיכת רבות סייעו אשר והחדות הבהירות

אלגנטיות.



Abstract

Consider the problem of maximizing the revenue from selling a number of heterogeneous

goods to a single buyer whose private values for the goods are drawn from a (possibly

correlated) known distribution, and whose valuation for the goods is additive. It is already

known that when there are two (or more) goods, simple mechanisms may yield only a

negligible fraction of the optimal revenue. This thesis compares revenues from various classes

of mechanisms to revenues from the two simplest mechanisms – selling the goods separately

and selling them as a bundle – by using previously defined tools, namely, multiple of separated

revenue (MoS) and multiple of bundled revenue (MoB). We show in particular that monotonic

mechanisms cannot yield more than k times the separated revenue (where k is the number

of goods), and obtain bounds on the revenue of deterministic mechanisms.
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Chapter 1

Introduction

The problem of maximizing the revenue from selling a number of goods to a single buyer

is known for its difficulty. Myerson’s classic result [Mye81] shows that when selling a single

good, the optimal revenue can be obtained by a simple "take it or leave it" offer. While we

have an explicit formula for the optimal revenue from selling one good, we have relatively

little information on how to obtain the optimal revenue from selling multiple goods. There is

a significant body of work on the multiple goods case (see [HN17] and [HN19] for results and

literature surveys), where it is shown that when the buyer’s values for the different goods are

independent, simple mechanisms are approximately optimal: selling each good separately for

its optimal price extracts a constant fraction of the optimal revenue. On the other hand,

when the buyer’s valuations of the goods are correlated, simple mechanisms may yield only

a negligible fraction of the optimal revenue. The last result is the motivation to research the

correlated goods case.

In this thesis, we consider a setting in which a single seller, sells k goods and a single buyer

has a valuation for the goods that is given by a random variable X = (X1, X2, . . . , Xk) with

values in Rk
+. The buyer’s private values for the goods are drawn from an arbitrary – possibly

correlated – but known prior distribution, and the value for bundles is additive. Without

loss of generality, we assume that the seller offers a fixed menu and the buyer chooses a menu

entry. Each menu entry specifies the probability qi that a good i is allocated to the buyer

and the payment s to the seller. In the case where the allocations for all goods (q1, q2, . . . , qk)

are in {0, 1}k, the mechanism is called deterministic. A pricing function p : P(K) → R+ is
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defined for deterministic mechanisms p(A) = s(1A), where 1A is the indicator vector of a

subset A ⊂ K (K = {1, . . . , k}). A menu size of a mechanism is the number of non-trivial

possible outcomes, i.e., |
{
(q(x), s(x)) : x ∈ Rk

+

}
\{(0, . . . , 0)}|.

An important result of Hart and Nisan ([HN19], Theorem A) states that a mechanism

with bounded menu size cannot guarantee any positive fraction of the optimal revenue; i.e.,

for any ϵ > 0 there exists a distribution X for which for any finite-size mechanism µ the

fraction Rev(µ,X)
Rev(X)

< ϵ. For this reason, we compare mechanisms’ revenue to BRev(X) and

SRev(X), the revenue achievable by selling the goods as a bundle and separately, instead of

comparing it to the optimal revenue.

Two useful tools for analyzing this ratio are the multiple of bundled revenue (MoB) and

the multiple of separated revenue (MoS). Given a mechanism µ, MoB(µ) measures how

many times better the revenue from µ can be relative to the bundled revenue. It is defined

as the maximum, over all valuations X, of the ratio Rev(µ,X)
BRev(X)

. Given a class of mechanisms

N and a class of valuations X, we define MoB(N ,X) as the maximal (sup) ratio of the

optimal revenue that can be achieved by mechanisms µ in N to the bundled revenue, over

all valuations X ∈ X. Our first result (Theorem 3.1) is an explicit expression for MoB over

all deterministic k-good mechanisms:

MoB(Deterministic; k goods) =
k∑

ℓ=1

1

ℓ

(
k

ℓ

)
. (1.1)

