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Abstract

We consider repeated games where each player knows his own payoff matrix but has
uncertainty about his opponent’s payoff matrix. In the One-Sided Case, where one of the
players has complete information, we give a characterization for Correlated Equilibria (CE)
and a new proof for the characterization of Nash Equilibria (NE). Also, in this case NE =
CE . In the Two-Sided Case, where each player has doubts about his opponent’s payoffs,
we give a characterization for NE. Like in the One-Sided Case, every NFE point is payoff
equivalent to a completely revealing equilibrium. We then show that some games have no

Nash equilibrium points.



1. Introduction

Repeated games with incomplete information have received considerable attention
during the last 20 years. One reason for this interest is that this model is a game-theoretical
idealization of many social and economic relationships. These are often developed over
time and they are made difficult by the asymmetry of the information of the individuals
involved. The main research interest is the characterization of equilibrium points (Nash,
correlated and others).

A repeated game is a multi-stage game which is composed of a one-shot game (sub-
game) played repeatedly. A game with incomplete information is a game in which at least
one of the players lacks part of the relevant data. In the standard-information case each
player can observe all actions taken during the play but he might not be certain about the
payoffs, neither his nor those of the other players.

A standard two-players game with lack of information on one side consists of: two
players - player I and player 2 - a finite set K of states of nature, each state k in K being
described by a (one shot) two-person game (i.e. two payoff matrices, one for each player).
The state of nature is chosen according to a probability vector! p € AKX, Only player 1, the
“informed player”, is told which game k was chosen. This game is then played repeatedly.

The first research on repeated games of incomplete information was done in the Mathe-
matica reports (1966-1968) by Aumann, Maschler and Stearns. These articles dealt mainly
with the case of two-person zero-sum games.

Since then, the two-person zero-sum case has been extensively studied, as detailed in
Sorin (1980) and the forthcoming book of Mertens, Sorin and Zamir.

The two-person non-zero-sum case was first studied by Aumann, Maschler and Stearns
(1968). A complete characterization of the equilibria in these games, with standard one-
sided information, was given by Hart (1985). Sorin (1983) proved the existence of an
equilibrium point in any such game with only two possible states of nature (i.e., |K| = 2).

A drawback of the general case in this model is that player 2 - the “uninformed player”

! AK is the |K| — 1 dimensional simplex, see the notations in the beginning of next

section.



- does not know what his own payoffs are. He receives his payoffs in “sealed envelopes”
that go directly into his safe-deposit box, and he may never find out what they contain.

To overcome this drawback, we would like to inform the uninformed player of his
payoffs at each stage. We wish to keep the framework of standard information, that is - to
inform the player of the choices (actions) made at each stage. But known actions, together
with known payoffs, could help player 2 to deduce the chosen state of nature. To prevent
this, while still assuming standard information, we will formulate a game with a single
payoff matrix for the uninformed player for all states of nature. Thus, he can determine
his own payoffs from the actions. But still, this does not help him to deduce the state of
nature. This kind of game will be called a Game where Players Know Their Own Payoffs.

It is not to be confused with the model of games with observable payoffs in which
the payoffs are known, but the actions are not, i.e., without standard information. Lehrer
(1986) studied two-player repeated games with observable (known) payoffs and non-observable
actions in the complete information case, and characterized the equilibrium-payoff sets.

Shalev (1988) has shown that in the model with lack of information on one side and
known payoffs? (the standard information case) every game has a Nash-equilibrium point.
He gave a characterization of all the Nash-equilibrium points as (payoff-) equivalent to
a completely revealing equilibrium (i.e. an enforceable joint plan — as first defined in
Aumann, Maschler and Sterns (1968), see also Sorin (1983, Remark 1, p.199) — where the
“informed player” reveals k£ immediately).

Shalev based his result on Hart’s characterization (1985) which is quite complex and
involves bi-martingales. Our first result is a direct (and simpler) proof of Shalev’s charac-
terization.

A natural extension of the one sided information case is the model with Lack of
Information on Both Sides . In this model a state of nature is a pair (k,!) in K x L (where
K and L are finite sets). To each state of nature there corresponds a pair of payoff matrices
(a game). In the independent case, a state of nature is chosen according to probability
vectors p € A and g € AL (i.e. the probability of (k,1) is p¥q'). Player 1 is told only k
while player 2 is told only [.

2 Shalev actually used the term Observable Payoffs in his work.
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The zero-sum case of this model was completely analyzed by Mertens and Zamir (1971-
72). A non-zero-sum game with lack of information on both sides where the players know
their own payoffs is a game where the payoff matrices of player 1 depend only on k (i.e.,
not on !) whereas the matrices of player 2 depend only on . (The reader may find an
example in section 6.6).

Our second result is a characterization of all Nash-equilibrium points in this mod-
el. As in the one-sided information case (Shalev 1988), all the Nash-equilibrium points
are (payoff-) equivalent to a completely revealing equilibrium. As a consequence of this
characterization we will be able to show that there are games with no Nash-equilibrium
points.

It should be pointed out that these are the first results in a model of non-zero-sum

games with lack of information on both sides .

Up to this point we have dealt with Nash-equilibria; we will now discuss a different
concept - correlated equilibria.

Correlated equilibria were introduced by Aumann (1974); a correlated equilibrium for
the game I' consists of a Nash equilibrium of an extension of I' where, before the beginning
of the game, a pair of signals - one for each player - is transmitted. This pair is the
output of some correlation device (thus, the signals of the two players may be statistically
correlated).

Forges (1988) studied the model of two players with lack of information on one side
(in the general case - not necessarily with known payoffs). Forges introduced the following
concept: a communication device for the game I' acts at every stage of I' by receiving an
input from each player and then it selects a pair of outputs, one for each player, as a function
of its past memory (i.e. all the past inputs and outputs). A communication device thus
enables the players to exchange information and also to coordinate their strategic choices at
every stage. A communication equilibrium for I" can then be defined as a Nash equilibrium
in an extension of I' obtained by adding a communication device to the game.

Let NE be the set of Nash-equilibrium payoffs. Let C (respectively D) be the set

of correlated (respectively communication) equilibrium payoffs. Our third result: In the
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known payoffs model, the sets of Nash, correlated and communication equilibrium payoffs
all coincide (i.e., NE = C = D). ’

It is known (Forges 1985, 1988) that C' = D for the games of information transmission.
In these games the only role of the informed player consists of sending signals to his
opponent. But still, for the information transmission games, NE # C. Hence, this is the
first general case where all the sets coincide, i.e., communication, where payoffs are known,
does not increase the set of equilibria.

The paper is organized as follows: In section 2, we will give a formal description of
the model. Section 3 states the main results. Sections 4 and 5 are devoted to the case of
lack of information on one side: a direct proof of Shalev’s result is the subject of section 4;
section 5 deals with the correlated and communication equilibria. Section 6 is devoted to
the case of lack of information on both sides; it consists of the proof of the characterization
of the equilibria in this model. It also contains an example of the complete analysis of a

specific game; in some instances, the game has no Nash equilibrium.



2. The Model

Notation.
IR is the real line, and IR" the n-dimensional Euclidean space. Let ¢ = (z1,...,24,)
and y = (y1,...,Yn) be two vectors; x > y means z; > y; for all 2 = 1,2,...,n. The scalar
n

product Y z;y; is denoted by z - y. For a finite set L, |L|is the number of elements of L
=1 .
and IR is the |L|-dimensional Euclidean space with coordinates indexed by the members of

L (thus, we write z = (z)ier for z in RL). The unit simplex in IR” will be denoted?® by AL,

Al :={e e R" : 2/ >0 forall | in L, Y, 2 = 1} . Finally, IV is the set of
positive integers {1,2,...}.

2.1 Standard Information with Lack of Information on One Side and Known
Own Payoffs.

The model given here is based on the model in Hart (1985), with appropriate changes
made for known payoffs; it has been introduced in Shalev (1988).

The class of games we study is given by the following:

(i) Two players, player I and player 2.

(ii) A finite set I of choices for player I and a finite set J of choices for player 2; I and J
each contain at least two elements.

(iii) A finite set K of games; to each k in K (state of nature) there corresponds an
I x J matrix A*, and there is an I x J matrix B common to all the games:
A* = (4%(1,))ierjes and B = (B(i,§))ienjer-

(iv) A probability vector p = (p*)rex on the set K (i.e., p € AK); without loss of gener-
ality, we assume p*¥ > 0 for all k in K; otherwise, we may discard those k that have

zero probability.

Based on (i)-(iv), a game with lack of information on one side and known payoffs

I'w(p) is given as follows:

3 The symbol := means that the expression on the left is being defined.
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(v) An element « of K is chosen according to the probability vector p; & is told to player
1, but not to player 2.

(vi) At each stage t = 1,2,..., player I chooses an element ¢; in I and player 2 chooses
an element j; in J; the choices are made simultaneously (or, without either player
knowing what the other did).

