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Abstract

Consider the problem of maximizing the revenue from selling a number of heterogeneous
goods to a single buyer whose private values for the goods are drawn from a (possibly
correlated) known distribution, and whose valuation for the goods is additive. It is already
known that when there are two (or more) goods, simple mechanisms may yield only a
negligible fraction of the optimal revenue. This thesis compares revenues from various classes
of mechanisms to revenues from the two simplest mechanisms — selling the goods separately
and selling them as a bundle — by using previously defined tools, namely, multiple of separated
revenue (MoS) and multiple of bundled revenue (MoB). We show in particular that monotonic
mechanisms cannot yield more than k times the separated revenue (where k is the number

of goods), and obtain bounds on the revenue of deterministic mechanisms.
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Chapter 1

Introduction

The problem of maximizing the revenue from selling a number of goods to a single buyer
is known for its difficulty. Myerson’s classic result [Mye81] shows that when selling a single
good, the optimal revenue can be obtained by a simple "take it or leave it" offer. While we
have an explicit formula for the optimal revenue from selling one good, we have relatively
little information on how to obtain the optimal revenue from selling multiple goods. There is
a significant body of work on the multiple goods case (see [HN17| and [HN19] for results and
literature surveys), where it is shown that when the buyer’s values for the different goods are
independent, simple mechanisms are approximately optimal: selling each good separately for
its optimal price extracts a constant fraction of the optimal revenue. On the other hand,
when the buyer’s valuations of the goods are correlated, simple mechanisms may yield only
a negligible fraction of the optimal revenue. The last result is the motivation to research the
correlated goods case.

In this thesis, we consider a setting in which a single seller, sells k£ goods and a single buyer
has a valuation for the goods that is given by a random variable X = (X1, Xy, ..., X}) with
values in R’i. The buyer’s private values for the goods are drawn from an arbitrary — possibly
correlated — but known prior distribution, and the value for bundles is additive. Without
loss of generality, we assume that the seller offers a fixed menu and the buyer chooses a menu
entry. Each menu entry specifies the probability ¢; that a good 7 is allocated to the buyer
and the payment s to the seller. In the case where the allocations for all goods (¢1, g2, - - -, qx)

are in {0, 1}*, the mechanism is called deterministic. A pricing function p: P(K) — R, is



defined for deterministic mechanisms p(A) = s(14), where 14 is the indicator vector of a
subset A C K (K ={1,...,k}). A menu size of a mechanism is the number of non-trivial
possible outcomes, i.e., | {(¢(z),s(z)) : € RE}\{(0,...,0)}|.

An important result of Hart and Nisan ([HN19], Theorem A) states that a mechanism
with bounded menu size cannot guarantee any positive fraction of the optimal revenue; i.e.,
for any € > 0 there exists a distribution X for which for any finite-size mechanism g the

Rev (1, X . .
v(.X) ¢ For this reason, we compare mechanisms’ revenue to BRev(X) and

fraction R—(X)

SRev(X), the revenue achievable by selling the goods as a bundle and separately, instead of
comparing it to the optimal revenue.

Two useful tools for analyzing this ratio are the multiple of bundled revenue (MoB) and
the multiple of separated revenue (MoS). Given a mechanism g, MoB(u) measures how

many times better the revenue from p can be relative to the bundled revenue. It is defined

Rev(p,X)

BRev(X) - Given a class of mechanisms

as the maximum, over all valuations X, of the ratio
N and a class of valuations X, we define MoB(N,X) as the maximal (sup) ratio of the
optimal revenue that can be achieved by mechanisms g in A to the bundled revenue, over
all valuations X € X. Our first result (Theorem [3.1)) is an explicit expression for MoB over

all deterministic k-good mechanisms:

k
1(k
MoB(Deterministic; k goods) = - 1.1
( g00ds) =2 ¢ () (1)
Next, we try to get a similar result for MoS. Unfortunately, the value of MoS(Deterministic; & goods)
remains an open question, but we improve the known upper bounds for three subclasses of
deterministic mechanisms. The first class contains mechanisms with supermodular prices,
i.e., increasing marginal cost, for which we prove that
2k —1
T

MoS (Deterministic; supermodular; k£ goods) = (1.2)

The second class contains mechanisms with submodular prices, i.e., decreasing marginal cost,



for which we show that

MoS (Deterministic; submodular; & goods) < k. (1.3)