Next, we try to get a similar result for MoS. Unfortunately, the value of MoS(Deterministic; k goods)

remains an open question, but we improve the known upper bounds for three subclasses of

deterministic mechanisms. The first class contains mechanisms with supermodular prices,

i.e., increasing marginal cost, for which we prove that

MoS (Deterministic; supermodular; k goods) =
2k − 1

k
. (1.2)

The second class contains mechanisms with submodular prices, i.e., decreasing marginal cost,
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for which we show that

MoS (Deterministic; submodular; k goods) ≤ k. (1.3)

A surprising result presented by Hart and Reny [HR15], called revenue non-monotonicity, is

that the seller’s maximal revenue (from a mechanism or a class of mechanisms) may decrease

when the buyer’s valuation for the goods increases. They describe two settings in which the

seller’s maximal revenue increases as the buyer’s distribution increases. The first is when the

class of mechanisms is restricted to deterministic and symmetric mechanisms and the second

is when the class is restricted to mechanisms with a submodular pricing function. In both

cases, the payment function is monotonic. A mechanism µ = (q, s) is called monotonic if its

payment function s is monotonic. Our most important result is an upper bound for MoS of

monotonic mechanisms:

MoS (Monotonic; k goods) ≤ k. (1.4)

It turns out that monotonic mechanisms are quite limited in what they can achieve relative to

selling the goods separately, and the interesting case remains MoS(Deterministic; k goods).
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Chapter 2

Preliminaries

2.1 The Model

Consider the problem1of a seller who seeks to maximize revenue from selling a number k ≥ 1

of goods to one buyer. The goods are worth nothing to the seller and their value to the buyer

is nonnegative and additive. The valuation of the goods is given by a vector (x1, x2, . . . , xk) ∈

Rk
+, where xi is the buyer’s valuation for the good i. Therefore, the buyer’s value for a subset

I ⊆ {1, 2, . . . , k} is given by
∑
i∈I

xi. The valuation vector of the buyer x = (x1, . . . , xk)

is private and the seller knows only the probability distribution F on Rk
+ from which the

valuations are drawn.

A mechanism for selling k goods is given by an allocation function q : Rk
+ → [0, 1]k and

a payment function s : Rk
+ → R+. Therefore, for a valuation vector x, the buyer’s payoff is

b(x) = q(x) · x− s(x) and the seller’s payoff is s(x). The range of the function q × s : Rk
+ →

[0, 1]k × R+ is called the menu of the mechanism and its cardinality, excluding the trivial

outcome ((0, . . . , 0), 0), is called its menu size.

A mechanism µ = (q, s) satisfies individual rationality (IR) if b(x) ≥ 0 for all x ∈ Rk
+. It

satisfies incentive compatibility (IC) if b(x) ≥ q(y) · x − s(y) for all x, y ∈ Rk
+. The revenue

of a mechanism µ = (q, s) from a buyer with a random valuation X is the expected payment

of the buyer, R(µ,X) := E[s(X)]. Given a class of mechanisms N and a valuation X ∈ X,
1All concepts, results, and proofs are taken from [HN17], [HN19], and [HR15]. The new results are in

Section 3.
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we define N -Rev = supµ∈N R(µ;X), i.e., the maximal revenue that can be obtained by any

mechanism from the class N . The optimal revenue of a valuation X, denoted by Rev(X),

equals N -Rev(X) when N is the class of all IC and IR mechanisms. As seen in Hart and

Nisan ([HN17], Proposition 6), we can restrict attention without loss of generality to IR and

IC mechanisms that satisfy the no positive transfer (NPT) property, namely, s(x) ≥ 0 for

every x ∈ Rk
+. From now on, it is assumed that all mechanisms satisfy IR, IC, and NPT.