(vii) Both players are then told the pair (4;,:), and they get the payoffs A*(is,J¢) and
B(i¢, ji), respectively (player I can calculate both payoffs, player 2 can calculate only
his own payoff).

(viii) Both players have perfect recall (i.e., they do not forget what they were told at all
previous stages).

(ix) All of (i)-(viii) is common knowledge to both players (see Aumann (1976) for a precise

definition of common knowledge).

Next we describe the sets of strategies of the players in ' (p).

For each t =1,2,..., let H; be the set of histories up to (but not including) stage t,
namely, Hy = (I x J)!™1,

A pure strategy o of player 1 is a collection o = (04)52, , where
o Hiyx K -1 (21)

for all t = 1,2,...,. Thus, for every history h; in H; and every k in K (the “true” game
chosen), o4(h¢; k) is the choice i; made by player I at stage t. In a similar way a pure

strategy T of player 2 is 7 = (1), , where
T Hy — J (2.2)

forallt=1,2,...,.

A mized strategy is, as usual, a probability distribution over the set of pure strategies.
Since I'ao(p) is a game with perfect recall, one can restrict the study to behavior strategies
(cf. Kuhn (1953) and Aumann (1964)) where players make independent randomizations

at each move.



A behavior strategy is thus defined in the same way as a pure strategy, with (2.1)

replaced by
or: Hyx K — A (2.3)

and (2.2) replaced by
Tt ZHt — AJ . (24)

Since we never use pure strategies specifically, the term “strategy” will henceforth
mean behavior or mixed strategy.
We have not yet defined payoffs in I's(p), only sequences of payoffs. Given a pair of

strategies (o, 7) of the two players we denote

1 & .
af = T ; A (34, 5t) (2.5)
T
br = %Z:; B(is, 1) (2.6)

for all T = 1,2,--- and all k in K. Thus a% is the average payoff up to (and including)
stage T to player 1, if the true game is ¥ = k; this depends on the choices of i;’s and j,s,
made according to ¢ and 7 (actually, only o(-; k) and 7 matter); let Eﬁ),.(a%) denote its
expectation. For player 2, S is his average payoff up to stage T’; it depends on o, and
also on the choice of k¥ (because the #;’s may depend on &) according to p; let E, » »(87)
be its expectation.
A pair (o, 7) of strategies is a (Nash) equilibrium point in I' o (p) if
lymint B (a}) 2 limsup B, (ah) (2.7)

for all strategies o' of player I and all £ in K, and

liTm inf E, (A7) > limsup E, + »(07) (2.8)
—0o0 T-—00

for all strategies 7' of player 2.

If we take o' = o in (2.7), we get a vector a = (a*)rex such that
Jim  E; (af) = o (2.9)
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for all k in K. Similarly, 7/ = 7 in (2.8) gives § with

Jim o p(fr) =5 . (2.10)

We will call a and g the payoffs of the equilibrium point (o, 7).
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2.2 Standard Information with Lack of Information on Both Sides and Known
Own Payoffs
This model is an extension of the model in section 2.1. Therefore we will only point

out the differences between the two models.

Definition of the model:

(i) and (ii) as in section 2.1.

(iii) Finite sets of K and L. K x L represents the set of possible states of nature (games).
To each k in K there corresponds an I x J matrix A*, and to each lin Lan I x J
matrix B'.

If the game chosen is (k,1) € K x L, then (A*(4,7))ier,jes and (B'(:,7))ier,jes are
the payoff matrices to player I and player 2 (respectively).

(iv) Probability vectors p = (p*)rex on the set K and ¢ = (¢')ier, on the set L (i.e.
p € AK and ¢ € AL). Without loss of generality we assume that p* > 0 and ¢' > 0
for all k¥ in K and | € L, otherwise we may discard those k and [ that have zero
probability.

(v) Elements < in K and £ in L are chosen independently. « is chosen according to the
probability vector p and £ is chosen according to the probability vector ¢. « is told to
player 1, but not to player 2. £ is told to player 2, but not to player 1.

(vi) as in section 2.1.

(vii) as in section 2.1 except that the payoff to player 2 is B%(iy, j;), and that each player
knows his own payoff only.

(viii) to (ix) as in section 2.1.

The game based on (i)-(ix) will be denoted by I'so(p, q).
There are, of course, some differences in the definitions of strategies, payoffs, and
equilibria. However, these differences are purely technical. For example: the average

payoff up to (and including) stage T to player 2 is

T
1 .
blT: T E Bl(lt,]t) (211)
t=1
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for all T = 1,2,---, when the true game is £ = I, b}, depends on 0,7 and the choice of
!

U,T’p

& according to p (because the i;’s may depend on ). Let E! __(b) be its expectation.

Similarly, the expectation of aX. when the true game is k = k will be denoted by Ef,",.,q(a’r}).
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3. Statement of The Main Results

3.1 Nash equilibrium points in a game ' (p) of information on one-side (Shalev

1988).

First, let us define the notion of individually rational payoffs in this model (presented
in Shalev (1988)). The Folk Theorem in the complete information case states that the set
of equilibrium payoffs coincides with the set of feasible and individually rational payoffs.
Following Hart (1985), we will now characterize individual rationality in I'o(p), using the

methods from the investigation of the zero-sum case by Aumann and Maschler (1966).

Notation.

Let p be a probability vector in A¥; let p- A be the matrix* 3 pFA*. Consider the
keK

two-person zero-sum game with payoffs to player I given by p- A and let (Val; A)(p) denote

its value (when played once). Thus,

(Val,4)(p) = max min, (p-A)z,y) = [nin, max (p-A)z,y) (3.1)
for z = (zi)ier and y = (y;j)jes where (p- A)(z,y) = X 2 ziy; > prA*(,)).
i€l jEJ kEK

Let Valy B be the value to player 2 of the two-person zero-sum game with payoff matrix

B to player?. i.e.,

Val, B = rrelaA)} xrrenAnI (B)(z,y) = rrenAnI max (B)(z,y) (3.2)

Where = and y are defined as above, and (B)(z,y) = > > ziy; B(3,j).
el jeJ

Definitions.
1) A vector a = (a*)rex in RY is an individually rational payoff vector (IR) to player 1
in Ioo(p) if
p-a>(val; A)(p) for all pin AKX (3.3)

Note that (3.3) is a mnecessary and sufficient condition for the set
= {z € RE . z < a} to be approachable by player 2. This was proved by
Blackwell (1956). '

% Le., whose (i,7)'th. element is 5_ p*A*(i, ).
keK
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2) A scalar 8 in IR is an individually rational payoff to player 2 in I'o(p) if
B> Val,B . (3.4)

This follows from the fact that player 2’s payoffs are independent of k. Therefore, his
level of individual rationality (in a two-person game) is exactly the value of his payoff
matrix.

Note that neither of the above definitions depends on p.

3) For any 6§ € AT*J, define

A(8) := (A*(8) gere = (D D874 1) e (3.5)
el jeJ
and

B(8):=Y > &YB(i,j) . (3.6)

i€l jeJ

Thus A*(6) is the payoff to player I in the k’th game, where the frequencies used for

payoff accumulation are given by §.

Theorem A (Shalev 88).

Let a = (a*)rex € RY and 8 € R. Then (a,f) is a Nash-equilibrium payoff vector in

T'w(p) if and only if

satisfying the following 5 conditions:

Let I'o(p) be a repeated game with lack of information on one side and known payoffs.

For every k € K there exists a probability vector §* on I x J (i.e. §F € AIXJ),

(i) A*(6%) =dF for all k € K.
(i) > p*B(s*)=p8 a and 3 are the payoffs).
keK
(ili) a-g>(Val;A)(q) forall g € AKX

(iv)
(v)

B(6%) > Val, B
Ak(8*) > Ak(8F)

forall k € K
for all k,/l; e K

14
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Remarks.
In view of the proof, we can interpret the conditions (i)-(v) as follows:
* conditions (i) and (ii) ensure that (a, 3) is, in fact, an equilibrium payoff.
* condition (iii) forces a to be an individually rational payoff vector to player 1.
* condition (iv) states that independently of the game chosen, player 2 gets at least his
value in his one matrix payoff.
* condition (v) states that “cheating” is not worthwhile for player 1. That is, it is not

worthwhile for him to act as thought the state of nature is k when, in fact, it is k,

k# k.

3.2 Correlated and communication equilibrium in the model with lack of in-
formation on one-side.
Let NE be the set of Nash-equilibrium payoffs. Let C be the set of correlated equi-
librium payoffs and and let D be the set of communication equilibrium payoffs (see Forges

(1988)).

Theorem B. Let I' be a game with lack of information on one-side and known payoffs.
Then
NE=C=D (3.7)

Hence, communication and correlation, where payoffs are known, does not increase
the set of equilibria.
3.3 Nash equilibrium points in the model of lack of information on both sides

Theorem C. Let I'o(p, q) be a repeated game with lack of information on both sides and
known payoffs. Let a = (a*)rex € RY and b= (b)1cr € RE.