A surprising result presented by Hart and Reny [HR15|, called revenue non-monotonicity, is
that the seller’s maximal revenue (from a mechanism or a class of mechanisms) may decrease
when the buyer’s valuation for the goods increases. They describe two settings in which the
seller’s maximal revenue increases as the buyer’s distribution increases. The first is when the
class of mechanisms is restricted to deterministic and symmetric mechanisms and the second
is when the class is restricted to mechanisms with a submodular pricing function. In both
cases, the payment function is monotonic. A mechanism p = (g, s) is called monotonic if its
payment function s is monotonic. Our most important result is an upper bound for MoS of
monotonic mechanisms:

MoS (Monotonic; k goods) < k. (1.4)

It turns out that monotonic mechanisms are quite limited in what they can achieve relative to

selling the goods separately, and the interesting case remains MoS(Deterministic; & goods).



Chapter 2

Preliminaries

2.1 The Model

Consider the problem[’pf a seller who seeks to maximize revenue from selling a number k > 1
of goods to one buyer. The goods are worth nothing to the seller and their value to the buyer
is nonnegative and additive. The valuation of the goods is given by a vector (z1,xs, ..., x%) €
R, where z; is the buyer’s valuation for the good i. Therefore, the buyer’s value for a subset
I C {1,2,...,k} is given by > z;. The valuation vector of the buyer x = (z1,...,xx)
is private and the seller knowsleolnly the probability distribution F on Ri from which the
valuations are drawn.

A mechanism for selling k& goods is given by an allocation function ¢: RY — [0, 1]* and
a payment function s: R¥ — R, . Therefore, for a valuation vector z, the buyer’s payoff is
b(z) = q(z) - & — s(x) and the seller’s payoff is s(x). The range of the function ¢ x s: R¥ —
[0,1]* x R, is called the menu of the mechanism and its cardinality, excluding the trivial
outcome ((0,...,0),0), is called its menu size.

A mechanism p = (g, s) satisfies individual rationality (IR) if b(z) > 0 for all z € RE. Tt
satisfies incentive compatibility (IC) if b(z) > q(y) - « — s(y) for all z,y € R%. The revenue
of a mechanism p = (g, s) from a buyer with a random valuation X is the expected payment

of the buyer, R(u, X) = E[s(X)]. Given a class of mechanisms N and a valuation X € X,

LAll concepts, results, and proofs are taken from [HNT7], [HN19], and [HRI5]. The new results are in
Section



we define N-Rev = SUD e n R(u; X), i.e., the maximal revenue that can be obtained by any
mechanism from the class M. The optimal revenue of a valuation X, denoted by Rev(X),
equals N-Rev(X) when N is the class of all IC and IR mechanisms. As seen in Hart and
Nisan (JHN17], Proposition 6), we can restrict attention without loss of generality to IR and
IC mechanisms that satisfy the no positive transfer (NPT) property, namely, s(z) > 0 for
every xr € R'j_. From now on, it is assumed that all mechanisms satisfy IR, IC, and NPT.
We present three important subclasses. In the subclass of separated mechanisms, the seller
offers each good separately, with optimal revenue SRev(X) := Rev(X;) + - - - + Rev(X}). In
the subclass of bundled mechanisms, the seller offers all goods as a bundle, with optimal
revenue BRev(X) = Rev(X; + - -+ + Xi). In the subclass of deterministic mechanisms, the
seller offers all subsets of the k goods, and each good is either fully allocated or not at all.
The revenue of the last subclass is denoted by DRev(X). Calculating the revenue of the
last subclass is a multidimensional and hence much harder problem relative to the other two

subclasses, where finding the revenue is a one-dimensional maximization problem.

2.2 Menu and Menu Size

Given a mechanism u = (g, s), its menu is its range excluding the trivial outcome,

M, = {(q(z),s(z)): = € RE}\{((0,0,...,0),0)}. Each element in the menu in called a menu
entry. A construction for a mechanism from a given set (a given menu) M C [0,1]* x R, is
possible as well. Take (¢(x), s(z)) = (g,t), where (g,t) € M maximizes the "buyer’s payoff"
g-r—t and the mechanism’s menu is a subset of M. We define the menu size as the cardinality
of the menu, |M,|. The class of mechanisms whose menu size is at most m turns out to be
interesting: it implies the other two mentioned (finite) subclasses and its revenue is denoted

by Revi,)(X). Two basic results are presented by Hart and Nisan ([HN19], Proposition 3.1):

Proposition 2.1. Giwen a k-good random valuation X,
Revy(X) = BRev(X), and (2.1)

1
— Revy, (X) is weakly decreasing. (2.2)
m



Since the menu size of deterministic mechanisms is bounded by 2¥ — 1, we deduce that

DRev(X) < Revpgr_5(X) < (2" = 1) - Revyy(X) = (2° — 1) - BRev(X).