We present three important subclasses. In the subclass of separated mechanisms, the seller

offers each good separately, with optimal revenue SRev(X) := Rev(X1) + · · ·+Rev(Xk). In

the subclass of bundled mechanisms, the seller offers all goods as a bundle, with optimal

revenue BRev(X) := Rev(X1 + · · · +Xk). In the subclass of deterministic mechanisms, the

seller offers all subsets of the k goods, and each good is either fully allocated or not at all.

The revenue of the last subclass is denoted by DRev(X). Calculating the revenue of the

last subclass is a multidimensional and hence much harder problem relative to the other two

subclasses, where finding the revenue is a one-dimensional maximization problem.

2.2 Menu and Menu Size

Given a mechanism µ = (q, s), its menu is its range excluding the trivial outcome,

Mµ =
{
(q(x), s(x)) : x ∈ Rk

+

}
\{((0, 0, . . . , 0), 0)}. Each element in the menu in called a menu

entry. A construction for a mechanism from a given set (a given menu) M ⊂ [0, 1]k × R+ is

possible as well. Take (q(x), s(x)) = (g, t), where (g, t) ∈ M maximizes the "buyer’s payoff"

g·x−t and the mechanism’s menu is a subset of M . We define the menu size as the cardinality

of the menu, |Mµ|. The class of mechanisms whose menu size is at most m turns out to be

interesting: it implies the other two mentioned (finite) subclasses and its revenue is denoted

by Rev[m](X). Two basic results are presented by Hart and Nisan ([HN19], Proposition 3.1):

Proposition 2.1. Given a k-good random valuation X,

Rev[1](X) = BRev(X), and (2.1)

1

m
Rev[m](X) is weakly decreasing. (2.2)
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Since the menu size of deterministic mechanisms is bounded by 2k − 1, we deduce that

DRev(X) ≤ Rev[2k−1](X) ≤ (2k − 1) · Rev[1](X) = (2k − 1) · BRev(X).

A tighter bound for DRev(X)
BRev(X)

is shown in Section 3.1.

2.3 Monotonicity and Non-monotonicity

A mechanism µ = (q, s) is called monotone if its payment function s(x) is monotone. An

example of the non-monotonicity of a mechanism is given in Hart and Reny ([HR15], Figure

1). The following are a few essential definitions:

• A mechanism is called seller-favorable if when the buyer has different menu entries

with the same payoff and a different cost, he chooses the more expensive one. For all

x ∈ Rk
+, q(x) · x− s(x) = q(y) · x− s(y) → s(y) ≤ s(x).

• A deterministic mechanism is called symmetric if its pricing function p : P(K) → R+

depends only on the size of the element in P(K), i.e., A,B ⊂ {1, . . . , k} and |A| = |B|

implies p(A) = p(B).

• A deterministic mechanism is called submodular if its pricing function p : P(K) → R+

is submodular, i.e., for each I, J ⊂ {1, . . . , k} , p(I) + p(J) ≥ p(I ∪ J) + p(I ∩ J). In

addition, it is called supermodular if p(I) + p(J) ≤ p(I ∪ J) + p(I ∩ J).

Two different results for monotonicity of mechanisms are presented by Hart and Reny ([HR15],

Theorems 4 and 7). Let µ = (q, s) be a deterministic, symmetric, seller-favorable IC

mechanism on Rk
+; then its payment function s is nondecreasing. Alternatively, if it is a

submodular seller-favorable IC mechanism, its payment function s is nondecreasing.

2.4 Revenue Comparisons

How can we evaluate mechanisms? We seek to find the optimal mechanism for maximizing

the seller’s revenue. A common approach is to compare the revenue of a class of mechanisms
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with the optimal revenue. As mentioned earlier, in our setup (of not necessarily independent

k ≥ 2 goods), no class of finite-size mechanisms can guarantee a positive fraction of the

optimal revenue. Therefore, it does not help us to evaluate mechanisms. Instead, we compare

the maximal revenue N -Rev (achieved by the class of mechanisms N ) with some basic

mechanisms.