Assume |I| > |K| and |J| > |L|.
Then (a, b) is a Nash-equilibrium payoff vector in I'o(p, ¢) if and only if for each k in K

and ! in L there is a probability vector §*' on I x J (i.e., 6¥ € AT*J gk = (6kl(i’j))iel jeJ)
satisfying;:
() Y ¢'A*(6F) = oF for all k in K
leL
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i) X p*B'(6%) = b forall lin L
kEK
(iii) For each k in K and ! in L there is an individually rational payoff vector to player I
o = (cA ke, satisfying:
=) ¢'A*(E) = > ¢ Max { A*%( §FY), &
leL leL
for all £ in K
(iv) For each k in K and [ in L there is an individually rational payoff vector to player 2
ds= (d* A)IeL satisfying

b= p*B(s¥) > ) p* Max {B'(6"),d\}

kEK keK
foralllin L.

Remarks.

1. The assumptions |I| > |K| and |J| > |L| are used only to show that if conditions (i) to
(iv) are satisfied than a Nash-Equilibria- payoff-vector can be obtained. The opposite
direction (i.e., a N.E payoff vector implies conditions (i) 4e (iv) ) holds even without
this assumption. The equilibrium constructed in the proof is completely revealing in
one stage. The revealing of the information in only one stage is only possible when
[I| 2 |K| and [J| 2 |L].

This restriction may be overcome in the following manner:
* Allow the players to use a “rich enough” alphabet at the first stage.
or
* Instead of game I'oo(p, q), play an equivalent game (with respect to strategies and
payoffs), in which |I| > |K| and |J| > |L| (e.g., duplicate rows and columns in
the game’s matrices ).
2. Conditions (iii) and (iv) may be replaced by the following condition:
(v) For each k in K and [ in L define

_there exists é € AIXJ such that
ok > Ak(6) for all %, = AF(6)
Gi=1{ (e,f) € R x RE:  f1> BY(§) for all ], f’ = B'(%) (3.8)
e is IR vector for player 1.
f 1s IR vector for player 2.
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For all k and k in K and for all [ and 7 in L there exists (expp f7y) in G, and
(e fip) in G 5 satisfying

k 1k

a” > e~

_E 7
lEL

! kol
bZZPfk’,\

keEK

(3.9)

Conditions (iii) and (iv) are equivalent to condition (v). Suppose there are dgis and
cris which satisfy conditions (iii) and (iv) we can assume that di, = B'(6*') and
ct, = A*(8*Y) for each k in K and ! in L.
Define:

ex := Max {A((Skl), ckl}

(3.10)

Ffi := Max { B(6*"), dyi }
(a maximum for two vectors is defined coordinate by coordinate).
The pair (ex1, fr1) thus defined satisfies condition (v) where, the § for (exs, fri) in the
definition of Gy is taken as §%!.
If, on the other hand, there are pairs (e, fri) which satisfy condition (v), then con-
ditions (iii) and (iv) will be satisfied for di; = fxi and cri = ex.
Condition (v) seems to have a simpler form than conditions (iii) and (iv), and, in fact,
it is derived from the proof of Proposition 6.5. However, the form of conditions (iii)
and (iv) reflects better the structure of an equilibrium point constructed in the proof

of Theorem C.
3. Here, as in §3.1, a vector a = (ar)rex is IR to player I in I'oo(p, ¢) if:

p-a>(Val; A)P) forall 7 in AR
and a vector b = (b;)ier is IR to player 2 if:
G-b>(Valy B)(g) forall § inAF

Conditions (iii) and (iv) imply that: a and b are individually rational (IR) payoff

vectors to players 1 and 2, respectively®. In particular conditions (iii) and (iv) imply

A¥(6*) > Val; A¥ and B'(6*') > Val, B!

5 Indeed, take k = k in condition (iii) and I = [ in condition (iv).
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forall £ in K and ! in L.

4. If Val; A(-) is a convex function then if condition (iii) is true for some cg, it will also
be true for cx; = (Val; Ak)kek—; a similar statement holds for player 2.

5. Condition (iii) requires |K x L| vectors cx;. Remark 4 states that if (Val; A)(:) is a
convex function, only one vector is sufficient. Is it possible, in general, that less than
| K x L| vectors will suffice? (We do not know the answer.)

6. There are games I'o(p, ¢) without a Nash equilibrium point (see §6.6).
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4. Nash equilibrium points in a game I'o(p) of information on one-side

The original proof was given by Shalev (1988). It is based on the general character-
ization for equilibrium payoffs in the general case of incomplete information on one side
(not necessarily with known payoffs). The general characterization given by Hart (1985)
is quite complicated and includes use of bimartingales.

The following proof is direct.

Proof (Theorem A).
4.1 The existence of 6¥s = existence of Nash equilibrium point (o,7) with

payoff vector (a, 3).

We will construct a completely revealing equilibrium in the following manner (pre-
sented by Shalev (1988)):

For each k € K we will set a plan to achieve the frequencies of 6* on I x J. The plan
will consist of a sequence of choices for player I and a sequence of choices for player 2.
These sequences will be deterministic, i.e., without randomizations.

Suppose that the chosen state of nature is k. Player I’s strategy o is as follows: signal
k in the first [log, |K|] stages (by converting k to a binary number and playing ¢ = i; to
signal zero digits, and ¢ = i3 to signal ones, where ¢; # 72), then play to achieve frequencies
6%, according to the plan for 6%, as long as player 2 does not deviate from 7. If player 2
deviates from 7, play a mixed strategy holding player 2 to Val, B at every stage ¢ following
the deviation.

Player 2's strategy 7 is as follows: play arbitrarily in the first [log, |K|] stages, re-
ceiving player I’s signal of k, then play according to the plan to achieve frequencies 6%,
as long as player ! does not deviate from o. If player I deviates from o, play a Blackwell
strategy ensuring that player I will get no more than a (simultaneously in all the games).
The existence of such a Blackwell strategy is ensured by condition (iii) (Blackwell 1956,
see Aumann and Maschler, 1966).
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Proposition 4.2. (o,7) is a Nash equilibrium point with a payoff vector (a, ).

Proof:

1. If nature chooses k € K, the payoff to player 1, according to (o,7), will be
a® = A"(6*), the payoff to player 2 will be B(6*). Therefore, the payoff vector
to player 1 in T'o(p) will be a = (a*)rex = (Ak(ék))keK and the payoff vector to
player 2 in I'o(p) will be 8 = 3, i p*B(6%). Hence, (a, 3) is the payoff vector for
(o,7).

2. Suppose that player 2 deviates from 7 and uses 7. 7 is deterministic (as t > log, |K|),
i.e., has no randomizations. Therefore, player 1 can detect the first stage (move) in
which player 2 is not playing according to 7. Upon detecting a deviation player I
holds player 2 at Val,B. Condition (iv), therefore, guarantees that player 2 cannot
benefit from any deviation.®

For player 1, only the following two kinds of deviation are possible:

a. A detectable deviation.

b. Player 1 “lies” when revealing his information and continues to play according to
the false information. For example, suppose that the true game is k. In the first
stages player I signals ke K , k # k, then continues to play according to 67‘\ (this
is the only deviation which cannot be detected).

Condition (v) ensures that player ! cannot benefit from this undetectable deviation.
When the deviation is detectable, player 2 will use the Blackwell strategy which keeps

player I’s payoffs at a for all the payoff matrices simultaneously (possible according

to condition (iii)). Thus player ! cannot benefit from any deviation.

Q.E.D.

6 Player 1 holds player 2’s payoff at Val, B in the following manner: After the deviation
from 7, player 1 uses an optimal strategy in game B, viewed as a zero-sum game, at each
stage independently.

Consequently, from the time of the deviation, the payoff expectation for player 2 is at
each stage at most Val, B. The stages prior to deviation are negligible and therefore the

expectation of the average payoff will not be, in the limit, greater than Val, B.
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4.3 The existence of the Nash equilibrium point (o, 7) with payoff vector (a,b) =
the existence of 6*s.
Certain preliminary work is required before we proceed to this proof. First, we shall
define the probability space with which we are dealing. Then, we shall briefly refer to the
concept of Banach limits, a concept which this proof (and those following) makes much

use of (Hart, 1985).

4.4 The probability space. For each t € IV (the set of positive integers), we have
defined Hy = (I x J)'~!, the set of histories before stage t. We also define the set of infinite
histories Hoo = [[;2,(I X J), an element of H, being a sequence {(it,jt)}:; of moves
made by the two players at all stages.

On H,, we define for each ¢ € IV the finite field generated by H:, and call it Hy;
thus, two infinite histories belong to the same atom in H; if and only if they coincide up
to (but not including) ¢. Let Ho, be the o-field generated by all the H,’s (usually called
the cylindrical or the product o-field on the space Hyo).