A tighter bound for ggﬁ‘v’g; is shown in Section .

2.3 Monotonicity and Non-monotonicity

A mechanism p = (g, s) is called monotone if its payment function s(z) is monotone. An
example of the non-monotonicity of a mechanism is given in Hart and Reny (JHR15|, Figure

1). The following are a few essential definitions:

e A mechanism is called seller-favorable if when the buyer has different menu entries

with the same payoff and a different cost, he chooses the more expensive one. For all

r €RE, q(v) -2 —s(x) = qy) - v — s(y) = s(y) < s(a).

e A deterministic mechanism is called symmetric if its pricing function p: P(K) — Ry
depends only on the size of the element in P(K), i.e., A, B C {1,...,k} and |A| = |B|
implies p(A) = p(B).

e A deterministic mechanism is called submodular if its pricing function p: P(K) — R
is submodular, i.e., for each I,J C {1,...,k}, p(I)+p(J) > p(IUJ)+p(INJ). In
addition, it is called supermodular if p(I) + p(J) < p(IUJ) + p(I N J).

Two different results for monotonicity of mechanisms are presented by Hart and Reny ([HR15],
Theorems 4 and 7). Let u = (g,s) be a deterministic, symmetric, seller-favorable 1C
mechanism on Ri; then its payment function s is nondecreasing. Alternatively, if it is a

submodular seller-favorable IC mechanism, its payment function s is nondecreasing.

2.4 Revenue Comparisons

How can we evaluate mechanisms? We seek to find the optimal mechanism for maximizing

the seller’s revenue. A common approach is to compare the revenue of a class of mechanisms

10



with the optimal revenue. As mentioned earlier, in our setup (of not necessarily independent
k > 2 goods), no class of finite-size mechanisms can guarantee a positive fraction of the
optimal revenue. Therefore, it does not help us to evaluate mechanisms. Instead, we compare
the maximal revenue N-Rev (achieved by the class of mechanisms N) with some basic

mechanisms.

2.4.1 MoB

The multiple of bundled revenue takes BRev = Revyj) as a benchmark. It is the sup of the

multiple of N-Rev(X) with bundled revenue over all random valuations in X:

N-Rev(X)
MoB(N;X) = sup ———=. 2.3
V) = 1 BRev(X) (23)
The immediate results derived from Proposition are
MoB (menu size < m; k goods) < m, and (2.4)
MoB(Deterministic; k goods) < 28 — 1. (2.5)

A precise tool for measuring the MoB of a specific k-good mechanism p = (g, s) is provided

by Hart and Nisan (JHN19|, Theorem 5.1):
Theorem 2.2. Let 1 = (q,s) be a k—good mechanism. Then,

MoB(u) = /000 %dt when o(t) = inf{||z|; : s(z) > t}. (2.6)

Remark 2.3. From IR we deduce that ¢(z) - x — s(z) > 0. Given a valuation x such that
s(x) > t, ||z|| = q(z) - & > s(x) > t, we deduce that v(t) > ¢. In addition, for deterministic
mechanisms, by the definition of v(t), v(R,) is uniquely determined by its values on the

different prices of the 2¥ — 1 sub-bundles.

A lower bound for MoB(Deterministic) is achieved using this formula for a specific k-good

deterministic mechanism and a k-good random valuation.

11



The improved result is

k
1/k
Z 7 (8) < MoB(Deterministic; k goods) < 2% — 1.
=1
In contrast to the lower bound, the upper bound is not tight, not even for 2 goods as shown

by Hart and Nisan ([HN19|, Proposition A.1):

)
MoB (Deterministic; 2 goods) = 3 (2.7)

2.4.2 MoS

The multiple of separated revenue takes SRev as a benchmark:

oy N-Rev(X)

A similar analysis presented by Hart and Nisan ([HN19|, Theorem A.7) states:

Theorem 2.4. Let 1 = (q, s) be a k-good mechanism. Then,

1 [~ 1 <1 ; .
E/o mdt < MoS(u) < /0 mdt when  w(t) = inf{||z||s : s(x) > t}. (2.9)

Notice that we do not have an accurate expression for the MoS of mechanism but rather
a range. Later, we will apply the MoS value to a few classes of mechanisms.