2.4.1 MoB

The multiple of bundled revenue takes BRev = Rev[1] as a benchmark. It is the sup of the

multiple of N -Rev(X) with bundled revenue over all random valuations in X:

MoB(N ;X) = sup
X∈X

N -Rev(X)

BRev(X)
. (2.3)

The immediate results derived from Proposition 2.1 are

MoB (menu size ≤ m; k goods) ≤ m, and (2.4)

MoB(Deterministic; k goods) ≤ 2k − 1. (2.5)

A precise tool for measuring the MoB of a specific k-good mechanism µ = (q, s) is provided

by Hart and Nisan ([HN19], Theorem 5.1):

Theorem 2.2. Let µ = (q, s) be a k−good mechanism. Then,

MoB(µ) =

∫ ∞

0

1

v(t)
dt when v(t) = inf{∥x∥1 : s(x) ≥ t}. (2.6)

Remark 2.3. From IR we deduce that q(x) · x − s(x) ≥ 0. Given a valuation x such that

s(x) ≥ t, ||x||1 ≥ q(x) · x ≥ s(x) ≥ t, we deduce that v(t) ≥ t. In addition, for deterministic

mechanisms, by the definition of v(t), v(R+) is uniquely determined by its values on the

different prices of the 2k − 1 sub-bundles.

A lower bound for MoB(Deterministic) is achieved using this formula for a specific k-good

deterministic mechanism and a k-good random valuation.
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The improved result is

k∑
ℓ=1

1

ℓ

(
k

ℓ

)
≤ MoB(Deterministic; k goods) ≤ 2k − 1.

In contrast to the lower bound, the upper bound is not tight, not even for 2 goods as shown

by Hart and Nisan ([HN19], Proposition A.1):

MoB (Deterministic; 2 goods) =
5

2
. (2.7)

2.4.2 MoS

The multiple of separated revenue takes SRev as a benchmark:

MoS(N ;X) = sup
X∈X

N -Rev(X)

SRev(X)
. (2.8)

A similar analysis presented by Hart and Nisan ([HN19], Theorem A.7) states:

Theorem 2.4. Let µ = (q, s) be a k-good mechanism. Then,

1

k

∫ ∞

0

1

w(t)
dt ≤ MoS(µ) ≤

∫ ∞

0

1

w(t)
dt when w(t) = inf{∥x∥∞ : s(x) ≥ t}. (2.9)

Notice that we do not have an accurate expression for the MoS of mechanism but rather

a range. Later, we will apply the MoS value to a few classes of mechanisms.

A general construction presented by Hart and Nisan ([HN19], Proposition 7.3) yields a

k-good mechanism µ that turns out to be useful for evaluating a lower bound for both the

MoB and MoS of deterministic mechanisms. A similar (self-contained) proof is as follows:

Proposition 2.5.

MoB(Deterministic; k goods) ≥
k∑

ℓ=1

1

ℓ

(
k

ℓ

)
, and (2.10)

MoS(Deterministic; k goods) ≥ 1

k

k∑
ℓ=1

(
k

ℓ

)
. (2.11)
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Proof. Let ϵ > 0 and let I0, I1, . . . , I2k−1 be the 2k subsets of {1, . . . , k} ordered by weakly

increasing size, and let gn be their indicator vector, i.e., gn[i] =

1 i ∈ In

0 i /∈ In

. The prices

are set to be a positive sequence {tn}2
k−1

n=0 that increases fast enough so that tn+1

tn
≥ 1

ϵ
for all

n ≥ 1. Notice that for a valuation xn = tn · gn and 0 ≤ j < n,

gn · xn − gj · xn = tn · gn · (gn − gj) ≥ tn ≥ tn − tj,

and so gn · xn − tn ≥ gj · xn − tj. The payment for xn would be at least tn and so s(xn) ≥ tn.