The basic probability space will also include the choice of « in K by chance. Thus,
let @ = Hy x K be endowed with the o-field Hoo ® 25. Each pair of strategies (o, 7)
and each probability vector p € AK for the initial chance move determine a probability
distribution on this space. We denote it by P, . ,; note that E, - , used in §2.1 is precisely
the expectation with respect to Py ; », and Ef,r is the conditional expectation given k = k.

Note that {H:}+en is an increasing sequence of finite subfields of H,, converging to
Hoo as t — oo.

We will denote the field generated by H; on Q also by Hy; this will generate no

confusion.

4.5 Banach limit.
Banach limit 1s an extension of the notion of limit to all bounded sequences.
Let I, be the space of all real sequences. A Banach limit L[] is a linear operator on

loo such that

liminfz, < L[z,] < limsupz, forevery {z,}n inly (4.1)
n-—00 n—oo
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(see Dunford and Schwartz (1958), p. 73 or Hart (1985) for more details). The Banach
limit operator is not unique, so let L be one fized Banach limit throughout this paper.

Now we can continue with the proof.

4.6 Conditions (i) and (ii).

Let (o,7) be a Nash equilibrium point with payoff vector (a, 8) in I'eo(p).

We will denote P, , by P and E, ,, by E. We will also use E* for the conditional
expectation E(-|x = k). We want to find suitable 6*s

Define random variable m7(z,j) on I x J; for all T € IN and (¢,5) € I x J.

mr(i,j) = { ' . thg gumber of ?imes in which }
the pair of choices (7,7) appears in the first T stages of the game
mr depends on the players’ strategies and the chosen k.
Hence, E*(mr(i,j)) = Esrp(m7(i,5)|s = k) is the expectation of the number of
times that (i,7) appears in the first T' stages, where the chosen state of nature is k = k
and the strategy of players 1 and 2 is ¢ (in fact o*) and 7 respectively.

The next stage is to define 6% by:
64(i,7) = lim =(E*(mr(i, ) (4.2)
bl T—yoo T 9
Unfortunately, the limit does not necessarily exist. Therefore, it is necessary to use the

Banach limit L[-] to define the §*s.

8(i,5) 1= L | (B*(ma(i, ) (43)

The 6*’s satisfy the conditions of Theorem A:
1. 6 € AT for all k in K, that is 0 < 6%(i,5) < 1 for all (¢,5) € I x J and

¥ ier 85(i,5) = 1.
2. conditions (i) and (ii) of Theorem A, that is

B=> p*B(s*)
keK
and a* = A*(6%) forall kin K .
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4.7 Condition (iii).

Definition .

A Component strategy (C_strategy) o of player 1 is a collection o = (0¢)52, , where
ag . Ht — AI

for all t = 1,2,...,. Thus, C_strategy is a mixed strategy that disregards the state
of nature. A mixed strategy o can be seen as |K| — tuple of C_strategies. We will

k

denote the k’th component of o (i.e., o(:,k)) by . A C_strategy o, on the other

hand, correspond to a mixed strategy in which all the components are identical.
Suppose that condition (iii) does not hold. The set Q, = {z € R* ¢ < a}, therefore,
is not an approachable set by player 2. Hence, given strategy 7 of player 2, player I has
a strategy &, which ensures him, at least for one k in K, a payoff greater than a*. The
existence of strategy & justified by the Blackwell Theorem (Blackwell 1956). The model
discussed by Blackwell is different from our model in that the information is complete,
but the payoffs are vectors (vector payoffs). In our model this means that & completely
disregards the state of nature, i.e. 7 is a C_strategy.

Suppose that the C_strategy & enables player I (in game ko) to get (against 7) more
than a¥o. Player 1 will swap the ko component of ¢ for 7 and in this manner improve his

payoffs, despite the fact that (o, 7) is an equilibrium point; a contradiction.
4.8 Condition (iv).

Lemma 4.9. Let I'o(p) be a game with lack of information on one-side and known

payoffs. Let (o,7) be a Nash equilibrium point in I'oo(p). Then, for every s € IN,

L[E,(Br|H,)] > Val, B as. (Pyrp) -

Proof: Suppose there is sg € IV and h,, € H,, such that P(h,,) # 0 and
L{E(B7r|H,)|(hs,) < Val2 B (4.5)

define strategy 7 for player 2:



7: play according to 7 until stage sq.
If the history to this point is exactly h,,, change to a strategy which ensures Val, B
(i.e., play each stage the optimal strategy in the one-shot game).
Otherwise, continue according to 7.
Denote the probability distribution and the expectation induced by (o, 7), by ﬁ;- and
E:r. The definition of 7 together with (4.5) yields:

LIE+(BrMs,))(2) = LIEo,r(BrHas,))(2) (4.6)
for all z € H,, such that & # hs,, but for z = h,, we get

LIE, +(Br|Mso)I(hso) > Valz B > L Eq (87| Hso)l(hs,) (4.7)

The properties of the Banach limit and of the conditional expectation, therefore, give

limsup Eq - (87) 2 LIEq,+(B7)) = L{Eo,r (Eo - (BrIHs,))]
T—o0 (4.8)

= B 7 (L[Eqr(Br|Hsy)]) = Eor(L[E. - (Br|Hs,)))

The last equality in (4.8) results from the fact that P, , and ﬁ,: coincide until stage

S0, since the difference between 7 and 7 is from stage so onwards.

The fact that P(h,,) > 0 yields

limsup Ey,r(Br) 2 Eo.r(LIEor(BrlHe)) by (48)
> EU,T(L[E,,,,-(,BTI'HSO)]) (4-6) and (4.7)
= L[Eq+(Eq,+(fr|Hso))] L is linear

= L[Eor(B7)] > liminf B, r(fr) (4.9)

We obtained a contradiction to the fact (g, 7) is a Nash-equilibrium point.
Q.E.D.(Lemma 4.9)

Before going any further we must introduce the concept of martingales.
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4.10 The martingale {p,}. (based on Hart 1985 )

For each k € K, s € IN and an history h, € H,, let p¥ = p*(h,) be the conditional
probability of the “true” game x of being k, given o,7,p and h,. We can thus write
p¥ = P, ;. ,(x = k|H,) = P(k|H,) (on each atom h, € H, of H,,pt is a.s. constant, thus
a.s. equal to p*(hs)). We put ps = (p¥)rex.

Proposition . The sequence {p,}.cmv is a A¥-valued martingale with respect to {Hs}s
satisfying:
I.pi=p

2. There exists a AF-valued random variable po, such that ps — poo a.s. (Psrp) as

§ — OO.

Proof: (see Hart(1985)) The convergence is due to the Martingale Convergence Theorem
and the fact that all the {p,} are uniformly bounded. (For further details on martingales
see, for instance Breiman (1968), chap 5)

The following lemma states that given a game k and an history then after a “sufficient”
number of stages the pair of strategies (¢, 7) induces almost the same payoff as the pair
(o,7). Corollary 4.12 states that the expectation of the payoff to player 2, given that the
game is any k in K, is at least Valy, B, for all k’s.

Lemma 4.11. Let I'oo(p) be a game with lack of information on one side and known
payoffs.

Let (0,7) be a Nash-equilibrium point in I'e(p)

Then for every € > 0 there is sg = sg(&) € IV such that:
s > so(e) = |E¥(L[E(Br|H,)]) — LIE*(Br)]| < € (4.10)

for every k € K.

Corollary 4.12.
L[E*(B7)] > Val,B (4.11)

forallk € K.
The corollary will be proved below, following the proof of Lemma 4.11.
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The idea of the proof of Lemma 4.11 is that the matrix payoff B for player 2 is not
dependent on . At the beginning of the game, the choices of player I may be dependent
on k. But, after a “sufficient” number of stages (i.e., when the martingale {p,} is already
“close” to ps), player I plays an (almost) non-revealing strategy. Hence, the strategies of
both players do not depend on the state of nature.

Consequently, after a “sufficient” number of stages, the expected payoff for player 2,
given a certain history and the state of nature &, is (almost) equal to the expected payoff
when & is not given. Lemma 4.9 implies that the last expectation is at least Val, B. Given
k = k, we want to show that the expected payoff (taking all the possible histories) is at
least Valy B. This is true because the above expectation is merely an average (according
to P¥) of the payoffs for each history. The average of values, all of which are not less than
Val; B, must be not less than Val, B. Hence, proving the corollary.

Proof. (Lemma 4.11)
1. Fixs€e IN and k € K.
For all h, € H, such that P¥(h,) >0

Pls = klhr+41, ho] - Plh741]hs]
Plk = k|h]

P[hT+1lh3,l€ = k] == (412)

holds for all T' > s.
For T > s, if hpyy is a possible continuation of h, (i.e. Py r[hr41lhs] # 0), then
conditioning on hy and hr41 is actually conditioning only on hryi, so (4.12) becomes
Plx = klhr41] - Plhr4alhe] _ Prya(hris)
Pl = klh,] ps(hs)
which holds for every hs € H, such that p*(h,) # 0.