A general construction presented by Hart and Nisan ([HN19], Proposition 7.3) yields a
k-good mechanism p that turns out to be useful for evaluating a lower bound for both the

MoB and MoS of deterministic mechanisms. A similar (self-contained) proof is as follows:

Proposition 2.5.

k
1
MoB(Deterministic; & goods) > Z - (k), and (2.10)
—\!
1~ [k
MoS(Deterministic; k goods) > z ; (E) (2.11)

12



Proof. Let € > 0 and let Iy, I, ..., Is»_; be the 2% subsets of {1,...,k} ordered by weakly

1 1€ 1
increasing size, and let g, be their indicator vector, i.e., g,[i] = " The prices

0 i¢l,

tn+1

are set to be a positive sequence {t, }n ' that increases fast enough so that > 1 for all

n > 1. Notice that for a valuation x,, =1, - g, and 0 < j <mn,

and so g, - T, —t, > g; - x, —t;. The payment for x,, would be at least ¢, and so s(z,,) > t,.

Therefore v(t,,) < ||all1 = tu||gnll1- Now,

P b A “1
MoB() = G T 2 2y Tl > S - T = Zﬁ()

n=1 n=1 HgnHl n=1

A similar computation is made for MoS: we use w(t) with || - || instead of v(t), and so

w(tn) < [[vnllo = ta

1504, 132, - 1 k
MoS() > L3 i tnr S L 2 IS g ta-
2 3 2 3 2 = a2 (7).
Since we took an arbitrary € > 0, we get the desired result. O

Remark 2.6. The prices {tn}ik:_ol described in the previous proposition satisfy supermodularity

for0<e<%. Let AC B and let : € A and t; = pp, then,

(pB —PB\{i}) — (PA —Pagy) = ti —DPB\(iy —PA =t —tioy —tig =1t —2t;_, > 0.

13



Chapter 3

New results

3.1 The Multiple of Bundled Revenue

Theorem 3.1.

~| =

k
k
MoB(Deterministic; &k goods) = Z <£>
=1

Proof. Tt is left to prove that MoB(Deterministic; & goods) < S5, %(’Z) since the other
inequality is proved in Proposition [2.5]

Let p be a k-good deterministic mechanism with a finite menu {(14,p4) : A € A}, where
A CP(K). 14 and pa are the indicator vector and the payment for all goods with index in

A, respectively. If A C B € A and ps > pg, then for each = € Rf‘; we have

1A'$—pA:ZIa—pA <be—PleB'$—pB-
acA beB

The option >z, — pa is never chosen and so the menu entry (14,p4) does not affect the
mechanism. aﬁgnce, pa < pp is assumed for every A C B € A.

We extend the payment function’s range A to P(K) by pa = min{pg : A C B € A},
and so p : P(K) — R, is a nondecreasing function. Let P := {p4 : A C K} be the set of

distinct prices used. For every p € P define 9(p) as

op) == inf {Jalh: (@) = p}

14



then o(p) > v(p), and
v(u) = min{o(p): p € P,p > u}

for every u > 0.

Let T :={p € P: v(p) = 0(p)}; then
v(u) =min{u(t) : t € T,t > u}

for every u > 0. Indeed, let p > w in P be such that v(u) = 0(p); then v(p) > v(u) = v(p).
Therefore, v(p) = 0(p) and so p € T, as needed. Let T' = {t;}I_, with 0 =tp < t; < --- < 1;

then we have v(u) = v(t;) for every u € (t;_1,t;] and so

r

> 1 t; —ti
MoB(u):/O mdu:z o)

i=1

Let x be such that s(x) = t;, and let A be such that ¢(x) = 14 (thus ps = t;).

Lemma 3.2. For every c € A, if pagey > ti—1, then v(paq) = v(pa).