Therefore v(tn) ≤ ∥xn∥1 = tn∥gn∥1. Now,

MoB(µ) =
2k−1∑
n=1

tn − tn−1

v(tn)
≥

2k−1∑
n=1

tn − tn−1

tn · ∥gn∥1
≥

2k−1∑
n=1

(1− ϵ) · 1

∥gn∥1
= (1− ϵ)

k∑
ℓ=1

1

ℓ

(
k

ℓ

)

A similar computation is made for MoS: we use w(t) with ∥ · ∥∞ instead of v(t), and so

w(tn) ≤ ∥xn∥∞ = tn:

MoS(µ) ≥ 1

k

2k−1∑
n=1

tn − tn−1

w(tn)
≥ 1

k

2k−1∑
n=1

tn − tn−1

tn
≥ 1

k

2k−1∑
n=1

(1− ϵ) =
1

k
(1− ϵ)

k∑
ℓ=1

(
k

ℓ

)
.

Since we took an arbitrary ϵ > 0, we get the desired result.

Remark 2.6. The prices {tn}2
k−1

n=0 described in the previous proposition satisfy supermodularity

for 0 < ϵ < 1
2
. Let A ⊂ B and let i ∈ A and ti = pB, then,

(pB − pB\{i})− (pA − pA\{i}) ≥ ti − pB\{i} − pA ≥ ti − ti−1 − ti−1 = ti − 2ti−1 ≥ 0.
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Chapter 3

New results

3.1 The Multiple of Bundled Revenue

Theorem 3.1.

MoB(Deterministic; k goods) =
k∑

ℓ=1

1

ℓ

(
k

ℓ

)
.

Proof. It is left to prove that MoB(Deterministic; k goods) ≤
∑k

ℓ=1
1
ℓ

(
k
ℓ

)
since the other

inequality is proved in Proposition 2.5.

Let µ be a k-good deterministic mechanism with a finite menu {(1A, pA) : A ∈ A}, where

A ⊂ P(K). 1A and pA are the indicator vector and the payment for all goods with index in

A, respectively. If A ⊂ B ∈ A and pA > pB, then for each x ∈ Rk
+ we have

1A · x− pA =
∑
a∈A

xa − pA <
∑
b∈B

xb − pB = 1B · x− pB.

The option
∑
a∈A

xa − pA is never chosen and so the menu entry (1A, pA) does not affect the

mechanism. Hence, pA ≤ pB is assumed for every A ⊂ B ∈ A.

We extend the payment function’s range A to P(K) by pA := min{pB : A ⊂ B ∈ A},

and so p : P(K) → R+ is a nondecreasing function. Let P := {pA : A ⊂ K} be the set of

distinct prices used. For every p ∈ P define ṽ(p) as

ṽ(p) := inf
x∈Rk

+

{∥x∥1 : s(x) = p};

14



then ṽ(p) ≥ v(p), and

v(u) = min{ṽ(p) : p ∈ P, p ≥ u}

for every u ≥ 0.

Let T := {p ∈ P : v(p) = ṽ(p)}; then

v(u) = min{v(t) : t ∈ T, t ≥ u}

for every u ≥ 0. Indeed, let p ≥ u in P be such that v(u) = ṽ(p); then v(p) ≥ v(u) = ṽ(p).

Therefore, v(p) = ṽ(p) and so p ∈ T , as needed. Let T = {ti}ri=0 with 0 = t0 < t1 < · · · < tr;

then we have v(u) = v(ti) for every u ∈ (ti−1, ti] and so

MoB(µ) =

∫ ∞

0

1

v(u)
du =

r∑
i=1

ti − ti−1

v(ti)
.

Let x be such that s(x) = ti, and let A be such that q(x) = 1A (thus pA = ti).

Lemma 3.2. For every c ∈ A, if pA\{c} > ti−1, then v(pA\{c}) = v(pA).

Proof. Necessarily pA\{c} ≤ pA and so pA\{c} ∈ (ti−1, ti].

Therefore, v(pA\{c}) = v(ti) = v(pA).

Define

nA := |{c ∈ A : v(pA) = v(pA\{c})}|.