2. E¥(B(ir,jT)|h,) is by definition equal to > B(ir,jr) - Plhr+1lhs, k6 = k]
hr41€Hr 41

. Plhgia|hs] (4.13)

which, using (4.13), can be rewritten as

>, Blir.jn): pT*iEZT; Y P(hralh) (4.14)

hrii€Hrq

3. Let M be the maximum absolute value of any possible payoff to player 2
M = Max{|B(:,j)|:1€ I, j€ J}
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The equality E(B(ir, jT)|hs) = EhT+1eHT+1 B(ir,jr) - P(hT41|hs) together with (4.14)

above and the fact that p’j is Hs-measurable yields:

|E¥(B(it, jr)|hs) — E(B(ir, j7)|hs)| <

k
PT+1(hT+1)
> M- P(hpylhs) =g - 1
hr i€ Hrm pE(h,) (4.15)
1
=M. -———— E[lpk,; — p*||hs
p};(hs) “pT-}—l p ll ]
which holds for every h, € H, such that p¥(h,) # 0.
T
4. Recalling the definition of fr = % 5 B(it,j:) we get :
t=1
Ek(ﬂTV”s) - |E(ﬂT|h3)|
s—1
1
< = E¥(B(iy, j)lhs) — E(B(iy, j1)| ks
T;{ (B(2e, 51)lhs) — E(B(ir,j1) ks )} (4.16)

k k
k(h ) E(lpt+1 _psHhs)

when t < s then (74, j;) conditioned on h, is the ¢-th element of h, so the first summand

of (4.16) equals zero. The second summand of (4.16) equals to

1 1 T
‘f'M 5 Z (|Pt+1 Pf”hs)

pi(he) = (4.17)
<Lyt

— - .T - E(sup |p¥, , — f h
T Pk(hs) (t_>_£) |pt+1 p H s)

The right hand side of (4.17) does not depend on T so it yields (see lemma 4.5, Hart
1985),

|LLE(Br b)) — LIE*(Br|ha)]
< - Mmes - T E(sup lpks —2f[12) (419)

s

|E*{L{E(Br|hs)]} — LIE*(B7)]|
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= |E*{L[E(Br|h.)]} — E*{LIE*(Br|h.)]}|
= |E*{LIE(Br|hs)] — LIE*(Br|ho)]}|

1
k k k
SR IR D)

= z P¥(h,)- {M . p’;(lhs) -E (fgf 2 _p§||hs>} (4.20)

Pk (h,)#0

in (4.20) we used (4.19) and the finite additivity of L.
Recall that,

k _ _ _ - P(k|h3) ’P(hs) _ _Pf(hS)
P*(h,) = Py 1(hy) = P(hyls = k) = e P(h,) e (4.21)
which yields

|E*{L[E(Br|hs)]} — LIE*(B7)]]

<2 5 Pth)-B(sw ok, - shilh)
P P*(h,)>0 t>s
M

=5 E (fgg PE — pfl) (4.22)

The last equality is due to the fact that, whenever P*(h,) = 0, then |pf,, — p¥| = 0.

The Bounded Convergence Theorem and the convergence of {p}, (a.s) states that

B (s ot — k) -0 (4.23)

§— 00

thus we get
|B*{LIB(8rIM.)]} — LIEXBr))| = 0 (4.24)

This is true for all k£ in K. So for each € > 0 one can find an s(¢, k) such that
s > s(e, k) = |E¥{L[E(Br|H,)]} — LIE*Br)}| < e (4.25)

taking s(e) = max {s(g, k)} will give the desired result. Q.E.D. (Lemma 4.11)
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Proof of Corollary 4.12.

Lemma 4.9 states that

E*(LIE(r|Hs)]) > Val, B

(4.26)
hence, using Lemma 4.11:
L{E¥(Br)] > Val;B . (4.27)
and corollary 4.12 is proven which immediately gives condition (iv) since:
B(8*) = B(L[E*(m7)]) = L|B(E*(m7))] = LIE*(Br)] > Val. B (4.28)
Remarks.
1) A similar proof implies that
L[E*(Br|hs)] > Val; B (4.29)

for all s € IV and h, € H, such that PF(h,) #0

2) Condition (iv) holds because the payoffs are known and does not hold in the general
case.

4.13 Condition (V).

Suppose there are k and k in K, k # k, such that A4¥(6%) < Ak(éﬁ).
Player I prefers the following strategy & to o.

& coincides with o except that when & = k, the C_strategy o* is used instead of o*.
When « # k, the payoffs according to (o,7) are the same as the payoffs for (7, 7), but

when k = k, the payoff to player 1, according to (¢, 7), is greater than the payoff according
to (o, 7), which contradicts the fact that (o, 7) is a Nash equilibrium.

Q.E.D. (Theorem A)
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5. Correlated and Communication Equilibrium

The main result of this section is that in the model with lack of information on one
side and known payoffs, the possibility of using correlation or communication does not
increase the set of equilibrium payoffs.

Forges (1988) gives a characterization of the correlated equilibrium payoffs in the
general model of games with lack of information on one side (i.e., where payoffs are not
necessarily known : the payoff matrix B* of player 2 may depend on the state of nature

Our first proof (Koren ,1988) was based on Forges’ theorem (Theorem 5.3, Forges
1988). Forges, later, suggested a direct proof using Theorem A. We will present Forges’
proof, the idea of the original proof is given below as a remark.

First, let us present the set up as given in Forges (1988).

5.1 Communication Equilibria.
Let I' = I'o(p) be a two-person repeated game with lack of information on one side.
A communication device d for I consists of sets I} and I? of inputs for player I and player
2 respectively at stage t (t = 1,2,...), sets Of and O? of outputs for player I and player
2 respectively at stage t and transition probabilities P; to choose the pairs of outputs as a
function of all the preceding inputs and outputs.
Adding d to T, one can form the extended game I'y. Stage t (t =1,2,...) of I’y can
be described as follows:
- player 1 and player 2 transmit simultaneously an input (in I} and I? respectively) to
the device
- recalling all past outputs and inputs, the device selects a pair of outputs in O} x O?
and tells player I only the first component and player 2 the only second component.
- the players make their moves in I and respectively J, as in the original game.
The payoffs in T'y are the same as in T, i.e., depend only on the moves in I x J. Observe
that the only connection between I' and d is through the players (e.g., the memory of the
device does not contain the moves made by the players, unless the players report these

moves as inputs) and that a communication device has two simultaneous roles: to enable
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the players to coordinate their strategies and to exchange information.

A communication equilibrium for I' is a Nash equilibrium in an extension I'y induced
by a communication device d.

Let D, (denoted by D in the introduction) be the set of all communication equilibrium
payoffs in T i.e., Doo = |J Doo(d), where Doo(d) is the subset of RY x IR of all Nash
equilibrium payoffs (a, ) i?l I'4, and d ranges over all communication devices d.

We now turn to subclasses of communication equilibria.

r-Communication Equilibria.

An r-device (r = 1,2,...) for " is a communication device for I' where no input
is possible after stage r (formally, the sets I} and I? of inputs are singletons for ¢ =
r+1,r+2,...). One can proceed exactly as above to define r-communication equilibria in

I'. The set of all r-communication equilibrium payoffs in I" is denoted as D, (r = 1,2,...).

Correlated Equilibria.

Taking r = 0 in the previous definition yields a device which acts only by sending
a stream of signals to the players who cannot send eny input. Such a device will be
called autonomous. The associated set Dy of equilibrium payoff is referred to as the set of
extensive form correlated equilibrium payoffs.

Finally, a correlation device for I' is an autonomous device which acts only once, by
selecting a pair of signals, one for each player, before the beginning of the game or at the
first stage, just before the players make their first move (it makes no difference for player
1 to get a signal before or after learning the state of nature if this signal is independent of
it). A correlation device can thus be defined as a particular communication device where
all the sets of inputs and outputs except O} and O? are singletons.

A (normal form) correlated equilibrium for I' is a Nash equilibrium in an extension I'y
induced by a correlation device d. This is equivalent to Aumann’s original definition (see
Aumann, 1974).

Let NE (respectively C') be the set of all Nash (respectively normal form correlated)

equilibrium payoffs in T'.
Theorem B. Let I' be a game with lack of information on one-side and observable payoffs.
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Then

NE=C=Dy=Dy=...=D,=... =D (5.1)
for every 0 < r < oo.
Proof: (Forges)
It is clear that
NECCCDyCD;C...C Dy (5.2)

Therefore, it is sufficient to prove that Do € NE. Given a game I', a communication
device d and an equilibrium point (o, 7) with payoff vector (a, 8), it is possible to define, in
the usual way, probability vectors 6% — one for each k in K. The 6*s thus obtained satisfy
condition (i)-(v) of Theorem A, hence (a, 3) is a Nash equilibrium payoft in I'.