Proof. Necessarily pa\jep < pa and so pa\(e} € (ti-1, ti).
Therefore, v(pa\(ey) = v(t;) = v(pa). H

Define

na = [{ce A v(pa) = v(pavie) -

Proof. For every c in A, (14,pa) is preferred to (1a\(c},pa\(e}) and so . > pa — pay(e}- By

Lemma if v(pavgey) 7# v(pa), then pay(ep < ti—1, and s0 pa —pay(ep > ti — ti—1. It follows
that |||l > (JA] = na) - (t;i — tizq). ]

Let
A, ={AC K:v(pa) =v(t;)}

and let A € A; minimize |A| — ny over A;.

15



Corollary 3.4.
o(t) > (|A] = ng) - (8 —tio).

Proof. Recall that v(t;) = 0(t;) = infzeR’;{Hle: s(z) = t;}. For every x such that s(z) = t;,
there exists a chosen menu entry (1g,pg) where B € A;. By Lemma [3.3] we have ||z|[; >
(IB] = ng) - (ti — ti1) > (JA| = njz) - (t; — ti1). Therefore,

v(ts) > (1Al = ng) - (ti — tioa).

Lemma 3.5.

t—u
1 zhﬂ

BeA;

Proof. v(u) > u for every u > 0 and so 'v(tl)l < v&) <1. By Corollary we have

ti—ti— _ 1 Al
s == Al =1
ti—ti— 1 1
<1<y Al > Lng = |4
ti—ti—1 (ti—ti—1) 1 A B A
o) S Tn o) ‘Ivﬂ*‘”A w4 La<i4l
Either way, ( ) is bounded by summing 0z B‘ over sets B that satisfy v(pg) = v(¢;). Hence,
t _t’L 1
o(t; )1 Z 18] o
BeA
By the definition of A;, we have |JA; C K and A; NA; =0 for i # j.
i=1
Summing over ¢ completes the proof:
"t —t : 1 1 (k1
i — li—1
Mon() = <3S S s 3 =)z
i=1 v i=1 BeA; 0£BCK =1
O

Wm,neN,n<m: —

3=
3
L



3.2 The Multiple of Separated Revenue

This case turns out to be more complicated than MoB. As shown in the proof of example
, even for two goods, the value w(p; 2) depends on the connection between pjs and p; + po.

In the next results, we distinguish between the submodular case and the supermodular case.
Theorem 3.6.

28 — 1
T

MoS(Deterministic; supermodular; & goods) =

Proof. Notice that one inequality is already proved (Proposition , Remark .

For the other inequality, let p be a k-good deterministic and supermodular mechanism
with a finite menu {(14,pa) : A € A}, where A C P(K). As in Theorem 3.1 pa < pp
is assumed for every A C B € A. We denote by a4 the probability that the menu entry
(14,pa) is chosen. By definition, Rev(u; X) = > aapa.

0£ACK
Let
1
Z:=) a2 pa—pa) ) o
A#D i€A BDA
By Lemma |3.8| we have
2k 1
Z < SRev(X).

By Lemma |3.9| we have

2]A|+1— |B
ZZReV(u;X)JrZaB(ZpA- | ||A‘+1’ |>.

B#D ACB
By Lemma we have that the described sum is positive, which yields the result. O

Lemma 3.7. For every A C K and every i € A, we have

(Pa — pagy) - ZO‘B < Rev(X)).
BDA

17



Proof. Assume that the buyer chose the menu entry (14,p4); then, all i € A, we have

Z%’ —pa > Z Tj — pagy and S0 T; > pa — pa\(}-
jeA jeA{i}
From the supermodularity of the mechanism, it follows that for all A C B and i € A, we
have pg — pp\(i} > pa —pa\giy- Hence, P(X; > pa —pavgiy) = Y ap. Recall that for a single
good X;: 7oA
Rev(X;) =sup t-P(X; > 1).

t>0

It follows that

Rev(X;) > (pa — pagy) - P(Xs 2 pa —paviiy) = (Pa — pavgiy) - ZCYB-

BoA
]
Lemma 3.8.
2k — 1
Z < SRev(X).
Proof. By Lemma [3.7],
<> Z Rev(X ZReV (S
|Al
A;AQ) zeA A3i
Therefore,
k k
1 kE—1\1 k\ 1 2k —1
ZW_Z(K—l)Y_ZQ)E_ 2
A>i =1 =1
]

Lemma 3.9.