Lemma 3.3. ∥x∥1 ≥ (|A| − nA) · (ti − ti−1).

Proof. For every c in A, (1A, pA) is preferred to (1A\{c}, pA\{c}) and so xc ≥ pA − pA\{c}. By

Lemma 3.2, if v(pA\{c}) ̸= v(pA), then pA\{c} ≤ ti−1, and so pA − pA\{c} ≥ ti − ti−1. It follows

that ∥x∥1 ≥ (|A| − nA) · (ti − ti−1).

Let

Ai := {A ⊂ K : v(pA) = v(ti)}

and let Ã ∈ Ai minimize |A| − nA over Ai.
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Corollary 3.4.

v(ti) ≥ (|Ã| − nÃ) · (ti − ti−1).

Proof. Recall that v(ti) = ṽ(ti) = infx∈Rk
+
{∥x∥1 : s(x) = ti}. For every x such that s(x) = ti,

there exists a chosen menu entry (1B, pB) where B ∈ Ai. By Lemma 3.3, we have ∥x∥1 ≥

(|B| − nB) · (ti − ti−1) ≥ (|Ã| − nÃ) · (ti − ti−1). Therefore,

v(ti) ≥ (|Ã| − nÃ) · (ti − ti−1).

Lemma 3.5.
ti − ti−1

v(ti)
≤
∑
B∈Ai

1

|B|
.

Proof. v(u) ≥ u for every u > 0 and so ti−ti−1

v(ti)
≤ ti

v(ti)
≤ 1. By Corollary 3.4, we have


ti−ti−1

v(ti)
≤ 1 = 1

|Ã| |Ã| = 1

ti−ti−1

v(ti)
≤ 1 ≤ nÃ · 1

|Ã|−1
|Ã| > 1, nÃ = |Ã|

ti−ti−1

v(ti)
≤ (ti−ti−1)

(|Ã|−nÃ)·(ti−ti−1)
≤ 1 1

|Ã| + nÃ · 1
|Ã|−1

|Ã| > 1, nÃ < |Ã|.

Either way, ti−ti−1

v(ti)
is bounded by summing 1

|B| over sets B that satisfy v(pB) = v(ti). Hence,
ti−ti−1

v(ti)
≤
∑

B∈Ai

1
|B| .

By the definition of Ai, we have
r⋃

i=1

Ai ⊂ K and Ai ∩ Aj = ∅ for i ̸= j.

Summing over i completes the proof:

MoB(µ) =
r∑

i=1

ti − ti−1

v(ti)
≤

r∑
i=1

∑
B∈Ai

1

|B|
≤

∑
∅≠B⊂K

1

|B|
=

k∑
ℓ=1

(
k

ℓ

)
1

ℓ
.

1∀m,n ∈ N, n < m : 1
m−n − 1

m = n
m·(m−n) ≤

n
m−1 =⇒ 1

m−n ≤ 1
m + n

m−1 .

16



3.2 The Multiple of Separated Revenue

This case turns out to be more complicated than MoB. As shown in the proof of example

2.7, even for two goods, the value w(p1,2) depends on the connection between p12 and p1+p2.

In the next results, we distinguish between the submodular case and the supermodular case.

Theorem 3.6.

MoS(Deterministic; supermodular; k goods) =
2k − 1

k
.

Proof. Notice that one inequality is already proved (Proposition 2.5, Remark 2.6).

For the other inequality, let µ be a k-good deterministic and supermodular mechanism

with a finite menu {(1A, pA) : A ∈ A}, where A ⊂ P(K). As in Theorem 3.1, pA ≤ pB

is assumed for every A ⊂ B ∈ A. We denote by αA the probability that the menu entry

(1A, pA) is chosen. By definition, Rev(µ;X) =
∑

∅̸=A⊂K

αApA.

Let

Z :=
∑
A ̸=∅

1

|A|
∑
i∈A

(pA − pA\{i})
∑
B⊃A

αB.