The probability space in this case is somewhat different from the probability space
defined in §4.4.

For each t € IN we define (as in §4.4) H, = (I x J)*~! the set of histories before stage
t. However, in this case, where there is also a communication device, H; describes only
part of the history. This is due to the fact that each of the players transmitted ¢ messages
(inputs) to the device and received t responses (outputs) during the ¢ stages. Denote the
list of player 1I’s messages (player 2, respectively) by M} (M} respectively). Denote the
list of the device responses to player 1 (player 2 respectively) by R} (R?, respectively).

That is:
R} e ,0? R; € IIi_,0,
(5.3)
M} ellt_,I? M} emt_, I}

Note that the list up to stage t also includes the input and output of stage ¢. This is
because the players make their choice at stage t, after the “dialogue” with the communi-
cation device.

Let us define the set of player 2’s comprehensive histories (CH) (i.e., including the
dialogue between player 2 and the device):

(CH)y :=T' 2N (I x J) x T, (R? x M?) (5.4)
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On (CH)s we define for each t € IN the finite field generated by (CH);, and call it
(CH):. Let (CH)oo be the o-field generated by all the (CH),s (i.e., the cylindrical o-field
on the space (CH) ).

As in §4.4 the basic probability space will also include the choice of « in K by chance.
Thus, let Q@ = (CH)o x K be endowed with the o-field (CH)oo ® 2% . Each communication
device d and each pair of strategies (o, 7) and each probability vector p € AX for the initial
chance move determine a probability distribution on this space. We denote it by Py ;4

and by E, -, a4 the expectation with respect to Py rp 4. Let E* be the conditional

o,7,p,d
expectation give k = k.

Let (o,7) be an equilibrium point in I'; with payoff vector (a,3). Denote Py rpd

(respectively E, rp,4) by P (respectively E) and denote Efj’r,P, ; by E*.

Define the 6*s as in section 4.6.

Conditions (i),(ii),(iii) and (iv) of Theorem A are proven for the above §*s in exactly the
same way as they are proved in Theorem A.

The proof of condition (iii) must be adapted to the new probability space, but basically
it remains the same. The principal change is: Each time the finite field H, is used, it should
be replaced by (CH),. In particular, as in §4.8, the sequence of random variables {p*},
defined by

ps = P(k = k|(CH),)
is a martingale with respect to (C'H)c and therefore converges a.s. P.

Remark. The original proof (Koren, 1988) used theorem 5.3 of Forges (1988) which is
a characterization of the communication equilibria payoffs in the general model.

Given a payoff vector (a, ) in Do we can define the 6*s in the same way it is done
in the proof of Theorem A. The only change is that now the probability space must take
into account the communication device d. Then using Forges’ characterization the 6¥s are

shown to satisfy the conditions of Theorem A, hence (a,f) is in NE.
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6. Nash equilibrium points in the model of lack of information on both sides

Proof (Theorem C).
6.1. The existence of 6*'s (and cys, diis) == existence of Nash equilibrium point

(o,7) in I'(p, ¢) with payoff vector (a,b).

As for the proof of Theorem A (§4.1), we will construct a pair of strategies (o, 7) which

are completely revealing. But here we require that the revealing will be at a single stage
— the first stage. The players reveal their information simultaneously, then play according
to a pre-set plan.
For each k in K and [ in L, we choose a plan to achieve the frequencies of 6*' on I x J. The
plan will consist of a sequence of choices for player 1 and a sequence of choices for player 2.
These sequences will be deterministic, i.e., the plan for §*! has no randomizations. Suppose
that the chosen state of nature is (k,£); player I’s strategy o is then as follows: Signal
k in the first stage”. Signaling in a single stage is possible because® |I| > |K|. Then if
player 2’s signal at the first stage was [ € L, play to achieve frequencies §*' according to
the plan, as long as player 2 does not deviate from the plan. If player 2 deviates from T,
play a Blackwell strategy, ensuring that player 2 will get no more than d,;. This is possible
because d,; is individually rational to player 2, that is approachable by player 1.

Player 2’s strategy is defined in the same manner. In particular, if player I deviates
from o, player 2 “punishes” him with the Blackwell strategy which keeps his payments at
cke (where k is player I’s signal at the first stage).

Proposition 6.2. (o, 7) is a Nash Equilibrium Point with payoff vector (a, b).

Proof:
1. The fact that the payoff vector of (o, 7) is (a, b) is easily established by conditions (i)
and (ii) (as for Theorem A).

? Fix any mapping f of I onto K. Signaling x = k will be carried out by playing any

¢ € I such that f(i) = k.
8 See remark 1. of Theorem C (§3.3).
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2. The roles played by players 1 and 2 are completely symmetrical, therefore it is enough

to prove that player I will not deviate from o.

For player 1, the best deviations from o are of the following type: When the true
game is k € K, signal te K (:’5 is not necessarily different from k). Then watch which
l € L player 2 signals in the first stage. From now, player I may, on the one hand, stick to
his original signal 75, i.e., play according to s*L, On the other hand, he may deviate from
the plan to achieve s (in which case his deviation will be detected).

In the first instance, his payoff is Ak(67°\’). In the second instance, his payoff is, at
most &IIZ\I (The vector cqy 1s used since player 2 punishes according to player 1’s signal i.e.,
k). Player 1 will, of course, prefer the greater of the two (depending on k, k,1).

Both players produce their signals simultaneously, therefore, the expectation of player

I’s payoff, when the true game is k = k, but he has signaled 75, is at most

Z ql Max {Ak(é’k\l), o:\l
leLl

k

Condition (iii) guarantees that this expression is less than a®, so that o is optimal against

T.

Q.E.D. (Proposition 6.2)

6.3. (0,7) is a Nash equilibrium point in Ty (p,q) = the existence of §*'s, cis
and di;s for each £k in K and [ in L.
Before we start the proof, let us define the probability space with which we are dealing.
The probability space here is the necessary extension for the space defined in §4.4. Here,
0 = Hoo x K x L is endowed with the o-field Ho, @25 ®2%. Each pair of strategies (o, 7) and
probability vectors p € AX and ¢ € AL, for the initial chance move, determine a probability
distribution on this space. We denote it by P, ,. Denote by E, , the expectation with
respect to P, ;. We denote by El’,“”,'_ (respectively E;”T) the conditional expectation given

k = k (respectively £ = [), and by Ef:L the conditional expectation given x = k and £ = L.

For the given (o, 7) we denote P¥! and Eﬁ,’i by P*! and E*!. Let us define the 6*'s and

g, 7T

show that conditions (i)-(iv) are satisfied.
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Conditions (i) and (ii).
We will define 6*! in the same manner as we defined 6%, in the case of lack of infor-
mation on one side (see §4.6).
Define random variable my(i,j) on I x J, such that for all T € IV and (¢,5) in I x J.
The number of times in which the
mr(i,j) = pair of choices (, ) appears (6.1)
in the first T stages of the game
define 6*! by:
1
&*(i,5):=L [-T-Ek’(mT(i,j))] . (6.2)

The 6% thus obtained are probability vectors on I x J and satisfy conditions (i) and (ii).

Conditions (iii) and (iv).
Conditions (iii) and (iv) are symmetrical with respect to the roles of players 1 and 2.
Therefore, we will prove here condition (iv) only.

Define, as in §4.8, the martingale {ps},.
pY = P, (k= k|H,) = P(k|H,) (6.3)

First, before the full proof, we will draw a sketch of it, applied to a simple case.
Suppose that:

1) K =L={1,2}

2) {ps}s converges after a finite number of stages, say so (for all histories). This
means that after so stages, player I completely disregards his information and
plays a strategy which depends only on the history to date.

In §6.1, player I “punishes” player 2 with dj;. Here also, we will try to find dg;, which
will be the optimal achievement of player 2, following deviation from 7!, when player 1
plays according to o*.

Suppose that £ = 1 and instead of starting with 7!, player 2 plays according to 72
for the first so stages. After sp stages, a history has been obtained. From this stage on,

player I plays a completely non-revealing strategy, so that this is a good time for player 2

to assess his future moves.
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On one hand, player 2 can continue according to 72, thus his deviation remains unde-
tectable. We denote his expected payoff vector® according to 72 and o, by: (€!(hs,), €2(hs,))
where e!(h,,) is the payoff according to payoff matrix [ = 1 and e?(hs,) is the payoff ac-
cording to payoff matrix [ = 2.

On the other hand, it is possible that player 2 may improve his payoff (in matrix

2, Denote the maximal possible payoff

I = 1) to more than e!(h,,) by deviating from 7
against o, given h,,, as d*(h,,) (note, always d'(hs,) > €(hs,)). It is possible that d'(hs,)
cannot be achieved by any strategy (i.e., d'(hs,) is “sup”, not “max”). Assume here, for
simplicity, that the “sup” may be achieved by some deviation.