21A|+1—|B
Z =Rev(u; X —i—ZozB(Z | ||A|+1| |>

B#0 ACB
Proof. Fix B C K and consider all terms that include ag. For each A C B the term ﬁp AQB
appears |A| times (once for each i € A), yielding paap in total. For each A C B, the term
|A‘ﬁ(—p};o@) appears |B| — |A| times (once for each A’ C B such that A = A'\{i} when

18



i € B\A), yielding lﬂﬁfl (—paap) in total. Thus,

Z= ZQB (ZPA' (1 - %)) = ZaBpB+ZaB <ZPA' (1 — %

BA£D ACB B0 B#£) ACB

Showing the following lemma for every B C K completes the proof:
Lemma 3.10.

3 2|A[+1—|B|
. > ().
ACB

Proof. Let n == |B|; for each m =1,...,n — 1, we define

1

n 2m+1—n/n
m = , Ap = —————
i (m) Z P4 m—+1 (m)

ACB:|Al=m

and so we need to show that

n—1
Z A Tm > 0.
m=1

)

]

We will show that each term whose coefficient is negative (which happens when m < "T’l) is

covered by the corresponding term \,_,, 17, _m_1, i.€.,
>\m7rm + /\n—m—lﬂ-n—m—l Z 0.

Indeed, for each m < ”T_l we have

—(2m+1—-n)(n n—2m—1 n
|)\m| = m = = |)\n—m—1|'
n_

m n—m m—1

Below, we show that m,, is a nondecreasing sequence; then it follows that

AnTm + Aem—1Tp—m—1 = 0. Summing over all m < ”T_l completes the proof.

19



Lemma 3.11. Let N be a set of size n, and for each m = 0,1,...,n, let m,, be the average

price of subsets of N of size m, i.e.,

then {m,}" _, is a nondecreasing sequence.

Proof. Let m < n; we will show that 7, < m,,,1. The function p is nondecreasing and so
D> o< po
C D C D

where both sums range over all pairs (C, D) such that C C D and |C| = m, |D| = m + 1.
Each pc appears in the left-hand sum n — m times (once for each i € N\C'), and each pp

appears in the right-hand sum m + 1 times (once for each i € D). Therefore,

(n —m) (Z)wm < (m+1) (mi 1)7rm+1.

Since (n —m)(") = (m + 1)(m11), we get T, < Ty O

20



As mentioned in Section [2.3] the class of submodular, seller-favorable, IC mechanisms
is a subclass of monotonic mechanisms. Therefore, the next result holds for submodular

mechanisms as well.

Theorem 3.12.

MoS(monotonic; k goods) < k.

Proof. Let u = (g, s) be a k-good monotonic mechanism. Recall the definition of w(p):
Ws)(p) = inf{|| 7|l : @ € RE, s(z) > p}.

First, we show that it is sufficient to consider vectors on the diagonal of Rﬁ when defining
w(p).

Lemma 3.13.
w(p) =inf{t:t e Ry, s(t-1) > p}.

Proof. One inequality is immediate:

{t- T:teRy, s(t-1)>p}C{z:xeR, s(x)>p}
4
inf{||t 1||o: t € Ry, s(t-1) > p} > inf{||z]|e: z € RE, s(z) > p}.

For the other inequality, let 2 € R% such that s(z) > p and let ¢ := ||z||s. Then ¢-1 >z
and by the monotonicity of 1 we get s(t - 1) > s(x) > p, which have same || - || value.

Therefore,
inf{t: t € Ry, s(t-1) > p} <inf{||z]|w: € RY, s(z) > p} = w(p).

]

Let 1 = (q1, s1) be a one-dimensional mechanism obtained from the mechanism p = (g, s)
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on the diagonal, i.e.,

(we divide by k so that ¢,(t) € [0, 1]). We get

>3
-
I

W(q,s)(p) = inf{t: s(t- 1) > p} =inf{t: k-s.(t) > p} = inf{t: s1(t) > w(qhsl)(E ,

which implies that

Il
|

/ dp / —dt.
., W(g,s) (p) ¢ , W(qy,s1) ()

By Equation 2.9, we have

1 / 1 1
— | ———dp < MoS(u) < /—dp
kJ ws(p) Wg.s)(p)

Since (11 is a one-good mechanism (k = 1), it follows that MoS(u;) = [ o 1 X5 dp. For one
91,51

good, SRev is the optimal revenue and so MoS(p;) cannot be greater than 1.

Therefore,

1 1
MoS(u S/ dp:k:-/—dt:k-MoS,u <k.
W= ] ) W (0 )
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