By Lemma 3.8 we have

Z ≤ 2k − 1

k
SRev(X).

By Lemma 3.9 we have

Z = Rev(µ;X) +
∑
B ̸=∅

αB

(∑
A⊊B

pA · 2|A|+ 1− |B|
|A|+ 1

)
.

By Lemma 3.10 we have that the described sum is positive, which yields the result.

Lemma 3.7. For every A ⊂ K and every i ∈ A, we have

(pA − pA\{i}) ·
∑
B⊃A

αB ≤ Rev(Xi).

17



Proof. Assume that the buyer chose the menu entry (1A, pA); then, all i ∈ A, we have

∑
j∈A

xj − pA ≥
∑

j∈A\{i}

xj − pA\{i} and so xi ≥ pA − pA\{i}.

From the supermodularity of the mechanism, it follows that for all A ⊂ B and i ∈ A, we

have pB − pB\{i} ≥ pA− pA\{i}. Hence, P(Xi ≥ pA− pA\{i}) ≥
∑
B⊃A

αB. Recall that for a single

good Xi:

Rev(Xi) = sup
t≥0

t · P(Xi ≥ t).

It follows that

Rev(Xi) ≥ (pA − pA\{i}) · P(Xi ≥ pA − pA\{i}) ≥ (pA − pA\{i}) ·
∑
B⊃A

αB.

Lemma 3.8.

Z ≤ 2k − 1

k
SRev(X).

Proof. By Lemma 3.7,

Z ≤
∑
A ̸=∅

1

|A|
∑
i∈A

Rev(Xi) =
k∑

i=1

Rev(Xi)

(∑
A∋i

1

|A|

)
.

Therefore, ∑
A∋i

1

|A|
=

k∑
ℓ=1

(
k − 1

ℓ− 1

)
1

l
=

k∑
ℓ=1

(
k

ℓ

)
1

k
=

2k − 1

k
.

Lemma 3.9.

Z = Rev(µ;X) +
∑
B ̸=∅

αB

(∑
A⊊B

pA · 2|A|+ 1− |B|
|A|+ 1

)
.

Proof. Fix B ⊂ K and consider all terms that include αB. For each A ⊂ B the term 1
|A|pAαB

appears |A| times (once for each i ∈ A), yielding pAαB in total. For each A ⊊ B, the term
1

|A|+1
(−pAαB) appears |B| − |A| times (once for each A′ ⊂ B such that A = A′\{i} when

18



i ∈ B\A), yielding |B|−|A|
|A|+1

(−pAαB) in total. Thus,

Z =
∑
B ̸=∅

αB

(∑
A⊂B

pA ·
(
1− |B| − |A|

|A|+ 1

))
=
∑
B ̸=∅

αBpB +
∑
B ̸=∅

αB

(∑
A⊊B

pA ·
(
1− |B| − |A|

|A|+ 1

))
.

Showing the following lemma for every B ⊂ K completes the proof:

Lemma 3.10. ∑
A⊊B

pA · [2|A|+ 1− |B|
|A|+ 1

] ≥ 0.

Proof. Let n := |B|; for each m = 1, . . . , n− 1, we define

πm =

(
n

m

)−1 ∑
A⊂B:|A|=m

pA, λm =
2m+ 1− n

m+ 1

(
n

m

)

and so we need to show that
n−1∑
m=1

λmπm ≥ 0.

We will show that each term whose coefficient is negative (which happens when m < n−1
2

) is

covered by the corresponding term λn−m−1πn−m−1, i.e.,

λmπm + λn−m−1πn−m−1 ≥ 0.

Indeed, for each m < n−1
2

we have

|λm| =
−(2m+ 1− n)

m+ 1

(
n

m

)
=

n− 2m− 1

n−m

(
n

n−m− 1

)
= |λn−m−1|.