Therefore, given history h,,, player 2’s expected payoff is at least dt(hs, ).

Note:.
1. (d(hs,),€%(hs,)) is an IR vector for player 2 since, for £ = 2, 72 is an optimal strategy
against o, therefore e?(h,,) cannot be improved and for ¢ = 1, d'(h,,) cannot be

improved because it is maximal against o. Therefore, also:
(diz,diz) == EV*(d' (ho ), €% (hs,)) (6.4)
(dzp, d35) := E**(d' (hs, ), € (hs, ) (6.5)
are IR vectors for player 2, since the set of IR vectors to player 2 is convex.
2. el(hs,) is the expectation of the payoff for player 2 in game [ = 1 according to 72 and
o. However, after so stages, there is no difference between o and ¢! (and between o

and o?). Thus, e!(h,,) is also the expectation according to o' or o2, (i.e., e!(hy,) is

the expectation even if Kk =1 or k = 2 is given). Hence

E'2(e!(hsy)) = EVI(L[E*(bl|hs,)]) = EV2(L[(E"*(bp|hs,)]) = B'(6'%) (6.6)
E??(e!(hy,)) = E22(L[E (b1 |hs,)]) = E»2(L[(E*?(bT]|hs,)]) = B (8%%) (6.7)

Now, we have reached the final stage of the sketched proof. Using the defined deviation

from 7 (i.e., to begin according to 72 and to reassess the situation after so stages), we will

9 The expected payoff means the Banach limit of the expected payoffs of the finite
histories, i.e., e!(hy,) = L[E"?(bk|hs,)] and e*(hy,) = L[E2(b2|hy,)].
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attempt to estimate the payoff to player 2 when £ = 1 ( but player 2 starts according to
72).

The payoff to player 2 is:

E*(d'(hsy)) = Y pPEF?(d'(hso)) = Y Pidi, (6.8)

k=1,2 k=1,2

We know that d'(hs) > e!(h,) for all histories h,; this together with (6.6) and (6.7) yields

di, = E*?(d(h,)) > EF?(el(hs)) = BY(6%?2) for all k. (o,7) is an equilibrium point, that
1

is 7' is optimal against ¢, which yields
B> Y prdiy = Y p*Max {B'(6*?),d},} (6.9)
k=1,2 k=1,2
which is one of four conditions of (iv) [l = 1,6\-—- 2]. The fact that, d2, = B?(6*?) for

all kin K, and ¥ = 3,_, , p* B*(6*?) yields condition (iv) for | = I = 2 (actually, as
an equality). The additional 2 conditions (with di;) are obtained using the symmetrical

deviation from 7 (i.e., play 7! when ¢ = 2).
Now we turn to the actual proof of the general case.

Lemma 6.4. Let I'o(p,q) be a game and (o, 7) Nash equilibrium point in I'so(p, q).
Then, for any € > 0 there is sg = s9(€) € IN such that

s> so = |EM(L[E (0 |H,)]) — L[EM(8))]| < & (6.10)

foralll,l€ L andk € K.

Proof: Same as for Lemma 4.11, where each 7 is replaced by TT, Br by b and M is

defined by M := Max ter |Bl(i,j)|
i€J

Q.E.D. (Lemma 6.4)

Proposition 6.5. For each k in K and | in L there is an IR vector dg = (d;cT)IEL for

player 2 satisfying

o= p*BI(6") = Y p*Max {B'(6"),d!;} (6.11)
keK keK
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for alll in L.

Proof:

(1)

(2)

(3)

We will begin by constructing a sequence of IR vectors for player 2.
Let s € IN and | € L; for each h, € H, (history of s — 1 stages) such that P(h,) # 0,
define:

d!(hy) := sup L [Eo z(by|h,)] (6.12)

where the sup is over all strategy 7 of player 2. That is, d\(h,) is the best payoff that
player 2 can achieve against o, where his payoff matrix is B, given that the history

to date is hy. Note that the vector

do(hs) := (dy(hs)) ey, (6.13)

is IR to player 2, for every h, such that P(h,) # 0, because otherwise player 2 could
improve his payoffs in at least one game, which is contrary to the definition of d’ in
(6.12). Define

dri(s) = (da(s)) ey, 1= E*'(da(hs)) (6.14)

dri(s) is IR to player 2, because the set of IR vectors to player 2 is convex.

(Note: ds(h,) is defined only for h,, such that P(h,) # 0, but if P(hs) = 0, then also
P5I(h,) = 0. Hence, (6.14) is well defined.)

The definition of 7.

For each | € L and for each h, € H, such that P(h,) # 0 we have defined d!(h,). In
the definition (6.12) “sup” is used and it may be that the “sup” cannot be achieved
by any strategy 7. Therefore, for ¢ > 0 and h, € H, let 7 = 7(l, hs,€) be a strategy
for player 2, which satisfies

|d\(hs) = L[E, 7(b|hs)] | < € (6.15)

(hence T is “c-optimal”).
The definition of 7.

For every | and 1 in L, and for every ¢ > 0 and s € IN we define a deviation
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o~

7 = 7(s,¢,1,1) of player 2 from T as follows:

In all states of nature except [, 7 is identical to 7 (i.e for all states of nature except

Rl

I, 7 and 7 has the same C_strategies ). If the state of nature is £ = I, 7 coincides
with 7! until stage s. At stage s an history hs has been obtained, from this stage
on T continues according to 7(l, hs,€). (Hence, if the state of nature is [, playing
according to 7 means : play according to 7'7 up to stage s. At stage s, we have
obtained a history, h,. T selects a strategy 7 which is “c-optimal” against . The
next moves will be played according to 7).

Denote E_~ by E-lo. The pair of strategies (o,7) is an equilibrium point,

1'(3 e,l,Dlo
therefore:

b' = LB, (b)) 2 L[E, ,(, . 17:(00)] = L[E'(b%)] (6.16)
for all s € IN and € > 0 and for all I,I € L.
We will estimate the right side of (6.16) and this will, eventually, give us (6.9).
(4) Estimation of E-!(b%.).
For every | and [ in L, fix ¢ > 0. For every s € IN we will estimate L[E"’I(bH'HS)].
The properties of the conditional expectation and the finite additivity of the Banach
limit yield

L{E (b)) =L[EH(E'(8F|H,))] = E(L[E(brIH,)]) =
= EI(L[E, (b |H.)]) (6.17)

The last equality in (6.17) is due to the fact that up to stage s 7% and ! coincide. 7 is
the strategy 7(, hs,€) of 7's definition. (7 may depend on the history hs.) The definition
of B implies that (6.17) is equal to:

> p*E*(L[E, #(b5|H,)]) (6.19)

keK

Now, for each h, such that P»!(hy) > 0 the definition of 7 = 7(I, hs,¢) gives

|L[Es7(bp|hs)] — di(Rs)| < € (6.20)
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Using the equality dij(s) = Ek’i(di(hs)) we get that

EM(L[E, 7(8|R,)]) = EM(d(hy) —€) = d\ (s) — ¢ . (6.21)
In conclusion,
> LIE ()] = ) p*EFY(L[E, 73 H,)]) > > pF(diy(s) —¢) (6.22)
keK keK

For every k in K, every I, in L and every ¢ > 0.
(5) The definition of dy;.
For every n € IN, let s be the s(1/n) obtained from Lemma 6.4 (for € = 1/n). Le.,

t > s(1/n) = |EMV(L[EV(8|Hy)]) — L{ER(8))]| < %

for all l and [ in L and k in K).
Consider the sequence {d,;(s(1/n)) }:;1 It is bounded (for every k, 1), therefore there

is a sub-sequence (nm )%~ such that {d,;(s(1/nm)) }2°_. converges for every k,1 (for

m=1
all k and [ simultaneously). W.l.g. assume that the original sequence is converging.
(otherwise consider (n,, )52, instead of {n};2, in the first place.) Let d,; denote the

limit of this sequence

dyg = nlirr;o d,7(s(1/n)) (6.23)

Conclusions
1. d,; is an IR vector for player 2 for all k¥ and 1. This is because the set of the IR

vectors 1s a closed set.

2. For each €1 > 0 there is N = N(e;) such that
n>N=>|d.s(1/n) —d;| < e (6.24)

for every k in K and for every [ and [ in L.
(6) Fix ¢ > 0 and e > 0. Let N = N(e1) of (6.24) then (6.22) for 7 = 7(s(1/n),¢,1,1)
yields:

n>N=b">Y pHdy(s)—e)> > p*d;—ec—er) (6.25)
kEK keK
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This is true for all € > 0 and &; > 0, hence

>y prdt; (6.26)
kEK
(7) Fix ¢; > 0. Let N be N(e;) of (6.24) (denote s(1/n) by s), then (6.24) and (6.14)
yield
n>N=dl;>d(s)—er = E*(d}(h,)) — &1 (6.27)

Since d!(h,) is the optimal payoff of player 2, where £ = [, against o given the history
hs (i-e., particularly better than 7'7) we get dl(hs) > L[E"i(ths)] hence

n >N = d\;> EN(L[EY (b |h,)]) - & (6.28)

the way in which s = s(1/n) is chosen in Lemma 6.4 yields

7 1 7 1
n> N == di; > L[E®'(b)] - ~—& = B'(s*) - ~—e (6.29)

This is true for all n > N(e;) hence d;i > B'(&ki) — &1 which is true for all e; > 0,
hence dii = Max {Bl(6k7),d27} for all k£ in K and [,1 in L. Hence, (6.26) yields the

desired conditions

o' > S pF Max {BY(6M),d!;) (6.30)
kEK

for all k in K and I,]in L.
Note. d!(h,) = L[E"!(b}|hs)] hence d}; = B'(6¥') (we use it in Remark 3 of Theo-
rem C).
Q.E.D. (Proposition 6.5)
Q.E.D. (Theorem C)
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6.6 Example. We analyze the game I'(p, ¢), where

K=L={,2}, p=(mLp)>>0, ¢=(¢",¢*)>>0

3 0
1 _
A =1y
3 3
2
AT=11 1
L (10 ., |1 3
B =y 3 B =11 3
' q
1 3’1 0,0 3,1 0’3
P 0,0 1,3 | 0,1 1,3
. 3,1 30 | 3,1 33
P 1,0 1,3 | 1,1 1,3

Figure 1. Tw(p,q)

We will determine for which (p, ¢) there is an equilibrium in the game I' o (p, q).
The motivation for choosing this example is due to Shalev (1988). He noticed an
interesting phenomenon. Consider the following game I',(p) with lack of information on

one side and known payoffs:

3 0 10
1 _ 1 __
A4 =19 1 B =lp 3
3 3
2 __
AT=11 1
1 3,1 0,0
P 0,0 1,3
. 3,1 3,0
P 1,0 1,3

Figure 7. T'w(p)

43



The set of equilibria payoffs for this game is determined using Theorem A. One can
see that the minimum payoff to player I, when « = 1, is 9/4. Since a payoff of less than
9/4 is an incentive to player I to cheat when x = 1 (see Shalev for details).

A game known as “The Battle of the Sexes” is defined by the following pair of matrices:

Al = B! =

— O

O =
w o

oW

Figure 8. “The Battle of The Sexes”

' (p) may be seen as a game “derived” (as defined by Shalev) from the game Battle
of the Sexes, by adding the payoff matrix A? and the vector p.

The “Folk Theorem” implies that the minimum payoff to player 1 in the “Battle of
the Sexes” is 3/4. Hence by adding a doubt of player 2 as to the state of nature, the set
of equilibrium payoffs may be changed to favor player 1 (even when p! is close to 1).

A conjecture was raised (by R.J. Aumann) that if this process of adding doubt is du-
plicated for player 2, giving the game I' o (p, ¢) of our example, there will be no equilibrium
point. This is due to the fact that in the state of nature k = 1 and ¢ = 1, both players
will “have” to receive at least 9/4 as their payoff. However, 9/4 4+ 9/4 > 4, therefore there
will be no equilibrium point. Indeed this is true for p' and ¢! close to 1, but when one of
them is “small” enough, an equilibrium point does in fact exist and at least one player is
satisfied with less than 9/4.

We start the analyzing of the game. Let (o,7) be an equilibrium in I'wo(p, ¢) with

payoff vector (a,b). Then, there are four probability vectors (6%') k=12 in AT*J satisfying
1=1,2

a* = g  AF(§F1) + g2 AR (8%?) k=1,2 (6.31)
and

o — p131(511) + p?Bl(6?) 1=1,2 (6.32)

Remark 3 in Theorem C ensures that: o' := A¥(6¥') > Val; A* and b*' := B!(6*') > Val, B!
for k = 1,2 and I = 1,2. Note that Val; A! = Val,B! = 3/4 and Val, A? = Val,B? = 3,
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hence the §*'s must be of the following form?!? :

s11 0 1-—e
s11 512 0 e

521 622 t 1 —¢
0 0

o O
[ewl o

Figure 2.

for some e and ¢, where 3/4 < e,t < 1.
Since (Val; A)(-) and (Valp B)(-) are convex functions in this case, conditions (iii) and

(iv), in this game are (see Remark 4 of Theorem C )
a' = ¢'a'' + ¢*a'? > ¢' - Max {A'(6°"),3/4} + ¢* Max {A'(6%%),3/4}  (6.35)
b =p'ot! + p?b?! > p' - Max {B'(6'?),3/4} + p® Max { B!(6%%),3/4}  (6.36)
The remaining conditions (for a? and b%) are clearly satisfied because a®> = b? = 3 =
Max ser {A*G,5),B'(i,5)} -

ke K
l€L

From figure 2 we get :
A1) =3t AY6**)=0 BY(6?)=3e B (6**)=0 a'2=e b=t (6.37)
thus (6.35) and (6.36) get the following form:
(6.35) <> ¢'a'l +q%e > 3tq! + %zf (6.38)
(6.36) <=> p'b'! + p?t > 3ep' + 2p2 (6.39)
Dividing (6.38) by ¢! and (6.39) by p! yields ! :

n, ¢ >4 S 3
(6.35) < a +q1 e> +4q1 1

1
<=>a11+223t+e+—qT<§—e> (6.40)

3 1
(6.36) < b'! + g 23ttt o (% — t) (6.41)

10 The numbers in the matrices’ entries represent probabilities, for example, if k = ¢ = 2

only the top right corner will be played.
11 Recall that p? =1 —p! and ¢ =1 — ¢'.
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We will find a necessary condition for (p, ¢) in order that (6.40) and (6.41) will be satisfied.

Later, we will show that the condition thus obtained is sufficient for the existence of an
equilibrium in e (p, ¢).
a'! and b'! always satisfy a'! + b'! < 4 = Max et {A'(j,%) + B(3,j)} so
J
1
Py

3_N\.1(3_,
ad\1" %) T\
‘ 1 1 3/1 1
=e(4_q—1)+t<4—1j>+1(1¥+;—1-> (6.42)

1 If (4 - 311‘) > 0, i.e., ¢! > 1/4 then if condition (6.42) is true for some e > 3/4, then

(6.31) + (6.32) =44+ 6/4 > a' + b +6/4 > 4(e+1t)+

it is also true for e = 3/4 so set e = 3/4
2. If (4 — qll) <0,ie., ¢l <1/4, sete=1.
3. If (4— %) 20,ie, p' 2 1/4set t = 3/4.
4. If (4 — ;11—) <0,ie,q' <1/4sett=1.
Let us divide the (p,¢)s plane with respect to the existence or non-existence of an

equilibrium point.

1. ¢! <1/4 and p* < 1/4 [e=1t=1]
1 1 3/(1 1 1/1 1
42 >84S (=) =84+ =
(© ):55_(8 p! q1)+4(p1+q1) ° 4<p‘+¢11)
1 1
=>I‘)—l-+q—1210 (643)
2. ¢ <1/4and p' >1/4 [e =1,t = 3/4]
1 3 1 3/1 1 1
642) =>55>4— —+3—-°". =+ (=4 =) =7— —
(6.42) = 5.5 > q1+ 1 p1+4<p1+q1> 7 gl
=q¢' <1/6 (6.44)
3. ¢ >1/4and p! <1/4 [e=3/4,t=1]
(6.42) = p' < 1/6 (6.45)

4. ¢! >1/4 and p' > 1/4 [e =t =3/4]

(6.46)
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Conclusions.
We have found that a necessary condition for an equilibrium point in I'(p, ) is:

1 1
_.+___

p'<1/6 or ¢"<1/6 or ata

> 10 (6.47)

Now, we will show that if this condition is satisfied then I'o(p, ¢) has an equilibrium point.

1.
10 0 1/4
0 0 0 3/4
(6" )k =
1 0 01
0 0 0 0
Figure 3.

Figure 3 is an example for an equilibrium point where p! < 1/6. (can be checked

using (6.40) and (6.41) )

2.
0 0 0 0
0 1 01
(6k1)k,l —
3/4 1/4 0 1
0 0 0 0
Figure 4.
Figure 4 is an example for an equilibrium point where ¢! < 1/6.
3.
et 0 0 0
0 1-« 0 1
(5kl)k,l —
10 0 1
0 0 0 0
Figure 5.

. - *qe . . 1 — — 1
Figure 5 is an example for an equilibrium point where I%—{— ;11— > 10, here gqqul <a< 13—1)%

Thus I'oo(p, ¢) has an equilibrium point if and only if condition (6.47) is satisfied.
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Figure 6. Nash equilibrium points in I's(p, q).
The x-axis is p! and the y-axis is ¢*. The equilibrium points
of I'o(p, g) are all the points in the shaded area ( including
the boundaries) and the lines p! =1 and ¢' = 1.
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