Below, we show that πm is a nondecreasing sequence; then it follows that

λmπm + λn−m−1πn−m−1 ≥ 0. Summing over all m < n−1
2

completes the proof.
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Lemma 3.11. Let N be a set of size n, and for each m = 0, 1, . . . , n, let πm be the average

price of subsets of N of size m, i.e.,

πm =

(
n

m

)−1 ∑
C⊂N :|C|=m

pC ;

then {πm}nm=0 is a nondecreasing sequence.

Proof. Let m < n; we will show that πm ≤ πm+1. The function p is nondecreasing and so

∑
C

∑
D

pC ≤
∑
C

∑
D

pD,

where both sums range over all pairs (C,D) such that C ⊂ D and |C| = m, |D| = m + 1.

Each pC appears in the left-hand sum n − m times (once for each i ∈ N\C), and each pD

appears in the right-hand sum m+ 1 times (once for each i ∈ D). Therefore,

(n−m)

(
n

m

)
πm ≤ (m+ 1)

(
n

m+ 1

)
πm+1.

Since (n−m)
(
n
m

)
= (m+ 1)

(
n

m+1

)
, we get πm ≤ πm+1.
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As mentioned in Section 2.3, the class of submodular, seller-favorable, IC mechanisms

is a subclass of monotonic mechanisms. Therefore, the next result holds for submodular

mechanisms as well.

Theorem 3.12.

MoS(monotonic; k goods) ≤ k.

Proof. Let µ = (q, s) be a k-good monotonic mechanism. Recall the definition of w(p):

w(q,s)(p) := inf{∥x∥∞ : x ∈ Rk
+, s(x) ≥ p}.

First, we show that it is sufficient to consider vectors on the diagonal of Rk
+ when defining

w(p).

Lemma 3.13.

w(p) = inf{t : t ∈ R+, s(t · 1) ≥ p}.

Proof. One inequality is immediate:

{t · 1: t ∈ R+, s(t · 1) ≥ p} ⊂ {x : x ∈ Rk
+, s(x) ≥ p}.

⇓

inf{||t · 1̄||∞ : t ∈ R+, s(t · 1) ≥ p} ≥ inf{||x||∞ : x ∈ Rk
+, s(x) ≥ p}.

For the other inequality, let x ∈ Rk
+ such that s(x) ≥ p and let t := ∥x∥∞. Then t · 1 ≥ x

and by the monotonicity of µ we get s(t · 1̄) ≥ s(x) ≥ p, which have same || · ||∞ value.

Therefore,

inf{t : t ∈ R+, s(t · 1) ≥ p} ≤ inf{||x||∞ : x ∈ Rk
+, s(x) ≥ p} = w(p).

Let µ1 = (q1, s1) be a one-dimensional mechanism obtained from the mechanism µ = (q, s)
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on the diagonal, i.e.,

(q1, s1) : R+ → [0, 1]× R+

q1(t) :=
q(t · 1̄) · 1̄

k
, s1(t) :=

s(t · 1̄)
k

(we divide by k so that q1(t) ∈ [0, 1]). We get

w(q,s)(p) = inf{t : s(t · 1̄) ≥ p} = inf{t : k · s1(t) ≥ p} = inf{t : s1(t) ≥
p

k
} = w(q1,s1)(

p

k
),

which implies that
∞∫
0

1

w(q,s)(p)
dp =

t= p
k

∞∫
0

k

w(q1,s1)(t)
dt.

By Equation 2.9, we have

1

k

∫
1

w(q,s)(p)
dp ≤ MoS(µ) ≤

∫
1

w(q,s)(p)
dp.

Since µ1 is a one-good mechanism (k = 1), it follows that MoS(µ1) =
∫

1
w(q1,s1)

(p)
dp. For one

good, SRev is the optimal revenue and so MoS(µ1) cannot be greater than 1.

Therefore,

MoS(µ) ≤
∫

1

w(q,s)(p)
dp = k ·

∫
1

w(q1,s1)(t)
dt = k ·MoS(µ1) ≤ k.
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